高中数学必修4第二章复习课
- 格式:ppt
- 大小:1.32 MB
- 文档页数:23
第二章平面向量2.2 平面向量的线性运算 2.2.3 向量数乘运算及其几何意义课后篇巩固探究基础巩固1.下列说法正确的个数为( )①0·a=0;②0·a=0;③a·0=0;④a·0=0. A.1B.2C.3D.4,由于数乘向量的结果是一个向量而不是一个数,因此本题所给的四种说法中只有②与③的结果是一个向量,因此选B.2.13[12(2a +8b )-(4a -2b )]等于( )A.2a-bB.2b-aC.b-aD.a-b=16(2a+8b)-13(4a-2b)=13a+43b-43a+23b=-a+2b=2b-a.3.在△ABC 中,D 是线段BC 的中点,且AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =4AE⃗⃗⃗⃗⃗ ,则( )A.AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗B.AD ⃗⃗⃗⃗⃗ =4AE ⃗⃗⃗⃗⃗C.AD ⃗⃗⃗⃗⃗ =2EA⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =4EA⃗⃗⃗⃗⃗AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ ,所以AD ⃗⃗⃗⃗⃗ =2AE ⃗⃗⃗⃗⃗ .4.已知AB ⃗⃗⃗⃗⃗ =a+5b,BC ⃗⃗⃗⃗⃗ =-2a+8b,CD ⃗⃗⃗⃗⃗ =3(a-b),则 ( )A.A,C,D 三点共线B.B,C,D 三点共线C.A,B,C 三点共线D.A,B,D 三点共线BD ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(-2a+8b)+3(a-b)=a+5b,所以AB ⃗⃗⃗⃗⃗ =BD⃗⃗⃗⃗⃗ . 又AB ⃗⃗⃗⃗⃗ 与BD ⃗⃗⃗⃗⃗ 有公共点B, 所以A,B,D 三点共线.5.已知向量a 与b 不共线,AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R),则AB ⃗⃗⃗⃗⃗ 与AC ⃗⃗⃗⃗⃗ 共线的条件是( ) A.m+n=0 B.m-n=0 C.mn+1=0D.mn-1=0AB ⃗⃗⃗⃗⃗ =a+mb,AC ⃗⃗⃗⃗⃗ =na+b(m,n ∈R)共线,得a+mb=λ(na+b)=λna+λb,∵向量a 与b 不共线,∴{1=λn ,m =λ,即mn-1=0,故选D.6.若AB ⃗⃗⃗⃗⃗ =5e,CD ⃗⃗⃗⃗⃗ =-7e,且|AD ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |,则四边形ABCD 的形状是 .AB ⃗⃗⃗⃗⃗ =-57CD ⃗⃗⃗⃗⃗ ,因此AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |≠|CD ⃗⃗⃗⃗⃗ |,又知|AD ⃗⃗⃗⃗⃗ |=|BC⃗⃗⃗⃗⃗ |,所以四边形ABCD 是等腰梯形.7.在四边形ABCD 中,AB ∥CD,AB=3DC,E 为BC 的中点,则AE ⃗⃗⃗⃗⃗ = AB ⃗⃗⃗⃗⃗ + AD ⃗⃗⃗⃗⃗ .⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +12(AD ⃗⃗⃗⃗⃗ −23AB ⃗⃗⃗⃗⃗ )=23AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ .128.在△ABC 中,点M 为边AB 的中点,若OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,且OP ⃗⃗⃗⃗⃗ ==12(OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ ). 又OP ⃗⃗⃗⃗⃗ ∥OM ⃗⃗⃗⃗⃗⃗ ,∴存在实数λ,使OP ⃗⃗⃗⃗⃗ =λOM ⃗⃗⃗⃗⃗⃗ , ∴OP ⃗⃗⃗⃗⃗ =λ2(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )=λ2OA ⃗⃗⃗⃗⃗ +λ2OB⃗⃗⃗⃗⃗ , ∴x=y=λ2,∴yx=1.9.如图,已知D,E 分别为△ABC 的边AB,AC 的中点,延长CD 到M 使DM=CD,延长BE 至N 使BE=EN,求证:M,A,N 三点共线.D 为MC 的中点,且D 为AB 的中点,∴AB ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ . 同理可证明AN ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ . ∴AM ⃗⃗⃗⃗⃗⃗ =-AN ⃗⃗⃗⃗⃗ .∴AM ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗ 共线,又AM ⃗⃗⃗⃗⃗⃗ 与AN ⃗⃗⃗⃗⃗ 有公共点A. ∴M,A,N 三点共线.10.(1)已知a=3i+2j,b=2i-j,求(13a -b)−(a -23b)+(2b-a);(2)已知向量a,b,且5x+2y=a,3x-y=b,求x,y.原式=13a-b-a+23b+2b-a=(13-1-1)a+(-1+23+2)b=-53a+53b.∵a=3i+2j,b=2i-j,∴原式=-53(3i+2j)+53(2i-j)=(-5+103)i+(-103-53)j=-53i-5j.(2)将3x-y=b 两边同乘2,得6x-2y=2b. 与5x+2y=a 相加,得11x=a+2b, ∴x=111a+211b.∴y=3x-b=3(111a +211b)-b=311a-511b.能力提升1.如图,AB 是☉O 的直径,点C,D 是半圆弧AB 的两个三等分点,AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,则AD ⃗⃗⃗⃗⃗ =( )A.a-12bB.12a-bC.a+12bD.12a+bAODC 为菱形,所以AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =12a+b.2.已知点P 是△ABC 内的一点,AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ),则△ABC 的面积与△PBC 的面积之比为( ) A.2B.3C.32D.6BC 的中点为D,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ .∵AP ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=23AD ⃗⃗⃗⃗⃗ ,如图,过点A 作AE ⊥BC,交BC 于点E,过点P 作PF ⊥BC,交BC 于点F,则|PF ||AE |=|PD ||AD |=13.∴S △ABC S △PBC=12|BC |·|AE |12|BC |·|PF |=3.3.已知OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,设AM ⃗⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ ,则实数λ的值为 .OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,所以23OM ⃗⃗⃗⃗⃗⃗ +13OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ ,于是23OM ⃗⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =13OB ⃗⃗⃗⃗⃗ −13OM ⃗⃗⃗⃗⃗⃗ ,即23AM ⃗⃗⃗⃗⃗⃗ =13MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =12MB ⃗⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ =13AB⃗⃗⃗⃗⃗ ,故λ=13.4.在平行四边形ABCD 中,DE ⃗⃗⃗⃗⃗ =12EC ⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗ =FC ⃗⃗⃗⃗ ,若AC ⃗⃗⃗⃗⃗ =λAE⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ ,其中λ,μ∈R,则λ+μ= .,有AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ .因为AC ⃗⃗⃗⃗⃗ =λAE ⃗⃗⃗⃗⃗ +μAF ⃗⃗⃗⃗⃗ =λ(AD ⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗ )=λ(AD⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )+μ(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ )=(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ . 所以AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(λ3+μ)AB ⃗⃗⃗⃗⃗ +(λ+μ2)AD ⃗⃗⃗⃗⃗ ,即{λ3+μ=1,λ+μ2=1,解得{λ=35,μ=45,故λ+μ=75.5.在△ABC 中,点P 是AB 上一点,且CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ ,Q 是BC 的中点,AQ 与CP 的交点为M,且CM ⃗⃗⃗⃗⃗⃗ =t CP ⃗⃗⃗⃗⃗ ,求t 的值.CP ⃗⃗⃗⃗⃗ =23CA ⃗⃗⃗⃗⃗ +13CB⃗⃗⃗⃗⃗ , ∴3CP ⃗⃗⃗⃗⃗ =2CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,即2CP ⃗⃗⃗⃗⃗ -2CA ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ −CP⃗⃗⃗⃗⃗ . ∴2AP⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ ,即P 为AB 的一个三等分点(靠近点A),如图所示.∵A,M,Q 三点共线,∴设CM ⃗⃗⃗⃗⃗⃗ =x CQ ⃗⃗⃗⃗⃗ +(1-x)CA ⃗⃗⃗⃗⃗ =x 2CB⃗⃗⃗⃗⃗ +(x-1)AC ⃗⃗⃗⃗⃗ , 又CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,∴CM ⃗⃗⃗⃗⃗⃗ =x 2AB ⃗⃗⃗⃗⃗ +(x 2-1)AC⃗⃗⃗⃗⃗ . 又CP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,且CM ⃗⃗⃗⃗⃗⃗ =t CP⃗⃗⃗⃗⃗ , ∴x 2AB ⃗⃗⃗⃗⃗ +(x2-1)AC ⃗⃗⃗⃗⃗ =t (13AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ ). ∴{x 2=t3,x2-1=-t ,解得t=34.6.已知△OBC 中,点A 是线段BC 的中点,点D 是线段OB 的一个三等分点(靠近点B),设AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b. (1)用向量a 与b 表示向量OC⃗⃗⃗⃗⃗ ; (2)若OE ⃗⃗⃗⃗⃗ =35OA ⃗⃗⃗⃗⃗ ,判断C,D,E 是否共线,并说明理由.∵AB ⃗⃗⃗⃗⃗ =a,AO ⃗⃗⃗⃗⃗ =b,点A 是BC 的中点,∴AC⃗⃗⃗⃗⃗ =-a. ∴OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ =-a-b. (2)假设存在实数λ,使CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∵CE ⃗⃗⃗⃗⃗ =CO ⃗⃗⃗⃗⃗ +OE ⃗⃗⃗⃗⃗ =a+b+35(-b)=a+25b,CD ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +13BO⃗⃗⃗⃗⃗=CB ⃗⃗⃗⃗⃗ +13(BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ )=2a+13(-a+b)=53a+13b,∴a+25b=λ(53a +13b), ∴{53λ=1,13λ=25,此方程组无解, ∴不存在实数λ,满足CE ⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ .∴C,D,E 三点不共线.。
高中数学必修4复习教案
第一部分:向量与空间解析几何
1. 向量的概念与运算
- 向量的定义:大小和方向确定的量
- 向量的运算:加法、减法、数乘、数量积、向量积
2. 向量的数量积
- 定义:两个向量的数量积等于两个向量的模的乘积与夹角的余弦值的乘积- 性质:交换律、分配律、数量积为零的条件
3. 向量的向量积
- 定义:两个向量的向量积是一个垂直于这两个向量构成的平面的向量
- 性质:满足右手定则、交换律、分配律等
4. 空间直线和平面
- 空间直线的方程:点向式、对称式、参数式等
- 空间平面的方程:点法式、一般式等
第二部分:概率与统计
1. 概率的基本概念
- 概率的定义:某一事件发生的可能性大小
- 概率的性质:介于0和1之间、互斥事件、独立事件等
2. 随机事件与概率
- 随机事件的分类:必然事件、不可能事件、对立事件等
- 求概率的方法:古典概型、几何概型、统计概型等
3. 统计的基本概念
- 统计的定义:收集、整理、分析和解释数据的方法
- 数据的统计特征:均值、中位数、众数等
4. 统计图的作画
- 直方图、饼图、散点图等的绘制方法
- 图形的解读:分布情况、相关性等
以上是高中数学必修4的复习教案范本,希望对你的复习有所帮助。
祝学习顺利!。
(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)高中数学必修四第二章平面向量课后习题Word版(word版可编辑修改)的全部内容。
【必修4】 第二章平面向量2.1 练习1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ).2、非零向量AB 的长度怎样表示?非零向量BA 的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗?3、指出图中各向量的长度.4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?2.2.1 练习1、如图,已知b a ,,用向量加法的三角形法则作出b a 。
2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.3、根据图示填空:(1)________;=+d a(2).________=+b c4、根据图示填空:(1)________;=+b a(2)________;=+d c(3)________;=++d b a(4).________=++e d c2.2.2 练习1、如图,已知b a ,,求作.b a -2、填空:________;=- ________;=- ________;=-BA BC ________;=-OA OD .________=-3、作图验证:b a b)(a --=+-2.2。