直流电动机的起动、调速和制动
- 格式:ppt
- 大小:1.15 MB
- 文档页数:59
直流电动机的起动、调速和制动起动(start)、制动(break)和调速(speed regulating)是电力拖动(drive)的三大问题,起动和调速又是评价(evaluate)电动机性能(performance)的两个重要方面(important aspect)。
讲义一、直流电动机的起动起动:直流电动机接上电源(power supply)后,转速(velocity)由零逐渐增(gradually)加到稳定转速的过程(process)。
对起动性能的要求(demands):起动转矩(starting torque)足够大,起动电流(starting current)不可太大,起动时间要短,除此之外,要求起动设备(equipment)简单,经济可靠(reliability)。
一、直接起动(全压起动):下图为并励直流电动机起动时的接线图(connection diagram)。
开始时,转速为零,aN st R U I 可达额定电流(rated current)的20~30倍,结果使:绕组(winding)过热,换向(commutation)困难;影响其它电器设备的正常运行(normal operation);过大的电磁力冲击(impact),可损坏机械。
故只有极小容量(capacity)的直流电动机才允许直接起动(direct start)。
直接起动的特点:不需起动设备、操作简便(simplicity of operation)、起动转矩大,但起动电流太大。
注意:起动前先合上励磁回路(excitation circuit)开关,并将励磁电流调至最大值,确保磁场(magnetic field)先建立起来,再合上电枢回路开关。
否则:1)轻载时,有剩余磁通(residual flux),因为起动电流大,所以起动转矩可能大于负载转矩(load torque),电动机起动,转速升高达飞车状态。
故起动前应检查励磁绕组是否断线。
实验题目类型:设计型《电机与拖动》实验报告实验题目名称:直流电动机启动、调速控制电路实验室名称:电机及自动控制实验组号:X组指导教师:XXX报告人:XXX 学号:XXXXXXXXX 实验地点:XXXX 实验时间:20XX年XX月X日指导教师评阅意见与成绩评定一、实验目的掌握直流电动机电枢电路串电阻起动的方法;掌握直流电动机改变电枢电阻调速的方法;掌握直流电动机的制动方法;二、实验仪器和设备验内容(1)电动机数据和主要实验设备的技术数据四、实验原理直流电动机的起动:包括降低电枢电压起动与增加电枢电阻起动,降低电枢电压起动需要有可调节电压的专用直流电源给电动机的电枢电路供电,优点是起动平稳,起动过程中能量损耗小,缺点是初期投资较大;增加电枢电阻起动有有级(电机额定功率较小)、无极(电机额定功率较大)之分。
是在起动之前将变阻器调到最大,再接通电源,随着转速的升高逐渐减小电阻到零。
直流电动机的调速:改变Ra、Ua和∅中的任意一个使转子转速发生变化。
直流电动机的制动:使直流电动机停止转动。
制动方式有能耗制动:制动时电源断开,立即与电阻相连,使电机处于发电状态,将动能转化成电能消耗在电路内。
反接制动:制动时让E与Ua的作用方向一致,共同产生电流使电动机转换的电能与输入电能一起消耗在电路中。
回馈制动:制动时电机的转速大于理想空转,电机处于发电状态,将动能转换成电能回馈给电网。
五、实验内容(一)、实验报告经指导教师审阅批准后方可进入实验室实验(二)、将本次实验所需的仪器设备放置于工作台上并检查其是否正常运行,检验正常后将所需型号和技术数据填入到相应的表内(若是在检验中发现问题要及时调换器件)(三)、按实验前准备的实验步骤实验直流电动机的起动1、取来本次试验所用器件挂置在实验工作台上2、在试验台无电的前提下,按照实验原理图接线3、请老师查看接线,待老师检查所接线路无误、批准后执行以下操作4、用万用表检查线路的通断(三相可调变阻器),检查无误后方可通电5、按动电源总开关,将电源控制屏上的直流电压调制220V左右6、按下“启动”按钮,便接通了直流电源7、搬动励磁、电枢电源按钮,直流电机启动8、逐渐减少R1阻值,电动机达到额定转速(也可通过调节R1来进行调速)9、搬动励磁电源按钮,直流电机能耗制动停车,收线,整理试验台R2直流电动机的起动、调速、制动原理图直流电动机的起动、调速、制动接线图若在实验中发现问题及时的找出问题的原因,排查问题后方可继续进行试验三相可调变阻器的检查:将其与直流电源接通,串入直流电流表,并入直流电压表。
直流电动机常用的启动方法直流电动机是一种常见的电动机类型,广泛用于各种工业生产与民用设备中。
对于直流电动机的启动方法,有很多种不同的选择,这些选择的依据包括电动机的型号、工作环境、驱动力矩的大小以及控制方式等因素。
下面是10种关于直流电动机常用的启动方法,并分别进行详细描述。
1. 电阻启动法电阻启动法是直流电动机最常见的启动方式,其原理是通过依次接入不同电阻来使电动机的起动电流随之逐渐减小。
当起动电流达到设定的安全范围之后,电阻便会逐渐减少,直到电机正常运行。
这种启动方式起动起来比较平稳,价格较为低廉。
电阻启动法需要使用大量的电阻器,造成能量的浪费。
2. 串联启动法串联启动法是一种将电动机的电源与电阻器串联连接在一起的启动方法。
与电阻启动法相似,它也是通过连续连接电阻器来降低电流的方法来启动电动机,与电阻启动不同的是,串联启动法每次只启动一个电阻器。
这种启动方式对电机来说更加低温,启动更加快速。
在起动阶段,会产生高电压,并且会造成能量的浪费。
3. 并联启动法并联启动法是一种将电动机的电源与电阻器并联连接在一起的启动方法。
并联启动法直接输入电机供电电压,通常需要通过控制继电器来控制电动机的启动。
这种启动方式比较经济实用,并且启动过程中对电机起动电流和电机结构的影响最小。
4. 自励磁通启动法自励磁通启动法是通过电机冷态下挂上外接的直流电源,使电机发生自励磁通,再接上负载进行启动。
这种启动方法具有启动电流小,启动时间短,启动前不需预充电等特点。
但是自励磁通启动方式不适用于需要一直处于低速转动状态的电机。
5. 逆励磁通启动法逆励磁通启动法是通过将直流电动机转子两端分别接上两个反向或相同的电极来实现启动的方法。
这种启动方式不需要任何外接电阻器和其他控制器等,启动过程非常快速。
在实际使用中,逆励磁通启动需要一定的起动电流,不利于电机的长时间运转。
6. 惯性位移启动法惯性位移启动法也称为惯性磁力启动法,是一种利用电机转子上的惯性力和轴承摩擦力产生的惯性磁力来实现启动的方法。
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
东莞理工学院(本科)期末考试参考试题库2015--2016学年第一学期《机电传动与控制》开课单位:机械工程学院,考试形式:闭卷,允许带计算器、绘图仪器入场题序一二三四五六七八总分得分评卷人问答题(3道题):30分1、直流启动、制动方法、调速方法、各种调速方法有何优缺点?答:把带有负载的电动机从静止起动到某一稳定速度的过程为起动过程。
电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。
直流电动机的启动方法:直接起动,串电阻启动,降低电枢电压启动直流电动机的制动方法:能耗制动,反接制动,回馈制动直流电动机的调速方法:改变主磁通调速、改变电枢电压调速和电枢回路串联电阻调速调速方法优缺点:1.改变磁通调速的优点是调速平滑,可做到无级调速,调速经济,控制方便,机械特性较硬,稳定性较好。
但由于电动机在额定状态运行时磁路已接近饱和,所以通常只是减小磁通将转速往上调,调速范围较小。
2.改变电枢电压调速的优点是不改变电动机机械特性的硬度,稳定性好,控制灵活、方便,可实现无级调速,调速范围较宽。
但电枢绕组需要一个单独的可调直流电源,设备较复杂。
3.电枢串联电阻调速方法简单、方便,但调速范围有限,机械特性变软,且电动机的损耗增大太多,因此只适用于调速范围要求不大的中、小容量直流电动机的调速场合。
2、交流启动、制动方法、调速方法、各种调速方法有何优缺点?答:笼型异步电动机启动方法:直接启动,降压启动所谓降压起动,是利用起动设备将电压适当减小后,加到电动机定子绕组上进行起动,待电动机起动完毕后,再使电压恢复到额定值。
异步电动机降压起动的方法主要有:自耦变压器降压起动、星-三角(Y/△)降压起动和在定子电路中串电阻(或电抗)降压起动。
异步电动机的制动方法:反接制动,能耗制动,回馈制动异步电动机的调速方法:变极对数调速,变频调速,改变转差率调速(具体调速方法包括改变定子电压调速、转子绕组串电阻调速和电磁滑差离合器调速)简单版:1)调压调速这种办法能够无级调速,但调速范围不大2)转子电路串电阻调速这种方法简单可靠,但它是有机调速,随着转速降低特性变软,转子电路电阻损耗与转差率成正比,低速时损耗大。
直流电动机的启动、调速、反转与制动(一)摘要本文介绍了直流电动机的启动、调速、反转和制动等方面的基础知识和实际操作技巧。
通过了解直流电动机的工作原理,我们能够更好地掌握如何实现电动机的启动、调速、反转和制动控制。
一、直流电动机的基本原理直流电动机是应用广泛、使用最为普及的一类电动机,它利用直流电的力线作用于定子和转子中导体的电流而产生旋转力矩。
直流电动机的基本构成包括:定子、转子、集电环、电枢、永磁体等部分,其中电枢是电机的主要转换元件。
当电机通电后,电枢内的导体会在磁场作用下受到力矩而旋转,从而带动转子旋转。
电枢外接电源,因此电流方向不断变化,导致电枢上每一根导体均不断变化着受到力矩的方向,当导体在磁场中转到过渡点时,力矩的作用方向就会随之改变,从而形成电枢稳定旋转,并实现电机的工作。
二、直流电动机的启动直流电动机的启动方式主要有自激励式启动和外激励式启动两种。
1. 自激励式启动自激励式启动是最常见的直流电动机启动方式,它是通过电枢产生的反电动势和自感作用来实现电机的启动的。
在自激励式启动过程中,需要使用一个发电机将直流电源产生的电流输出到电机的电枢上,此时,电枢上的导体会产生高速旋转,并在磁场作用下产生反电动势。
当电枢转速达到某一值时,反电动势的大小会超过电源电压,从而达到自我激励的目的,实现电机的启动。
2. 外激励式启动外激励式启动采用较大的磁场励磁电源来励磁电机的励磁绕组,使电机初期转矩增大,将电机启动起来。
外励磁通常使用同步电动机、串联机等至少具有较强磁场特性的电动机来实现。
三、直流电动机的调速1. 电枢调速电枢调速是一种常见的简单调速方式,它通过改变电枢电压的大小,控制电动机的转速。
具体来说,通过调节电枢上电流的大小和方向,可以实现电枢中磁通的改变,从而改变电机的转速。
但是,电枢调速方式容易产生调速失速现象,同时,由于电机负载的变化,需要不断调节电机的电压,使得调速操作比较麻烦。
2. 电阻调速电阻调速是通过在电机电路中加入电阻,从而改变电路阻抗大小,从而实现电机的转速调节。