直流电机制动方法
- 格式:pdf
- 大小:126.03 KB
- 文档页数:3
他励直流电动机的制动电力拖动系统的制动就是产生一个与转速方向相反的制动力矩,使电动机停车或限速运行。
这个制动力矩可由摩擦力产生、可由机械抱闸产生、甚至可用人力产生,但我们现讨论的是电气制动:即制动转矩由电动机本身产生。
因此:电动:电磁转矩T 与n 同向,T 是驱动转矩制动:电磁转矩T 与n 反向,T 是制动转矩1.由直流电动机的机械特性可知,T 与n 同向时,机械特性在Ⅰ、Ⅲ象限。
在第Ⅰ象限:n>0、T>0,称为正向电动。
在第Ⅲ象限:n<0、T<0,称为反向电动。
故电动机制动时,机械特性一定在Ⅱ、Ⅳ象限。
2.由于电力拖动系统的稳定工作点是负载特性与机械特性的交点,而任何负载特性都不会出现在第Ⅱ象限,系统不会在第Ⅱ象限有稳态运行点,因此凡第Ⅱ象限即n>0、T<0时的制动仅是一个过渡过程,称为制动过程。
第Ⅱ象限的制动仅可用于令拖动系统减速停车。
只有位能性负载如起重机拖动的重物,才会出现在第Ⅳ象限,故电动机只有拖动位能性负载才可能以制动状态稳定运行,称为制动运行。
此时n<0、T>0,电机以稳定的速度下降重物。
故第Ⅳ象限的制动用于限速下放重物,阻止重物以自由落体速度下降。
根据电动机制动转矩产生的方法不同,就称为不同的制动方法。
讨论各种不同的制动方法所用的都是同一个公式,只是根据不同的制动情况代入不同的数据就行了,应依靠机械特性曲线帮助判断应代入的数据及其正负。
机械特性公式:a a c e N U I R R n C φ-(+)= 或:n =e N U C φ-29.55()a c e N R R T C φ+ 假设要计算电流或所串电阻的大小,由上式移项即可: a e N a a c a c U E U C n I R R R R φ--==++ 其中:由于是他励机,故e N C φ是常数不变。
a e N c a a a a U E U C n R R R I I φ--==--一. 能耗制动实现:设电动机正在固有机械特性上正向电动运行,工作点A 。
直流电机制动方式直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。
反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。
1、能耗制动。
指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。
由于电压和输入功率都为0,所以制动平衡,线路简单;2、反接制动。
为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。
制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。
3、倒拉反转反接制动适用于低速下放重物。
制动时在电路串入一个大电阻,此时电枢电流变小,电磁转矩变小。
由于串入电阻很大,可以通过改变串入电阻值的大小来得到不同的下放速度。
反接制动时,切换极性相反的电源电压,使电枢回路内产生反向电流:反接制动时,从电源输入的电功率和从轴上输入的机械功率转变成的电功率一起消耗在电枢回路制动电阻上。
4、回馈制动。
电动状态下运行的电动机,在某种条件下会出现由负载拖动电机运行的情况,此时出现 n >n0、Ea >U、 Ia 反向,电机由驱动变为制动。
从能量方向看,电机处于发电状态——回馈制动状态。
正向回馈:当电机减速时,电机转速从高到低所释放的动能转变为电能,一部分消耗在电枢回路的电阻上,一部分返回电源;反向回馈:电机拖位能负载(如下放重物)时,可能会出现这种状态。
重物拖动电机超过给定速度运行,电机处于发电状态。
电磁功率反向,功率回馈电源。
一、引言从广义上讲,电机是电能的变换装置,包括旋转电机和静止电机。
旋转电机是根据电磁感应原理实现电能与机械能之间相互转换的一种能量转换装置;静止电机是根据电磁感应定律和磁势平衡原理实现电压变化的一种电磁装置,也称其为变压器。
这里我们主要讨论旋转电机,旋转电机的种类很多,在现代工业领域中应用极其广泛,可以说,有电能应用的场合都会有旋转电机的身影。
与内燃机和蒸汽机相比,旋转电机的运行效率要高的多;并且电能比其它能源传输更方便、费用更廉价,此外电能还具有清洁无污、容易控制等特点,所以在实际生活中和工程实践中,旋转电机的应用日益广泛。
不同的电机有不同的应用场合,随着电机制造技术的不断发展和对电机工作原理研究的不断深入,目前还出现了许多新型的电机,例如,美国EAD公司研制的无槽无刷直流电动机,日本SERVO公司研制的小功率混合式步进电机,我国自行研制适用于工业机床和电动自行车上的大力矩低转速电机等。
1 旋转电机分类在旋转电机中,由于发电机是电能的生产机器,所以和电动机相比,它的种类要少的多;而电动机是工业中的应用机器,所以和发电机相比,人们对电动机的研究要多的多,对其分类也要详细的多。
实际上,我们通常所说的旋转电机都是狭义的,也就是电动机——俗称“马达”。
众所周知,电动机是传动以及控制系统中的重要组成部分,随着现代科学技术的发展,电动机在实际应用中的重点已经开始从过去简单的传动向复杂的控制转移;尤其是对电动机的速度、位置、转矩的精确控制。
由此可见,对于一个电气工程技术人员来说,熟悉各种电机的类型及其性能是很重要的一件事情。
通常人们根据旋转电机的用途进行基本分类。
下面我们就从控制电动机开始,逐步介绍电机中最有代表性、最常用、最基本的电动机——控制电动机和功率电动机以及信号电机。
2 控制电动机2.1 伺服电动机伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。
直流他励电动机的三种制动方法嘿,朋友们,今天咱们聊聊直流他励电动机的制动方法。
这个话题一听可能觉得有点高深,但其实一点都不复杂,咱们就像喝茶一样,轻松聊聊。
直流他励电动机在咱们的生活中可不算稀罕物,像电动车、风扇之类的家伙,都是它的“亲戚”。
那么,制动这事儿,咱们有啥好方法呢?让我来给你捋一捋。
1. 自然制动1.1 什么是自然制动?首先,咱们得说说自然制动,这就像你走路时,突然停下来的感觉。
电动机在停下来时,如果不加任何外力,转子就会因为摩擦和空气阻力慢慢减速。
这种制动方法简单得让人惊讶,基本上就靠“慢慢来”。
当然,这种方法制动比较慢,特别是在大负载的情况下,像你拽着一辆小车,得慢慢使劲,才能停下来。
1.2 自然制动的优缺点这自然制动有它的好处,省电、简单、几乎不用费什么力气。
但缺点也明显,制动时间长,等你等得花儿都谢了,电动机才停下来。
特别是要快速停止的场合,简直让人抓狂!所以,虽说是个好方法,但并不是所有场合都能派上用场。
2. 反向制动2.1 反向制动的原理接下来,咱们聊聊反向制动,听起来有点酷吧?其实,它就是通过让电动机反向转动来实现制动。
就像开车时,你猛踩刹车,车子会往后滑。
这种方法能够让电动机迅速停下,效率极高,特别适合需要快速停止的场合。
2.2 反向制动的优缺点反向制动的好处是速度快,能让电动机瞬间停下,特别适合大负载情况下的制动。
但是,要是使用不当,有可能会对电动机造成损伤,甚至影响它的寿命。
就像你打球时,如果太猛,容易伤到自己。
所以,用这招的时候,得小心翼翼,别让电动机“受伤”。
3. 动态制动3.1 动态制动的方式最后,咱们来看看动态制动,这可是个“高科技”的玩法!动态制动就是在电动机停止的时候,利用电动机本身的能量,通过电阻把它转化成热量来实现制动。
简单来说,就是让电动机“自己玩”,自己把自己给停下来。
3.2 动态制动的优缺点这种制动方法可谓是“稳稳的幸福”,能快速停下,还能保护电动机,减少损伤。
直流电机与交流电机的制动方法
直流电机与交流电机的制动方法主要包括以下几种:
1. 能耗制动:这是一种电制动方式,通过将运转中的电动机与电源断开并改接为发电机,使电能在其绕组中消耗(必要时还可消耗在外接电阻中)来产生制动转矩。
对于交流笼型和绕线转子异步电动机,需要在交流供电电源断开后,立即向定子绕组(可取任意两相绕组)通入直流励磁电流If,以便产生制动转矩。
2. 反接制动:这是一种机械制动方式,通过在电动机转子上施加与转动方向相反的转矩来使电动机减速或限速。
3. 回馈制动:也称为再生制动或发电制动,这种制动方法是将电动机的动能转化为电能,并将其回馈给电网或其他负载。
这种制动方法适用于需要快速减速或定位的情况,并且可以减少能量损失。
4. 机械制动:这是一种通过机械摩擦力来阻止电动机转动的制动方式,通常通过在电动机轴上安装刹车片来实现。
需要注意的是,不同的电机和不同的应用场景需要采用不同的制动方法,并且还需要考虑制动的效率和安全性。
直流电动机的制动方法
直流电动机是一种常用的电动机,广泛应用于各种机械设备中。
在使用直流电动机时,往往需要对其进行制动,以确保设备安全运行。
目前,常用的直流电动机制动方法主要有以下几种:
1. 电阻制动法:通过接入电阻,使电动机绕组形成环路,从而在电动机转子上产生电磁力矩,使电机减速制动。
2. 电励磁制动法:在电动机电枢和磁极之间接入直流电源,使磁极磁通量增加,形成电磁力矩,从而使电机减速制动。
3. 机械制动法:通过接入制动器,采用机械接触方式制动电动机,使电机减速停止。
4. 反电动势制动法:在电动机电枢断电时,电机转子继续运转,形成反电动势,产生制动力矩,从而使电机减速制动。
以上几种制动方法各有优缺点,应根据具体情况选择合适的制动方法。
在实际应用中,还需要考虑制动时间、制动效果等因素,以确保设备安全运行。
- 1 -。
直流电动机制动的常用方法
直流电动机制动是指将电动机从运动状态下快速停止或减速的
过程,常用的方法有电阻制动、反电动势制动和机械制动三种。
1. 电阻制动:通过在电动机旋转时接入外部电阻,使电动机的
电动势和负载电动势之间产生电位差,从而使电动机失去能量而停止。
这种方法适用于小型电动机,但缺点是会浪费大量能量。
2. 反电动势制动:当电动机减速时,电枢中产生的反电动势会
随着电动机减速而减小,而这时将电源极性反向,使电动机转成发电机,反电动势变成励磁电动势,使电机受到的反作用力增大,从而使电机快速停止。
这种方法适用于大型电动机,但需要适当的逆变器控制电源极性和电流幅值。
3. 机械制动:通过机械方式使电动机失去能量而停止,如制动
器或制动器组件,通过对电机轴或同轴轴来实现制动。
机械制动的优点是制动力可大可小,缺点是制动器部件的摩擦会导致额外的磨损和热量产生,需要进行及时的维护。
- 1 -。
他励直流电动机的制动电机有两种运转状态:电动运转与同向。
制动运转与反向。
制动的目的使系统停车或限速。
自由停车法,电气制动,机械制动。
能耗制动;反接制动;回馈制动。
分析每种制动过程产生的条件,机械特性,及特点等。
1、能耗制动:产生条件:电机顺时针方向旋转,与之同方向。
电机在电动状态下运行.各物理量正方向如图所示:电机在电动状态下运行,合上,断开,制动。
不变,U=0.制动瞬间:励磁不变,因惯性转速不变,不变,但电枢电流与同方向,而转变了方向,使反向,电机处于制动状态。
若带位能性负载最终将稳定在C点,等速下放。
越大,制动越快。
2、反接制动:1)、转速反向的反接制动:正接反转。
产生条件:起重机起吊重物,电机的起动转矩小于重物的负载转矩,电机被负载拖动反向起动,使电机的转速逆电磁转矩的方向旋转,n 与反向,电机处于制动状态。
功率全消耗于上。
2)、电枢反接的反接制动:正转反接。
产生条件:电机在电动状态下运行,突将电枢反接,即U为负,电枢电流转变方向,使转变方向,电机处于制动状态。
在 C 应即时断开电源,否则电机将反转。
3、回馈制动:再生制动。
1)、位能负载拖动电动机,电机运行在反向电动状态,某缘由使电机的转速达到某一数值时,电机的,使电枢电流反向,即T 反向,电机进入发电机运行状态,而起制动作用。
电机将轴上输入的机械功率大部分回馈给电网,小部分消耗在电阻上。
2)、转变电枢电压:电机在正向电动状态运行,突降电枢电压,来不及变化,使,消失回馈制动,特性在其次象限。
同一电动机在相同电枢电阻时各种运行状态:。
直流电机的制动方法一、直流电机制动的重要性。
1.1 就像汽车需要刹车一样,直流电机也需要制动。
直流电机在很多设备里就像一颗跳动的心脏,不停地转动来带动其他部件工作。
可是呢,当不需要它转的时候,或者要让它快速停下来的时候,制动就非常关键了。
要是没有有效的制动,就好比一辆车停不下来,那可就乱套了。
1.2 从安全的角度来说,在一些设备里,如果直流电机不能及时制动,可能会引发危险。
比如说在一些起重设备中,电机要是突然失控,那吊起来的重物可就像脱缰的野马,后果不堪设想。
所以制动方法的研究和应用是直流电机使用中不可或缺的部分。
2.1 能耗制动。
这就好比是让电机自己把自己的能量消耗掉从而停下来。
当电机要停止转动的时候,把它的电枢从电源断开,然后接到一个电阻上。
这时候电机就像一个泄了气的皮球,它原本储存的能量就通过这个电阻以热能的形式散发出去。
就像一个人在跑步的时候突然被拉住,他还会往前冲一段,但是因为有阻力(这里就是电阻),慢慢地就停下来了。
这种方法简单易行,在很多小型直流电机设备中经常使用,就像那些小型的电动玩具车之类的。
2.2 反接制动。
这个方法有点像“背道而驰”。
就是把电机的电枢电压突然反接,这样电机就会受到一个和原来转动方向相反的转矩。
这就好像你本来向前走,突然有一股很大的力量把你往后拉。
不过这种方法有个缺点,就是在制动的时候电流会很大,就像洪水猛兽一样,很容易对电机和电路造成损害。
所以在使用的时候往往要在电路里加上限流电阻,就像给洪水加上堤坝一样,来限制这个过大的电流。
这种制动方法制动效果很明显,能让电机快速停下来,在一些对制动速度要求比较高的设备中会用到,像一些机床设备。
2.3 回馈制动。
这可是一种比较“聪明”的制动方法。
当电机的转速高于理想空载转速的时候,电机就会像一个小发电机一样,把电能回馈到电源端。
这就像一个懂得节约的人,把多余的东西回收利用起来。
这种方法既能够实现制动,又能把能量回收,一举两得。
24v直流电机刹车原理
一、制动器安装位置
24V直流电机通常配备有制动器,用于在电机停止或减速时提供额外的制动力。
制动器通常安装在电机的后端盖上,以便能够通过刹车盘与电机轴接触。
在电机制动过程中,刹车盘会与电机轴紧密接触,从而产生摩擦力,使电机迅速停止转动。
二、工作原理
1.制动器工作原理
24V直流电机的制动器通常采用电磁铁结构,通过控制电磁铁的通断电来控制制动器的开合。
当电磁铁通电时,制动器中的衔铁被吸引,从而推动刹车盘与电机轴紧密接触,产生摩擦力。
当电磁铁断电时,衔铁被释放,刹车盘与电机轴分离,摩擦力消失,电机恢复转动。
2.电机减速和停止原理
当24V直流电机需要减速或停止时,可以通过控制电机的电源电压或电流来实现。
当电源电压或电流减小到一定程度时,电机的转矩也会减小,从而使电机减速。
当电源电压或电流减小到零时,电机停止转动。
此时,制动器通电,刹车盘与电机轴紧密接触,产生摩擦力,使电机迅速停止转动。
需要注意的是,24V直流电机的制动器在制动过程中会产生热量,因此需要采取散热措施,以避免过热对电机和制动器造成损害。
同时,为了确保电机的安全运行,还需要定期检查和维护制动器,确保其正常工作。
制动方式①自然停车②机械制动③电气制动能耗制动反接制动回馈制动电动状态:T n T ⎧⎨⎪⎩⎪⇒与同方向,为拖动性质第一象限:正向电动状态第三象限:反向电动状态能量关系:电能机械能制动状态:T n T ⇒与反方向,为制动性质机械特性位于第二、四象限能量关系:机械能电能1.方法及原理电动状态能耗制动状态励磁不变,把电动机的电枢脱离电网,再经过一个电阻R 使电路闭合。
U +-电动ME a +-I anTI fS制动R BI aBT=+U I R E a a a ,0,Φ=Φ==+N a U R R R 2=Φ-+Φ=-βe N a e T Nn UC R R C C T T 机械特性曲线经过原点,变得更陡了2能耗制动停车过程原先工作于A 点n =n A ,工作点变为BT <0,在T 与T L 的共同作用下,系统很快减速沿BO 段下移至n =0CB若电动机带位能性负载,稳定工作点电动机状态工作点n n 0AT LT emR a制动瞬间工作点电动机拖动反抗性负载,电机停转。
=-+=-Φ+a Aa e N A a I E R R C n R R反抗性负载:系统可靠停车,不会重新起动位能性负载:沿BO 段下移至n =0后,会继续下移,直至到达新的平衡点C ,转速此时为负数,稳速下放。
改变制动电阻R 的大小可以改变能耗制动特性曲线的斜率。
R 越大,下放负载的稳定速度越大。
但电枢电流较大,对电机存在危险。
=+≤=max (2~2.5)I E R RI I a aa N制动电阻:(2~2.5)≥-R E I R aNa选择制动电阻的原则是一、反接制动(电源反接制动直流电动机的反接制动)U +-电动ME a +-I anTI fS制动R fI aT开关S 投向“电动”侧时,电枢接正极电压,电机处于电动状态。
进行制动时,开关投向“制动”侧,电枢回路串入制动电阻后,接上极性相反的电源电压。
机械特性为:20=-Φ-+Φ=--βNe N af e T Nn U C R R C C T n T 机械特性经过-n 0点,且变得更陡+a R RCBnn 0R aA0T L T em-T L-n 0D电源反接制动停车过程原先工作于A 点n =n A ,工作点变为BT <0,在T 与T L 的共同作用下,系统很快减速沿BC 段下移至C 点=--+=-+Φ+a Aa e N A a I U E R R U C n R R在C 点必须切断电源,并投入机械制动,否则:反抗性负载:会继续下移,直至到达新的平衡点D ,电机反转;位能性负载:会继续下移至新的平衡点E ,电机反转速度超过理想空载转速E直流电动机的反接制动+a R RCBnn 0R aA0T L T em-T L-n 0DE直流电动机的反接制动=++≤=max (2~2.5)I U E R R I I a aa fN制动电阻:(2~2.5)≥+-R U E I R f aNa 选择制动电阻的原则是负载作用下电机反向旋转(下放重物)1倒拉反转反接制动直流电动机的反接制动只适用于位能性负载。
有刷直流电机的短路制动
继有刷直流电机的旋转原理和发电原理之后,我们将在本文中介绍有刷直流电机短路制动。
因为这也是有刷直流电机一系列的工作原理之一,所以请一并了解。
有刷直流电机短路制动
对于有刷直流电机,可以使电刷之间短路以施加制动,从而在电源关断后快速停止因惯性而旋转的转子。
有刷直流电机的短路制动
在电刷断开电源并且线圈(转子)仍沿逆时针方向旋转的状态下,将电刷之间短路。
在①的状态下,如上一篇发电原理中所述,左电刷相对于右电刷会产生(+)电动势,所以会因电刷短路而有电流流过。
结果,线圈A的外侧变为N,线圈B 和线圈C的外侧变为S。
在过渡到②状态后也同样有电流流过,线圈B的外侧变为S,线圈A和线圈C的外侧变为N。
当以这种方式使有刷直流电机电刷之间短路时,会产生与当时旋转方向相反的旋转力(实心黑色箭头),并且会变为使原旋转停止的制动动作,称之为“短
路制动”。
随着有刷直流电机电流的增加,停止该旋转的力增大,因此,当有刷直流电机转速较高时,将施加较强力的制动;当有刷直流电机转速降低时,制动将变弱,而当有刷直流电机旋转停止时,制动将变为零。
关键要点:
・通过使电刷短路,可以产生相反方向的旋转力,并且可以获得使旋转停止的制动效果。
他励直流发电机的制动方法
1. 直流制动法
①调整控制器:通过降低发电机输出的电压,调节发动机的负载来调整控制器,实现直流制动。
②恒压补偿式制动器:首先将制动器调节为恒压补偿,然后往控制器输入低压,可以使发电机产生制动力矩。
③采用有源电路法:利用快速熔丝或晶闸管等产生大电流,直接送入发电机,实现制动。
④利用变压器实现制动:变压器的感应电路的交流电流会被感应,从而实现制动。
2. 短路制动
①短路接圈:将相应的线圈短路,可以产生短路电流,从而达到制动的目的。
②力矩补偿短路制动:通过控制力矩来实现短路制动,在匹配的电流情况下,降低发电机的负载,实现制动。
③调整负载的方法:将负载从发电机中移除,让发电机处于低负载状态,这样就可以制动发电机了。
3. 逆变制动
①将发电机的转子中绕着反向电流,从而产生制动力:首先将发电机的转子反向连接到外部电源,然后注入反向电流,从而实现制动。
②通过动态逆变导致发电机制动:将较小的交流电流变换成较大的直流电流,然后使用力矩补偿,从而达到制动的目的。
4. 热制动
①将发电机连接到热吸收器或油冷却器,将发电机的功率消耗掉,实现制动:通过发动机的散热,将发电机的功率消耗掉,从而达到制动的目的。
②将发电机的电流增加,让发电机的转矩超出最大承载能力,从而达到制动的目的:通过增加发电机的电流,让发电机的转矩超出最大承载能力,使发电机出现失控,最后实现制动。
以上就是对其他励直流发电机的制动方法的介绍。
通过不同的制动方法,可以达到制动发电机的目的,实现对发电机的调整和控制。
直流电机制动方法
直流电机制动方法
直流电机的制动,有机械制动,再生制动,能耗制动,反接制动机械制动就是抱闸,是电动的抱闸。
反接制动:当切断正向电源后,立即加上反向电源,使电动机快速停止,当电动机速度降到零时,装在电动机轴上的“反接继电器”立即发出信号,切断反向电源,防止电动机真的反转。
1、能耗制动
指运行中的直流电机突然断开电枢电源,然后在电枢回路串入制动电阻,使电枢绕组的惯性能量消耗在电阻上,使电机快速制动。
由于电压和输入功率都为0,所以制动平衡,线路简单;
2、反接制动
为了实现快速停车,突然把正在运行的电动机的电枢电压反接,并在电枢回路中串入电阻,称为电源反接制动。
制动期间电源仍输入功率,负载释放的动能和电磁功率均消耗在电阻上,适用于快速停转并反转的场合,对设备冲击力大。