第七节 直流电动机的控制电路
- 格式:ppt
- 大小:503.50 KB
- 文档页数:25
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
直流电机的控制原理
直流电机的控制原理可以通过以下内容来说明:
直流电机的控制原理是通过调节电源电压和改变电枢线圈中电流方向来实现的。
具体来说,直流电机的工作原理是根据洛伦兹力和安培力的作用,通过控制电流方向和大小来改变电机的转速和转向。
在直流电机中,电枢线圈是位于电机中心的旋转部分,而电枢线圈两端与电源相连。
当电流通过电枢线圈时,电流会在磁场中发生作用,产生洛伦兹力,使电枢线圈开始旋转。
电枢线圈的旋转会使其上的集电刷与固定的电极接触,改变电枢线圈中电流的方向,从而反转驱动力,使电机的旋转方向改变。
为了控制直流电机的转速和转向,可以通过改变电源电压和电枢线圈中电流的方向来实现。
当电源电压增加时,电枢线圈中的电流增加,从而增大洛伦兹力,加速电机的转速。
同样地,当电源电压减小时,电机的转速会减慢。
另外,改变电枢线圈中电流的方向也会改变洛伦兹力的方向,从而改变电机的转向。
在实际应用中,直流电机的控制可以通过调节电压或使用电压变频器来实现。
通过调节电源电压的大小,可以实现直流电机的速度调节;通过改变电枢线圈中电流的方向,可以实现直流电机的正反转控制。
综上所述,直流电机的控制原理是通过调节电源电压和改变电
枢线圈中电流方向来实现的,从而实现对电机转速和转向的控制。
直流电机控制器原理图直流电机控制器是指控制直流电机运行的设备,其主要作用是根据外部输入信号来控制电机的启动、停止、正反转以及调速等功能。
直流电机控制器原理图是直流电机控制系统的核心部分,通过原理图可以清晰地了解控制器的工作原理和电路结构,有利于工程师们进行系统设计和故障排查。
一般来说,直流电机控制器原理图包括电源模块、控制模块、驱动模块和保护模块等部分。
电源模块主要用于将外部交流电源转换为直流电源,为整个系统提供电能;控制模块则负责接收外部控制信号,并通过逻辑运算和电路控制来实现对电机的启停、正反转和调速等功能;驱动模块则是根据控制模块的输出信号,驱动电机正常运行;保护模块则用于监测电机和系统的工作状态,一旦出现异常情况,及时采取保护措施,避免损坏设备。
在直流电机控制器原理图中,控制模块是最核心的部分,它通常包括信号输入端、逻辑控制电路和输出端。
信号输入端可以接收外部控制信号,比如启停信号、正反转信号、调速信号等,这些信号经过处理后,通过逻辑控制电路的运算,最终输出给驱动模块,实现对电机的控制。
逻辑控制电路通常采用集成电路或者单片机等器件来实现,其结构复杂,但是可以实现多种控制功能,具有很高的灵活性和可靠性。
此外,直流电机控制器原理图中的驱动模块也是非常重要的部分,它的主要作用是根据控制模块的输出信号,驱动电机正常运行。
驱动模块通常采用功率器件和驱动电路来实现,其设计需要考虑到电机的功率大小、负载特性以及工作环境等因素,以确保电机能够稳定、高效地运行。
总的来说,直流电机控制器原理图是直流电机控制系统的核心部分,它的设计和实现直接影响到整个系统的性能和稳定性。
工程师们在进行系统设计和故障排查时,需要充分理解原理图的结构和工作原理,合理选择电路元件和器件,确保系统能够稳定、可靠地运行。
同时,随着科技的发展,直流电机控制器原理图也在不断地更新和优化,以满足不同应用场景的需求,提高系统的性能和可靠性。
目录目录 (1)1.设计总体思路 (2)2.基本原理框图 (2)3.单元电路设计 (3)3.1主电路器件的计算与选择 (3)3.1.1变压器的选择 (3)3.1.2晶闸管的选型 (3)3.1.3过电压保护原理及计算选择 (3)3.1.4过电流保护 (5)3.1.5电抗器的参数计算与选择 (7)3.2控制电路的介绍 (7)3.2.1引脚排列、各引脚的功能及用法 (7)3.2.2电流转速闭环调节电路 (10)3.2.3.功率放大电路 (10)4.故障分析与改进 (12)5.实验与仿真 (12)6.心得体会 (13)7.附件 (15)8.参考文献 (16)1.设计总体思路直流电机控制系统(晶闸管整流)分为主电路和控制电路,主电路采用三相全控桥整流电路,变流侧交流电采用电网电压,通过变压器起隔离和调节电网电压,使其达到整流所需求的交流电压,为防止电网波动和其他各类短路情况的出现,在交流侧和整流的直流侧增加一系列的过电压和过电流保护。
控制电路采用转速和电流调节电路,在电网电压通过交流互感器感应电流后将电流信号转为电压信号,和转速反馈信号进行调节,再限幅和功放电路,转换成触发电路能用来改变控制角的信号来调节整流输出电压达到调速目的。
该触发晶闸管的触发电路由六脉冲触发电路TC785构成,最终能调节电机的转速,使其达到转速的稳定。
2.基本原理框图3.单元电路设计3.1主电路器件的计算与选择该设计所调节直流电动机的参数:额定电压225V,额定电流158.5A,额定功率30KW3.1.1变压器的选择变压器二次侧相电压U2=Ud/2.34考虑晶闸管的管压降和启动电压留20%的裕量,整流直流侧电压Ud=1.2*225*270V,得U2=128V;变压器二次侧电流I2=0.816*Id=129.3A;变压器的容量s=3U2 I2=3*128*129.3=50KW;变压器的变比U1:U2=220:128=1.73.1.2晶闸管的选型晶闸管的额定电压Un=(2~3)UTm;Un=2*6*U2=2*6*128=627V晶闸管的额定电流I n=(1.5~2)Ivt;Ivt=Id/(3*1.57)=87.5A;In=1.8*87.5=157A;取Un=;In=157A;选择KP157—580晶闸管六只。
目录1. 课程设计目的 (1)2. 课程设计题目和要求 (1)3. 设计内容 (1)3.1主电路 (1)3.2控制电路 (1)3.2.1 触发电路 (1)3.2.2 给定电压 (2)3.2.3 电压负反馈 (3)3.2.4 电流正反馈 (4)3.2.5 电压微分负反馈 (4)3.2.6 电流截止负反馈 (5)3.2.7电动机 (6)3.2.8晶闸管 (9)4.设计总结 (10)参考书目 (11)1.课程设计目的通过这次直流电动机正、反转调速控制电路的课程设计,加深了对直流电动机的调速控制、电流截止负反馈、电压负反馈、电流正反馈等一些电路作用的李理解和应用。
同时对以往的专业知识有了全面的巩固和理解,锻炼了查阅资料的能力和对整体布局和格局的分布都有了一定的了解。
2.课程设计题目和要求本次的课程设计是有关于直流调速方面的,课程设计的题目:直流电动机正、反转调速控制电路。
直流电动机是人类最早发明和应用的一种电机。
与交流电机相比,直流电机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,应用不如交流电机广泛。
但由于直流电动机具有优良的起动、调速和制动性能,因此在工业领域中仍有一席之地。
随着电力电子技术的发展,直流电动机调速已有逐步被交流电动机调速所取代的倾向。
但由于直流电动机以起动转矩大、调速性能好、制动控制方面有着很大的优势,因此,在工业等应用领域有着2很大的发挥作用。
3.设计内容3.1主电路主轴电动机的容量较小,只有3KW ,因此采用单相半控桥式整流电路UR 2供电,交流侧有阻容(R 18、C 6)吸收电路进行过电压保护,主轴正、反转用接触器KM 1、KM 2控制,停车时间由KA 1的动断触头与电阻R 15对电动机进行能耗制动。
由于直流电动机的电枢旋转时产生反电势,只有当电压大于反电势时晶闸管才能导通,因此通过电动机的电枢电流产生断续现象。
这样,晶闸管的导通角小,电流峰值狠大,晶闸管温度升高,且对电动机换向不利。
教学设计/实验实训项目实施方案整体创新铸就三峡工程2006年5月18日,三峡大坝坝顶最后一仓混凝土开始浇筑。
两天之后的5月20日,将浇筑完毕,大坝全线到顶,比原计划提前一年。
此时,我们开始了与中国三峡总公司副总经理曹广晶的风云对话。
大坝提前到顶质量如何?图9-2-1 三峡大坝远景记者:大坝20日就全线到顶了,工程比原计划提前对工程质量有没有影响?曹广晶:首先应该说明一点,三峡大坝全线达到185高程是一个非常重要的里程碑,但并不是说工程已经结束,就像一座高楼封顶之后,还有管道安装、装修等收尾工作。
虽然还有很多工作要做,但不管怎么说三峡工程最核心的部位——大坝的主体已经巍然屹立起来,就是这么一个概念。
三峡大坝的工期跟预期相比基本提前10个月,使得工程的各种效益尤其是防洪效益大约提前两年发挥。
2003年至围堰拆除之前是围堰挡水发电期,大坝基本上对下流的防洪能力是很小的,今年围堰拆除后,大坝的防洪能力虽然还没有达到最佳的防洪能力,但是已经具有了相当的防洪能力。
今年的防洪能力大约是110亿立方米的防洪库容,20年一遇的洪水,可以把流量控制在不超过每秒56700立方米,这个流量在堤防加固之前,从沙市堤防安全下泄的流量,遭遇20年一遇的洪水今年来看应该没有问题。
对100年一遇的洪水,也可以把流量控制在下限每秒10600立方米。
记者:工程提前的原因是什么?是不是赶图9-2-2三峡大坝示意图工期?曹广晶:不存在赶工期,这是一个自然的结果,是总结以往的经验,创新突破的结果。
施工水平提高,要求也很严格,工程没有丝毫耽误。
我们原来的设计是参照国际先进建造水平制定的,但是在施工过程中也在不断的创造新纪录,工程提前也很自然。
这次国务院质量检查专家组4月份的评价就很好,主要就是大坝无裂缝,实际上厂房还是有裂缝,但是厂房主要是发电用的,要求也不是很高,作为拦水主体的大坝,确实没有裂缝。
记者:是不是大坝出现了裂缝以后特别注重质量?曹广晶:二期大坝的确是出现了30多条裂缝,过去有句话叫做无坝不裂,大坝出现裂缝是正常现象。
最全直流电机工作原理与控制电路解析(无刷+有刷+伺服+步进)直流电动机是连续的执行器,可将电能转换为机械能。
直流电动机通过产生连续的角旋转来实现此目的,该角旋转可用于旋转泵,风扇,压缩机,车轮等。
与传统的旋转直流电动机一样,也可以使用线性电动机,它们能够产生连续的衬套运动。
基本上有三种类型的常规电动机可用:AC型电动机,DC型电动机和步进电动机。
典型的小型直流电动机交流电动机通常用于高功率的单相或多相工业应用中,需要恒定的旋转扭矩和速度来控制大负载,例如风扇或泵。
在本教程中,我们仅介绍简单的轻型直流电动机和步进电动机,这些电动机用于许多不同类型的电子,位置控制,微处理器,PIC和机器人类型的电路中。
基本直流电动机该直流电动机或直流电动机,以给它的完整的标题,是用于产生连续运动和旋转,其速度可以容易地控制,从而使它们适合于应用中使用是速度控制,伺服控制类型的最常用的致动器,和/或需要定位。
直流电动机由两部分组成,“定子”是固定部分,而“转子”是旋转部分。
结果是基本上可以使用三种类型的直流电动机。
有刷电机–这种类型的电机通过使电流流经换向器和碳刷组件而在绕线转子(旋转的零件)中产生磁场,因此称为“有刷”。
定子(静止部分)的磁场是通过使用绕制的定子励磁绕组或永磁体产生的。
通常,有刷直流电动机便宜,体积小且易于控制。
无刷电动机–这种电动机通过使用附着在其上的永磁体在转子中产生磁场,并通过电子方式实现换向。
它们通常比常规的有刷型直流电动机更小,但价格更高,因为它们在定子中使用“霍尔效应”开关来产生所需的定子磁场旋转顺序,但是它们具有更好的转矩/速度特性,效率更高且使用寿命更长比同等拉丝类型。
伺服电动机–这种电动机基本上是一种有刷直流电动机,带有某种形式的位置反馈控制连接到转子轴。
它们连接到PWM型控制器并由其控制,主要用于位置控制系统和无线电控制模型。
普通的直流电动机具有几乎线性的特性,其旋转速度取决于所施加的直流电压,输出转矩则取决于流经电动机绕组的电流。