计算机图形学-走样与反走样
- 格式:ppt
- 大小:314.50 KB
- 文档页数:16
计算机图形学Ⅰ专业:计算机科学与技术计算机科学与技术20922012年12月第1章绪论1、计算机图形学的概念?(或什么是计算机图形学?)计算机图形学是研究怎样利用计算机表示、生成、处理和显示图形的(原理、算法、方法和技术)一门学科。
2、图形与图像的区别?图像是指计算机内以位图(Bitmap)形式存在的灰度信息;图形含有几何属性,更强调物体(或场景)的几何表示,是由物体(或场景)的几何模型(几何参数)和物理属性(属性参数)共同组成的。
3、计算机图形学的研究内容?计算机图形学的研究内容非常广泛,有图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真和虚拟现实等。
4、计算机图形学的最高奖是以 Coons 的名字命名的,而分别获得第一届(1983年)和第二届(1985年)Steven A. Coons 奖的,恰好是 Ivan E. Sutherland 和 Pierre Bézier 。
5、1971年,Gourand提出“漫反射模型+插值”的思想,被称为 Gourand 明暗处理。
6、1975年,Phong提出了著名的简单光照模型—— Phong模型。
7、1980年,Whitted提出了一个光透明模型—— Whitted模型,并第一次给出光线跟踪算法的范例,实现了Whitted模型。
8、以 SIGGRAPH 会议的情况介绍,来结束计算机图形学的历史回顾。
9、什么是三维形体重建?三维形体重建就是从二维信息中提取三维信息,通过对这些信息进行分类、综合等一系列处理,在三维空间中重新构造出二维信息所对应的三维形体,恢复形体的点、线、面及其拓扑关系,从而实现形体的重建。
10、在漫游当中还要根据CT图像区分出不同的体内组织,这项技术叫分割。
11、一个图形系统通常由图形处理器、图形输入设备和输出设备构成。
12、CRT显示器的简易结构图12、LCD液晶显示器的基本技术指标有:可视角度、点距和分辨率。
计算机图形学究极题库-副本名词解释:1.图形:能够在⼈们视觉系统中形成视觉印象的对象称为图形,包括⾃然景物和⼈⼯绘图。
2.像素图:点阵法列举图形中的所有点。
⽤点阵法描述的图形称为像素图。
3.参数图:参数法描述图形的形状参数和属性参数。
⽤参数法描述的图形称为参数图。
4.扫描线:在光栅扫描显⽰器中,电⼦枪扫过的⼀⾏称为⼀条扫描线。
5.构造实体⼏何表⽰法:⽤简单的实体(也称为体素)通过集合运算组合成所需的物体的⽅法称为构造实体⼏何表⽰法。
6.投影:投影是从⾼维(物体)空间到低维(投影)空间的⼀种映射。
7.参数向量⽅程:参数向量⽅程是包含参数和向量的⽅程。
8.⾃由曲线:形状⽐较复杂、不能⽤⼆次⽅程来表⽰的曲线称为⾃由曲线,通常以三次参数⽅程来表⽰9.曲线拟合:给定⼀个点列,⽤该点列来构造曲线的⽅法称为曲线拟合。
10.曲线插值:已知曲线上的⼀个点列,求曲线上的其他点的⽅法称为曲线插值。
11.区域填充:根据像素的属性值、边或顶点的简单描述,⽣成区域的过程称为区域填充。
12.扫描转换:在⽮量图形中,多边形⽤顶点序列来表⽰,为了在光栅显⽰器或打印机等设备上显⽰多边形,必须把它转换为点阵表⽰。
这种转换称为扫描转换。
1、计算机图形学:⽤计算机建⽴、存储、处理某个对象的模型,并根据模型产⽣该对象图形输出的有关理论、⽅法与技术,称为计算机图形学。
2、计算机图形标准:计算机图形标准是指图形系统及其相关应⽤程序中各界⾯之间进⾏数据传送和通信的接⼝标准。
3、图形消隐:计算机为了反映真实的图形,把隐藏的部分从图中消除。
4、⼏何变换:⼏何变换的基本⽅法是把变换矩阵作为⼀个算⼦,作⽤到图形⼀系列顶点的位置⽮量,从⽽得到这些顶点在⼏何变换后的新的顶点序列,连接新的顶点序列即可得到变换后的图形。
5、计算⼏何:计算⼏何研究⼏何模型和数据处理的学科,讨论⼏何形体的计算机表⽰、分析和综合,研究如何⽅便灵活、有效地建⽴⼏何形体的数学模型以及在计算机中更好地存贮和管理这些模型数据。
反走样的概念反走样是一种计算机图形学中的技术,是指在图像渲染过程中,为了减少图像中出现的锯齿状边缘,通过一定的算法将图像中出现的锯齿状边缘平滑化的过程。
锯齿状边缘的出现是由于基于像素渲染的方式是将每个像素点单独渲染的结果。
因此,当图像中的线条或者边缘不是水平或者垂直线条时,会出现一种“台阶状”的锯齿状边缘。
这些锯齿状边缘会影响到图像的细节和真实感,因此反走样技术的应用成为了图像渲染领域中的一项重要技术。
目前,反走样技术被广泛应用于电影、游戏等数字娱乐产业以及虚拟现实和增强现实应用中。
反走样技术的应用可以提高图像的质量,从而获得更好的视觉效果和真实感。
反走样技术的实现可以采用多种算法,包括简单线性插值、多重采样、超采样、抗锯齿过滤等。
以下分别介绍这些算法的原理和实现方式。
1. 简单线性插值算法简单线性插值算法是最简单的反走样算法之一。
它的原理是根据图像中相邻像素值的差异来计算处于它们之间的像素的值。
这个算法可以用下面的公式来表示:F(x,y) = A*(1-α)*(1-β) + B*α*(1-β) + C*(β)*(1-α) + D*α*β其中A、B、C、D 是相邻的四个像素,(α,β) 是当前像素相对于A、B、C、D 的位置。
由于相邻的像素值会根据位置进行线性插值,因此可以有效减少锯齿状边缘的出现,提高图像的平滑度。
但是,由于该算法只依赖于相邻像素值之间的插值,因此容易出现过渡不自然等问题。
2. 多重采样算法多重采样算法是一种常用的反走样算法。
该算法的原理是对每个像素进行多次采样,然后对采样的结果进行平均,从而得到更平滑的图像。
多重采样算法可以使用网格覆盖技术或随机采样技术来实现。
网格覆盖技术是将图像分成若干个网格,对每个网格进行多次采样,从而得到更好的像素值。
随机采样技术是随机在像素周围选择多个采样点,然后对采样点的值进行平均,从而得到更平滑的图像。
3. 超采样算法超采样算法是一种基于增加像素采样率的反走样算法。
计算机图形学课后习题答案计算机图形学课后习题答案计算机图形学是一门研究计算机生成和处理图像的学科,它在现代科技和娱乐领域扮演着重要的角色。
在学习这门课程时,我们通常会遇到一些习题,用以巩固所学知识。
本文将提供一些计算机图形学课后习题的答案,希望能对大家的学习有所帮助。
1. 什么是光栅化?如何实现光栅化?光栅化是将连续的几何图形转换为离散的像素表示的过程。
它是计算机图形学中最基本的操作之一。
实现光栅化的方法有多种,其中最常见的是扫描线算法。
该算法通过扫描图形的每一条扫描线,确定每个像素的颜色值,从而实现光栅化。
2. 什么是反走样?为什么需要反走样?反走样是一种减少图像锯齿状边缘的技术。
在计算机图形学中,由于像素是离散的,当几何图形的边缘与像素格子不完全对齐时,会产生锯齿状边缘。
反走样技术通过在边缘周围使用不同颜色的像素来模拟平滑边缘,从而减少锯齿状边缘的出现。
3. 什么是光照模型?请简要介绍一下常见的光照模型。
光照模型是用来模拟光照对物体表面的影响的数学模型。
常见的光照模型有以下几种:- 环境光照模型:模拟环境中的整体光照效果,通常用来表示物体表面的基本颜色。
- 漫反射光照模型:模拟光线在物体表面上的扩散效果,根据物体表面法线和光线方向计算光照强度。
- 镜面反射光照模型:模拟光线在物体表面上的镜面反射效果,根据光线方向、物体表面法线和观察者方向计算光照强度。
- 高光反射光照模型:模拟光线在物体表面上的高光反射效果,通常用来表示物体表面的亮点。
4. 什么是纹理映射?如何实现纹理映射?纹理映射是将二维图像(纹理)映射到三维物体表面的过程。
它可以为物体表面增加细节和真实感。
实现纹理映射的方法有多种,其中最常见的是将纹理坐标与物体表面的顶点坐标关联起来,然后通过插值等技术将纹理映射到物体表面的每个像素上。
5. 什么是投影变换?请简要介绍一下常见的投影变换方法。
投影变换是将三维物体投影到二维平面上的过程。
常见的投影变换方法有以下几种:- 正交投影:将物体投影到一个平行于观察平面的平面上,保持物体在不同深度上的大小不变。
1、什么叫走样?什么叫反走样技术?答:各种光栅化算法,如非水平亦非垂直的直线或多边形边界进行扫描转换时,或多或少会产生锯齿或阶梯状,我们把这种用离散量表示连续量引起的失真称为走样,走样是数字化发展的必然产物,所谓反走样技术,就是减缓或者消除走样效果的技术。
2、考虑三个不同的光栅系统,分辨率依次为,640*480,1280*1024,2560*2048,欲存储每个像素12位,这些系统各需要多大的帧缓冲器(字节数)?答:640*480需要的帧缓存为640*480*12/8=450KB, 1280*1024需要的帧缓存为1280*1024*12/8=1920KB,2560*2048需要的帧缓存为2560*2048*12/8=7680KB。
3、当光驱照射到非透明体表面上时,产生光的反射效果,其反射光仅由哪三部分组成?答:由漫反射光,环境光和镜面反射光三部分组成。
4、举3个例子说明计算机图形学的应用。
答:①事务管理中的交互绘图应用图形学最多的领域之一是绘制事务管理中的各种图形。
通过从简明的形式呈现出数据的模型和趋势以增加对复杂现象的理解,并促使决策的制定。
②地理信息系统地理信息系统是建立在地理图形基础上的信息管理系统。
利用计算机图形生成技术可以绘制地理的、地质的以及其它自然现象的高精度勘探、测量图形。
③计算机动画用图形学的方法产生动画片,其形象逼真、生动,轻而易举地解决了人工绘图时难以解决的问题,大大提高了工作效率。
5、计算机生成图形的方法有哪些?答:计算机生成图形的方法有两种:矢量法和描点法。
①矢量法:在显示屏上先给定一系列坐标点,然后控制电子束在屏幕上按一定的顺序扫描,逐个“点亮”临近两点间的短矢量,从而得到一条近似的曲线。
尽管显示器产生的只是一些短直线的线段,但当直线段很短时,连成的曲线看起来还是光滑的。
②描点法:把显示屏幕分成有限个可发亮的离散点,每个离散点叫做一个像素,屏幕上由像素点组成的阵列称为光栅,曲线的绘制过程就是将该曲线在光栅上经过的那些像素点串接起来,使它们发亮,所显示的每一曲线都是由一定大小的像素点组成的。
一、名词解释计算机图形学、图形消隐、裁剪、走样、反走样、参数方程、曲线拟合、曲线插值、曲线的参数化、区域填充、扫描转换二、判断正误(正确写T,错误写F)1.存储颜色和亮度信息的相应存储器称为帧缓冲存储器,所存储的信息被称为位图。
2.光栅扫描显示器的屏幕分为m行扫描线,每行n个小点,整个屏幕分为m╳n个中点,其中每个小点称为一个像素。
3.点阵字符用一个位图来表示,位图中的0对应点亮的像素,用前景色绘制;位图中的1对应未点亮的像素,用背景色绘制。
4.矢量字符表示法用(曲)线段记录字形的边缘轮廓线。
5.将矢量字符旋转或放大时,显示的结果通常会变得粗糙难看,同样的变换不会改变点阵字符的显示效果。
6.在光栅图形中,区域是由相连的像素组成的集合,这些像素具有相同的属性值或者它们位于某边界线的内部。
7.多边形的扫描变换算法不需要预先定义区域内部或边界的像素值。
8.用DDA算法生成圆周或椭圆不需要用到三角运算,所以运算效率高。
9.找出并消除物体中的不可见部分,称为消隐。
10.经过消隐得到的图形称为消隐图。
11.深度缓存算法并不需要开辟一个与图像大小相等的深度缓存数组,深度缓存算法能并行实现,深度缓存算法中没有对多边形进行排序。
12.在种子填充算法中所提到的八向连通区域算法同时可填充四向连通区。
13.Bezier曲线不一定通过其特征多边形的各个顶点,Bezier曲线两端点处的切线方向必须与起特征折线集(多边形)的相应两端线段走向一致,Bezier曲线可用其特征多边形来定义。
14.由三个顶点可以决定一段二次B样条曲线,若三顶点共线时则所得到的曲线褪化为一条直线段。
15.插值得到的函数严格经过所给定的数据点。
16.参数曲线的表示有形式和几何形式两种。
17.L-B参数直线裁剪算法中的裁剪条件为uP k<=Q k,当直线平行于裁剪边界的条件Q k=0。
18.L-B参数直线裁剪算法中的裁剪条件为uP k<=Q k,当P k<0时表示线段从裁剪边界外部指向内部。
反走样算法分类反走样算法是计算机图形学中常用的一种技术,目的是在渲染图像时减少或消除走样现象,提高图像的质量和真实感。
走样是指在图像边缘或曲线处出现锯齿状的像素,使图像显得不平滑。
这种现象是由于数字图像是由离散的像素组成的,而图像中的边缘和曲线是连续的,因此在显示或打印时会出现走样现象。
为了解决走样问题,人们提出了各种反走样算法。
常见的反走样算法包括抗锯齿(Anti-aliasing)、多重采样(Multi-Sampling)、超采样(Supersampling)等。
这些算法通过在像素级别上对图像进行处理,使得图像边缘和曲线变得平滑,达到减少走样的效果。
抗锯齿是最常用的一种反走样算法。
它通过在图像边缘的像素周围添加中间色调的像素,使得边缘过渡更加平滑。
抗锯齿算法分为两种类型:区域抗锯齿和点抗锯齿。
区域抗锯齿是在像素的颜色值中使用灰度来模拟颜色的变化,从而实现平滑过渡;点抗锯齿是在像素的边缘周围添加额外的像素,使得边缘变得模糊,从而减少锯齿状的像素。
多重采样是一种更高级的反走样算法,它通过对每个像素进行多次采样,然后对这些采样结果进行平均,从而减少走样。
多重采样算法可以分为均匀采样和随机采样两种。
均匀采样是在每个像素上均匀采样多次,并对采样结果进行平均;随机采样是在每个像素上随机选择采样点,并对采样结果进行平均。
多重采样算法的优点是可以有效地减少走样,但计算复杂度较高。
超采样是一种更为精确的反走样算法,它通过对图像进行超高分辨率的渲染,然后将渲染结果缩小到目标分辨率,从而减少走样。
超采样算法可以分为平均超采样和加权超采样两种。
平均超采样是对超高分辨率的像素进行平均,然后将平均结果缩小;加权超采样是对超高分辨率的像素进行加权平均,然后将加权平均结果缩小。
超采样算法的优点是可以获得更高质量的图像,但计算复杂度较高。
除了以上常见的反走样算法,还有一些其他的反走样算法,如几何抗锯齿、滤波抗锯齿等。
这些算法在具体实现上可能有所不同,但都是为了解决走样问题而设计的。