1 3 的极值. 例1 求函数 f (x) = x − 4x + 4的极值 3 解: 1 3 ′(x) = x2 − 4. 因为 f (x) = x − 4x + 4, 所以 f 3 令 f ′(x) = 0, 解得 x = 2, 或 x = −2. 当 f ′(x) > 0 , 即 x > 2 , 或 x < −2 ; 当 f ′(x) < 0 , 即 − 2 < x < 2 .
导数为0的点不一定是极值点 • 2.导数为 的点不一定是极值点 导数为 的点不一定是极值点.
练习1 练习
下图是导函数 y 的图象, y = f ′(x) 的图象 试找出函数 y = f (x) 的极值点, 并指出哪些是极大值点, 哪些是极小值点. 的极值点 并指出哪些是极大值点 哪些是极小值点
y = f ′(x)
+
求导—求极点 列表 求导 求极点—列表 求极值 求极点 列表—求极值
x0
练习2 练习
求下列函数的极值: 求下列函数的极值
(1) f (x) = 6x − x − 2; (2) f (x) = x − 27x; 3 3 (3) f (x) = 6 +12x − x ; (4) f (x) = 3x − x . 解: 1 列表: (1) f ′(x) =12x −1, 令 f ′(x) = 0, 解得 x = . 列表 12
2 3
x
f ′(x)
f (x)
1 (−∞, ) 12
–
1 12 0
1 ( ,+∞) 12 +
单调递减
49 − 24
单调递增
1 49 1 所以, 所以 当 x = 时, f (x)有极小值 f