第三章抽样和抽样分布
- 格式:ppt
- 大小:572.00 KB
- 文档页数:64
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
数理统计中的随机抽样和抽样分布——概率论知识要点概率论作为数理统计的基础,是研究随机现象及其规律的数学分支。
在数理统计中,随机抽样和抽样分布是非常重要的概念,本文将对这两个概念进行详细介绍和解释。
一、随机抽样随机抽样是指从总体中以随机的方式选择样本的过程。
在进行随机抽样时,每个个体被选中的概率应该是相等的,这样才能保证样本的代表性和可靠性。
随机抽样的方法有很多种,常用的包括简单随机抽样、分层抽样和系统抽样等。
1. 简单随机抽样简单随机抽样是最基本的抽样方法,它的特点是每个个体被选中的概率相等且相互独立。
简单随机抽样可以通过随机数表、随机数发生器等工具来实现。
在实际应用中,简单随机抽样常用于总体规模较小的情况。
2. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中随机选择样本。
这种抽样方法可以保证不同层次的个体在样本中的比例与总体中的比例相同,从而提高样本的代表性。
3. 系统抽样系统抽样是按照一定的规则从总体中选取样本的方法。
例如,可以按照一定的间隔从总体中选择样本,这个间隔称为抽样间隔。
系统抽样的优点是操作简便,但也存在可能引入系统误差的风险。
二、抽样分布抽样分布是指在随机抽样的基础上,通过大量重复抽样得到的统计量的分布情况。
在数理统计中,常用的抽样分布包括正态分布、t分布和F分布等。
1. 正态分布正态分布是一种重要的抽样分布,它具有对称、单峰和钟形曲线的特点。
在大样本情况下,根据中心极限定理,样本均值的分布接近于正态分布。
正态分布在数理统计中的应用非常广泛,例如用于估计总体均值和总体方差等。
2. t分布t分布是用于小样本情况下的抽样分布。
它相比于正态分布来说,具有更宽的尾部和更矮的峰值。
t分布的形状取决于自由度,自由度越大,t分布越接近于正态分布。
t分布在小样本情况下的参数估计和假设检验中经常被使用。
3. F分布F分布是用于比较两个样本方差是否显著不同的抽样分布。
F分布的形状取决于两个样本的自由度,它具有右偏和非对称的特点。
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。
本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。
首先,我们来理解抽样的概念。
在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。
总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。
通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。
接下来,让我们了解抽样的方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
每种抽样方法都有其特点和适用范围。
简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。
系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。
分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。
整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。
选择合适的抽样方法可以更好地保证样本的代表性和可靠性。
抽样之后,我们需要了解抽样分布的概念。
在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。
t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。
F分布常用于分析方差比较和回归模型中的显著性分析。
抽样分布的重要性在于它可以帮助我们进行推断。
根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。
参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。
假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。
通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。
在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。
第一节排列与组合排列:perms(x) x为向量,求x的全排列。
如:a=perms([2 3 7 ])a=7 3 27 2 33 7 23 2 72 3 72 7 3size(a,1) 回车ans =6有6种排列在EXCEL中,用FACT返回n!,用FACTDOUBLE返回n!!,即返回参数半阶乘。
PERMUT(n,k)=P n k组合(1)Syntax:C = nchoosek(n,k)其中n和k是一个非负整数。
该命令只有对n<15时有用。
函数描述: 从 n 个元素中一次选 k 个元素的所有组合数 C(注意,C是一个数值)。
C = n!/((n–k)! k!)如:C = nchoosek(10,3) 回车C =120C = nchoosek(v,k)其中v是一个长度为n的向量,k小于等于n。
函数描述: 从向量 v 中一次选其中 k 个元素的所有组合 C (注意:C是一个矩阵,行数为n!/((n–k)! k!)列数为 k )Examples:A=2:2:10 回车A = 2 4 6 8 10nchoosek(A,4) 回车2 4 6 82 4 6 102 4 8 102 6 8 104 6 8 10 (2)combntns从给定集合中列出所有可能的元素的组合,和nchoosek(v,k)的用法一样。
Syntaxcombos = combntns(set,subset)combos = combntns(1:5,3)combos =1 2 31 2 41 2 51 3 41 3 51 4 52 3 42 3 52 4 53 4 5size(combos,1)ans =10第二节随机数的生成2.1均匀分布的随机数据的产生函数 rand功能生成元素均匀分布于(0,1)上的向量与矩阵。
用法 Y = rand(n) %返回n*n阶的方阵Y,其元素均匀分布于区间(0,1)。
若n不是一标量,在显示一出错信息。