第三章 抽样分布
- 格式:ppt
- 大小:1.64 MB
- 文档页数:57
第三章 抽样分布一、样本统计量二、抽样误差=总体参数-样本统计量估计值表现现象:在同一总体中的不同抽样,其样本统计量之间存在差异。
三、样本量和样本个数的概念例3.1,已知某地高中三年级男生的平均身高为168.15厘米,这里,将该地高中三年级男生的身高视为一个总体,其总体均数168.15μ=,总体标准差 6.00σ=。
现从该总体中重复随机抽样5次,每次抽取一个样本含量n=10的样本,得到的5个样本的数据及各样本均数如下:2样本号样本观测值(n=10)X 抽样误差1 161.1 173.7 173.7 167.3 162.2 162.2 166.6 166.6 157.4 157.4 164.82 -3.33 2 166.8 159.1 159.1 166.1 173.3 173.3 169.1 169.1 165.2 165.2 166.63 -1.52 3 157.4 174 172.3 175.8 166.6 182.1 163.1 159.4 159.4 177.3 168.74 0.59 4 174.5 182.1 168.5 171.3 174.1 165.6 173.7 171.9 167.5 164.1 171.33 3.18 5164.1 166.6 169.6 169.6 173.8 173.2 164.3 166.6 182.1 165.4169.531.38四、抽样误差是随机的、但在概率意义下是有规律的,在大量重复抽样的情况下,可以展示其规律性:抽样分布,并且抽样分布与样本分布有一定的关系。
因此只要了解抽样分布的规律性以及与样本之间的关系,这样即使只有一个样本,也能了解抽样分布情况。
五、正态分布样本的样本均数分布样本含量n=4样本含量n=16样本含量n=36X 的平均数=168.198X的标准差=2.9995 3.0≈=X 的平均数=168.185X 的标准差=1.4868 1.5 X 的平均数=168.135X 的标准差=0.9997 1.0≈= 图3.1 从正态分布总体N(168.15,6)中随机抽样的结果曲线是正态总体N(168.15,62)的分布密度曲线直方图为正态分布总体N(168.15,62)的样本均数的频数图表3.2 从正态总体N(168.15,62)随机抽样,样本含量分别为4,16和36●大多数的样本均数相互之间存在差异,绝大多数的样本均数X不等于总体均数,但都离总体均数比较近。