深基坑施工监测技术
- 格式:doc
- 大小:40.00 KB
- 文档页数:5
深基坑施工监测方案深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法1. 土壤位移监测采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时采取措施进行处理。
三、监测数据处理在监测过程中,应将监测数据进行及时整理和处理,主要包括以下几个方面:1. 数据分析将监测数据进行统计分析和评估,以便了解施工过程中存在的问题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告每次监测结束后,应编制监测结果报告,详细记录监测过程、数据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便后续工作的参考。
四、应急措施1. 监测告警在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急措施进行应对。
深基坑监测技术方案深基坑监测技术方案一、前言深基坑工程是城市地下建筑工程中常见、大型的工程之一,其施工对周边环境和地下构造有一定的影响,并且其施工难度大、风险性高。
因此,在深基坑工程的施工过程中,对基坑周围的地下环境和施工现场进行实时监测,是保障周边环境安全和工程顺利进行的必要手段。
本文将介绍深基坑监测技术方案,以期为深基坑施工提供技术保障。
二、监测内容深基坑的监测内容主要包括以下方面:1、基坑土体和周围构造物的变形和沉降情况2、基坑周围地下水位的变化3、基坑周围地面的变形和沉降情况4、基坑周围噪音、振动等环境因素的监测5、基坑周围温度、湿度等气象因素的监测6、基坑周围交通等外部因素对施工现场的影响三、监测技术深基坑的监测技术主要包括以下方面:1、测量监测技术通过在深基坑施工现场进行土体的变形测量、沉降监测、地面变形测量等,以及在基坑周围进行地下水位监测等,实时获取基坑周围土体和水位等因素的变化情况,以便对施工进行调整。
2、遥测监测技术通过在基坑、周边地下水位点、周边气象站等设备上安装遥测设备,将监测数据传输到指挥中心,实时进行监测和分析,及时发现和解决问题。
3、影像监测技术通过安装摄像头等设备在基坑周围进行监测,以实时获取现场的施工情况和周边环境的变化情况,并可在指挥中心进行实时监控,及时得知施工现场情况,做好施工管理和环境保护。
四、数据处理和分析深基坑的监测数据经过采集,需要进行科学的数据处理和分析,以取得有效的结果。
数据处理和分析主要包括以下环节:1、数据预处理对采集的监测数据进行预处理、滤波处理等操作,以提高监测精度。
2、数据分析对采集的监测数据进行分析,通过分析结果找出数据中存在的问题,并结合实际情况进行分析,以便制定针对性施工措施。
3、数据传输将监测数据传输至指挥中心或工程方相关人员,以便实时监测和及时处理问题。
五、施工管理为了保证深基坑的施工安全和质量,需要进行施工管理,包括:1、施工技术管理在深基坑的设计和施工中,需要严格按照相关标准和规范进行管理,尽可能降低施工风险,并在施工过程中采取有效措施保证施工质量。
浅析深基坑施工监测技术概述深基坑是指在建筑施工过程中,为了承载大型建筑物或者地下设施而挖掘的深度较大的坑道。
由于深基坑在施工过程中存在较大的安全隐患和工程风险,因此施工监测技术的应用显得尤为重要。
本文将对深基坑施工监测技术进行浅析。
一、深基坑施工监测的必要性深基坑施工过程中,由于受到地下水位、土质变化、周边建筑、交通等因素的影响,常常会出现地表沉降、倾斜、开裂等情况。
如果无法及时发现这些变化并采取相应的措施,将会给施工过程中的人员、设备以及周边建筑物带来巨大的危险。
因此,深基坑施工监测技术的应用成为确保施工安全和保障工程质量的重要手段。
二、深基坑施工监测技术的分类1. 地表位移监测技术地表位移监测技术是指通过安装测点,使用全站仪、测距仪、位移计等设备对地表的位移进行实时监测。
通过监测地表位移的变化,可以及时发现并评估基坑边坡的稳定性,为施工人员提供安全的作业环境。
2. 地下水位监测技术深基坑施工过程中,地下水位的变化对基坑支护结构的稳定性有着重要的影响。
地下水位监测技术主要是通过在施工现场安装水位计、沉淀量计等设备,对地下水位的波动进行实时监测。
通过监测地下水位的变化,可以预测地下水位对基坑工程的影响,并采取相应的防护措施。
3. 周边建筑物监测技术深基坑施工过程中,周边建筑物往往承受着来自于基坑施工产生的土体位移、振动等影响。
周边建筑物监测技术主要是通过安装倾斜仪、应变计等设备,对周边建筑物的位移、倾斜等变化进行实时监测。
通过监测周边建筑物的变化,可以预测基坑施工对周边建筑物的影响,并采取相应的保护措施。
三、深基坑施工监测技术的优点1. 实时监测:深基坑施工监测技术可以实时监测地表位移、地下水位和周边建筑物的变化情况,及时掌握施工过程中的变化,以便及时采取措施进行调整和防护。
2. 精确度高:深基坑施工监测技术采用的测量设备精度高,可以对基坑施工过程中的微小变化进行准确的监测和评估。
3. 数据分析:深基坑施工监测技术可以实时采集和存储监测数据,并通过数据分析软件进行处理和分析,为施工过程中的决策提供科学依据。
深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
9.7深基坑施工监测技术镇江万达广场十项新技术应用总结之11 深基坑施工监测技术二0一一年八月目录一、工程概况 (4)二、监测目的、依据、原则 (4)三、监测内容及代表照片 (5)四、监测实施 (5)五、测量精度 (6)六、仪器设备 (7)七、测量周期 (7)八、预警报告 (7)九、预防措施、应急措施以及质量安全措施 (8)十、经济和社会效益以及应用体会 (11)一、工程概况镇江万达广场位于镇江市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,黄山南路西。
镇江万达广场地块总面积约为8万平方米,总建筑面积约38.88万平方米,地上面积约30万平方米,地下面积约8.88万平方米,分为写字楼、公寓、商业及酒店等。
公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方米,框剪结构;商业用房2—二、监测目的、依据、原则2.1监测目的在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。
如果超过一定的范围,会引起基坑的倒塌和对周围道路及管线的破坏。
因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。
2.2监测依据2.3监测原则基坑开挖是基坑卸荷过程。
由于卸荷而引起坑底土体产生以向上为主的位移,同时也引起围护墙在两侧压力差的作用下而产生的水平方向位移和因此产生的墙外侧土体的位移,基坑变形包括维护墙的变形坑底隆起及基坑周围地层位移等,加强基坑在开挖期间的监测工作可以保证基坑及周围附属设施的安全,并可合理地利用土体自身在基坑开挖过程中控制土体位移的潜力而达到保护环境的目的,根据本工程自身特点和现场施工的具体情况,监测方案按以下原则进行。
1、设置的监测内容及监测点必须满足本工程设计要求及各有关规范要求,并能客观全面反映工程施工过程中周围环境及基坑维护体系的变化情况。
2、监测过程中采用的方法、设备、频率,均应符合设计要求和有关规范要求,能及时、准确地提供监测数据,满足现代化、信息化施工要求。
深基坑施工中的基坑监测技术摘要:随着城市化进程的加快,建设项目的规模越来越大,施工的形式也越来越多样,这就需要对施工项目的安全和质量进行保障。
在此背景下,深基坑工程质量保障问题日益受到重视。
介绍了深基坑中基坑监测技术在工程建设中的作用及适用的原理,并对六种常用的监测技术进行了探讨。
关键词:基坑;监测技术;深基坑引言:由于地下土体性质,荷载条件和施工环境等因素复杂,基坑开挖时存在很大不确定性,从而给施工带来了较大影响。
随着设计理念更新与施工技术发展,基坑监测已经成为考验新理念、新技术的一个重要途径。
一、常见的深基坑监测技术1水平位移的监测水平位移监测点通常设置在边坡顶部且可以沿基坑四周设置,宜设置在四周中心及阳角位置。
监测点之间横向间距应在20米以下。
同时为保证监测效果,每侧监测点应在三个以上。
对一些特定位置水平位移的监测可采取视准线法,小角度法和投点法几种方法。
但通常对多个监测点进行水平位移监测时,依据其分布特征,可采取前方交会法,后方交叉法和极坐标法进行监测。
水平位移监测基准点的建立,须有观测墩必须对准,并使用较准确的光学对准装置,使误差控制在0.5毫米之内。
在对深基坑水平位移进行监测时,应确保与相关测量规范中的监测准确度相符。
在满足成本预算的前提下,尽量增加准确率。
同时,要设定有关参数的报警值,如采用小角度法时,在进行监测前,必须检查装置的竖向倾角,若倾角大于3,则应进行角度修正;而采用视标线法进行检测时,应确保监测点的定位误差小于20 mm;采用正面交会法进行监测时,其交会角度要控制在60到120度之间,同时要保证三点交会。
2竖向位移的监测竖向位移的监测点设置同水平位移监测点的设置基本相同,而且用以测定水平位移的点也可以测定竖向上的位移。
详细的说,目前可以采用的监测垂直位移的方法有液体静力水准或者是几何水准法。
在基坑的基础上,应设置回弹监测点,采用几何水准法监测。
若周围环境不允许使用几何水准测量,或有必要进行自动监测,可采用液位静水准仪。
十项新技术应用总结之深基坑施工监测技术深基坑施工是指在城市建设过程中,为了满足地下空间需要而进行的大规模挖掘工程。
由于深基坑施工所涉及的工程量大、周期长、风险高等特点,对施工监测技术提出了更高的要求。
本文将对十项新技术应用于深基坑施工监测技术进行总结。
一、激光扫描技术激光扫描技术利用激光测距仪对基坑的各个部位进行扫描,通过获取的点云数据,可以实现对基坑的形态、变形等信息进行精确测量和分析。
二、雷达测量技术雷达测量技术是利用微波信号进行测量的一种技术,可以实现对基坑周边环境的监测,如地下水位、地下管线等,以及基坑内部的变形、位移等数据的获取。
三、遥感技术遥感技术通过卫星、飞机等平台获取的遥感图像,可以实现对基坑周边地质环境的监测,如地质构造、地表沉降等信息的获取。
四、全站仪技术全站仪技术可以实现对基坑各个关键点位的高精度测量,包括坐标、角度、高程等参数的获取,为基坑施工提供精确的数据支持。
五、无人机技术无人机技术可以实现对基坑周边环境的快速巡查和监测,包括地表沉降、裂缝等信息的获取,同时还可以进行航拍和测量工作。
六、传感器技术传感器技术可以实现对基坑内部的温度、湿度、应力等参数的实时监测,通过传感器网络可以实现对整个基坑的全面监测。
七、数据分析与挖掘技术通过对监测数据进行大数据分析和挖掘,可以实现对基坑施工过程中的异常情况进行预警和预测,提高施工安全性和效率。
八、人工智能技术人工智能技术可以对基坑施工过程中的监测数据进行智能分析和处理,实现对施工过程的自动化控制和优化。
九、虚拟现实技术虚拟现实技术可以通过虚拟建模的方式,实现对基坑施工过程的可视化和仿真,为施工人员提供更直观、实用的信息。
十、云计算技术云计算技术可以实现对基坑监测数据的存储、管理和分析,为施工监测提供可靠的数据支持和决策依据。
十项新技术的应用使得深基坑施工监测技术得到了极大的提升。
通过这些新技术的应用,可以实现对基坑施工全过程的全面监测和控制,提高施工的安全性、效率和质量,为城市建设提供强有力的支持。
深基坑工程安全监测技术及工程应用深基坑工程是指在城市建设中,为了满足地下空间利用的需要,而挖掘的深度较大的基坑。
深基坑工程的建设需要面对许多安全隐患,如地下水位突然上升、土壤失稳、基坑结构坍塌等问题,因此需要对深基坑工程进行安全监测。
本文将介绍深基坑工程安全监测技术及工程应用的相关知识。
一、深基坑工程安全监测技术1.基坑周边环境监测技术基坑周边环境监测技术是指对基坑周围环境进行监测,包括地下水位监测、土壤位移监测、建筑物变形监测等。
地下水位监测是通过设置水位监测点,实时监测地下水位的变化情况,及时掌握地下水位的变化趋势;土壤位移监测是通过设置变形测点,实时监测土壤的位移情况,及时掌握土壤变形的情况;建筑物变形监测是通过设置变形监测点,实时监测周围建筑物的变形情况,及时掌握周围建筑物的变形情况。
通过这些监测手段,可以及时获取基坑周边环境的变化情况,保障基坑施工的安全。
2.基坑支护结构监测技术1.基坑开挖阶段的安全监测在基坑开挖阶段,地下水位的突然上升、土壤的失稳等情况都会对基坑施工造成影响。
因此需要对基坑周边环境进行监测,及时了解地下水位和土壤的变化情况;对基坑支护结构进行监测,及时了解支护结构的变形情况;对基坑开挖过程进行监测,及时了解开挖的深度和速度。
通过这些监测手段,可以及时发现并处理基坑开挖阶段的安全隐患,保障基坑开挖施工的安全。
三、结语深基坑工程的安全监测技术在工程应用中扮演着非常重要的角色。
通过对基坑周边环境、支护结构、施工过程等多方面的监测,可以及时发现并处理基坑施工中的安全隐患,保障基坑施工的安全。
随着科技的不断进步,深基坑工程安全监测技术也在不断创新和完善,为深基坑工程的安全施工提供了有力的保障。
希望在未来的深基坑工程中,安全监测技术能够发挥更大的作用,为城市建设的安全发展提供更多的支持。
深基坑施工监测方案深基坑工程是由于场地有限、建筑要求或地下空间的需要等条件引起的工程形式。
深基坑施工属于地下施工,在施工期间,受力环境、土体变形、地下水位的变化等因素均会对施工造成影响。
因此,在深基坑施工中,需要进行一定的监测和管控措施,以降低施工风险。
本文将就深基坑施工监测方案进行探讨。
一、监测对象深基坑施工中,需要进行多项监测。
其中,监测对象主要包括:周边建筑物、挡土墙、支撑结构、地下水位、土体变形等。
周边建筑物:深基坑施工过程中,支护结构的载荷可能会对周边建筑物的承载力产生影响,因此需要采用不同的监测方法进行测量,以保证周边建筑物的安全性。
例如采用水平变形测量技术,追踪建筑物的水平变形情况;采用应力应变测量技术,监测建筑物的应变情况等。
挡土墙:挡土墙是深基坑施工的关键部分,其破坏会对施工造成影响。
因此,需对挡土墙进行一定的监测措施,例如采用水平变形测量、挡土墙内部应力应变测量等技术,确保挡土墙的安全性。
支撑结构:深基坑施工中,支撑结构起着桥梁的作用,因此其安全性至关重要。
支撑结构的监测需要兼顾不同监测技术,例如采用应力应变测量、变形测量等技术综合考虑,以确保支撑结构的安全性。
地下水位:地下水位是深基坑施工中需要重点关注的监测对象,它的变化可能会对施工造成直接影响。
因此,需要对地下水位进行实时监测,并及时调整支撑结构的支撑力度,以保障施工安全。
地下水位的监测通常采用液位计、电测和潜孔测压等技术。
土体变形:土体变形是深基坑施工过程中无法避免的问题。
其合理监测和处理,能够及时报警,有效避免施工风险的发生。
土体变形的监测通常采用变形监测技术,如支撑结构内测点、土壤应变测点等。
二、监测方法深基坑施工监测方法主要分为静态监测和动态监测两类。
静态监测:静态监测是指在施工期间或施工前后采用有限数目的测量点,通过周期性监测来评估基坑工程在整个施工周期内的受力环境和形变情况。
静态监测主要包括水平变形监测、变形监测和应力应变监测等。
一、深基坑施工监测技术
(一)技术内容
基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。
监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。
监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。
通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。
监测方法可分为基准线法和坐标法。
在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m 布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。
基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。
临近建筑物沉降监测,利用高程监测的方法来了解临近建筑物的沉降,从而了解其是否会引起不均匀沉降。
在施工现场沉降影响范围之外,布设 3 个基准点为该工程临近建筑物沉降监测的基准点。
临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。
(二)技术指标
(1)变形报警值。
水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。
(2)地面沉降量报警值。
按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。
(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。
若有监测项目的数据超过报警指标,应从累计
变化量与日变量两方面考虑。
(三)适用范围
用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。
(四)工程案例
深圳中航广场工程、上海万达商业中心等。
二、大型复杂结构施工安全性监测技术
(一)技术内容
大型复杂结构是指大跨度钢结构、大跨度混凝土结构、索膜结构、超限复杂结构、施工质量控制要求高且有重要影响的结构、桥梁结构等,以及采用滑移、转体、顶升、提升等特殊施工过程的结构。
大型复杂结构施工安全性监测以控制结构在施工期间的安全为主要目的,重点技术是通过检测结构安全控制参数在一定期间内的量值及变化,并根据监测数据评估或预判结构安全状态,必要时采取相应控制措施以保证结构安全。
监测参数一般包括变形、应力应变、荷载、温度和结构动态参数等。
监测系统包括传感器、数据采集传输系统、数据库、状态分析评估与显示软件等。
(二)技术指标
监测技术指标主要包括传感器及数据采集传输系统测试稳定性和精度,其稳定性指标一般为监测期间内最大漂移小于工程允许的范围,测试精度一般满足结构状态值的5%以内。
监测点布置与数量满足工程监测的需要,并满足《建筑与桥梁结构监测技术规范》GB50982 等国家现行监测、测量等规范标准要求。
(三)适用范围
大跨度钢结构、大跨度混凝土结构、索膜结构、超限复杂结构、施工质量控制要求高且有重要影响的建筑结构和桥梁结构等,包含有滑移、转体、顶升、提升等特殊施工过程的结构。
(四)工程案例
武汉绿地中心、上海中心、深圳平安金融中心、天津津塔、上海东方明珠塔、广州电视塔等超高层与高耸结构、国家体育场钢结构、五棵松体育馆钢结构、国家大剧院钢结构、深圳会展中心钢结构、昆明新机场、上海大剧院、2010 年上
海世博会世博轴钢结构与索膜结构、中国航海博物馆结构;大同大剧院钢筋混凝土薄壳结构等大跨空间结构,CCTV 新台址异形结构;大同美术馆三角锥钢结构顶推滑移工程,贵州盘县大桥顶推工程,中航技研发中心顶升工程等。
三、爆破工程监测技术
(一)技术内容
在爆破作业中爆破振动对基础、建筑物自身、周边环境物均会造成一定的影响,无论从工程施工的角度还是环境安全的需要,均要对爆破作业提出控制,将爆破引发的各类效应列为控制和监测爆破影响的重要项目。
爆破监测的主要项目主要包括:(1)爆破质点振动速度;(2)爆破动应变;(3)爆破孔隙动水压力;(4)爆破水击波、动水压力及涌浪;(5)爆破有害气体、空气冲击波及噪声;(6)爆破前周边建筑物的检测与评估;(7)爆破中周边建筑物振动加速度、倾斜及裂缝。
振动速度加速度传感器、应变计、渗压计、水击波传感器、脉动压力传感器、倾斜计、裂缝计等分别与各类数据采集分析装置组成监测系统;对有害气体的分析可采用有毒气体检测仪;空气冲击波及噪声监测可采用专用的爆破噪声测试系统或声级计。
(二)技术指标
爆破监测在具体实施中应符合国家现行标准《爆破安全规程》GB6722、《作业场所空气中粉尘测定方法》GB5748、《水电水利工程爆破安全监测规程》DL/T5333。
(三)适用范围
适用于市政工程、海港码头、铁路、公路、水利水电工程中的岩石类爆破。
(四)工程案例
三峡水利枢纽三期上游围堰拆除工程、小浪底水利枢纽的左右岸开挖工程、秦山核电站大型基坑开挖爆破、重庆轻轨三号线江北机场站工程、南水北调丹江口水库加高工程、西北热力穿山隧道爆破施工。
四、受周边施工影响的建(构)筑物检测、监测技术
(一)技术内容
周边施工指在既有建(构)筑物下部或临近区域进行深基坑开挖降水、地铁
穿越、地下顶管、综合管廊等的施工,这些施工易引发周边建(构)筑物的不均匀沉降、变形及开裂等,致使结构或既有线路出现开裂、不均匀沉降、倾斜甚至坍塌等事故,因此有必要对受施工影响的周边建(构)
筑物进行检测与风险评估,并对其进行施工期间的监测,严格控制其沉降、位移、应力、变形、开裂等各项指标。
各类穿越既有线路或穿越既有建(构)筑物的工程,施工前应按施工工艺及步骤进行数值模拟,分析地表及上部结构变形与内力,并结合计算结果调整和设定施工监控指标。
(二)技术指标
检测主要是对既有结构的现状、结构性态进行检测与调查,记录结构外观缺陷与损伤、裂缝、差异沉降、倾斜等作为施工前结构初始值,并对结构进行承载力评定及预变形分析。
结构承载力评定应包含较大差异沉降、倾斜或缺陷的作用;监测及预警主要为受影响的建(构)筑物结构内部变形及应力,倾斜与不均匀沉降,典型裂缝的宽度与开展,其他典型缺陷等。
(三)适用范围
周边施工包含深基坑施工、地铁穿越施工、地下顶管施工、综合管廊施工等。
(四)工程案例
天津老城厢深基坑开挖对周边居民楼影响监测,天津地下管廊顶管施工对周边居民楼影响监测,北京地铁10 号线穿越施工过程检测监测,合肥地铁3 号线穿越施工对上部建筑影响检测监测与评估。
五、隧道安全监测技术
(一)技术内容
对隧道衬砌结构变形监测,根据监测数据判定隧道的安全性,实现隧道安全监测。
监测系统应包括监测断面测点棱镜、自动全站仪、通讯装置、控制计算机以及数据中心服务器,采用实时在线控制方式,可实现数据的受控采集和实时分析,同时实现监测数据和报警信息的实时发布。
系统实施具体要求如下:
(1)在隧道衬砌结构表面设置监测断面,监测断面应设置在变形影响区内,
监测断面间距一般5~15m,特殊地质地段和重要构筑物附近的断面应适当加密;
(2)每个监测断面设置监测棱镜若干,一般要在拱顶、拱腰、拱脚等部位设置监测点;
(3)在监测区域外的稳定区布置基准断面,可以在监测区外布置2 个基准断面,每断面设置棱镜2~5 个,两基准断面之间棱镜组成基线,采用自动全站仪进行基于基线的变形测量;
(4)自动全站仪应尽量设置在两个基准断面之间,同时要避让最大变形区域,减少监测过程中具有有限角度补偿的自动全站仪的人工纠偏工作量;
(5)监测报警阈值根据现场实际情况计算设置,同时符合相关规范。
(二)技术指标
监测实施过程应符合现行国家标准《工程测量规范》GB50026、《城市轨道交通工程测量规范》GB50308 等。
(三)适用范围
施工和运营中的隧道安全监测。
(四)工程案例
深圳地铁9 号线,深圳地铁9 号线西延线等。