八年级4月月考数学试题(含答案)
- 格式:doc
- 大小:224.00 KB
- 文档页数:4
2023-2024学年度上学期阶段(二)质量检测试卷八年级数学考生须知:1、全卷满分120分,考试时间120分钟;2、试卷和答题卡都要写上班级、姓名;3、请将答案写在答题卡上的相应位置上,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1中,无理数有()A.2个B.3个C.4个D.5个2.已知△ABC的三条边分别为a,b,c,下列条件不能判断是直角三角形的是()A.a2=b2-c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=5:12:133.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱,问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.4.直线y=kx+3与y=3x+k在同一坐标系内,其位置可能是()A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法中正确的有()①A、B两地相距120千米;②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个220.10100100017π8374x yx y=--=⎧⎨⎩8374x yx y=+-=⎧⎨⎩8374x yx y=++=⎧⎨⎩8374x yx y=-+=⎧⎨⎩6.如图,在平面直角坐标系中,(图中的三角形都是等边三角形),一个点从原点O 出发,沿折线移动,每次移动1个单位长度,则点的坐标为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7______.8.点A (-2,3)关于x 轴的对称点的坐标为______.9.已知点都在直线上,则大小关系是______.10.如图,Rt △ABC 的周长为24,∠C =90°,且AB :AC =5:4,则BC 的长为______.第10题11.如图,直线y =-x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组的解为______.第11题12.如图,直线y =2x -4与x 轴和y 轴分别交与A ,B 两点,射线AP ⊥AB 于点A ,若点C 是射线AP 上的一11223341O A AA A A A A ===== 1234n O AA A A A 2023A ()1348,0113482⎛ ⎝11348,2⎛ ⎝()1349,0A '()()124,,2,y y -122y x =-+12,y y3x y mx y n+=-+=⎧⎨⎩个动点,点D是x轴上的一个动点,且以A,C,D为顶点的三角形与△AOB全等,则OD的长为______.第12题三、(本大题共5小题,每小题6分,共30分)13.(1(2)解方程组:14.已知2a-7和a+4是某正数的两个不同的平方根,b-11的立方根是-2.(1)求a、b的值.(2)求a+b的平方根.15.如图,一只小鸟旋停在空中4点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.16.图(1)、图(2)均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.图(1)图(2)(1)在图(1)中,△ABC的面积为5;(2)在图(2)中,△ABC是面积为的钝角三角形.)22+-23451x yx y-=+=-⎧⎨⎩5217.若的值.四、(本大题共3小题,每小题8分,共24分)18.某中学八(1)共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具a 套(a >20)且不超过30套,购买A 、B 两种型号的学具共花费w 元.①请写出w 与a 的函数关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.19.先阅读,再解方程组.解方程组时,设a =x +y ,b =x -y ,则原方程组变为,整理,得,解这个方程组,得,即,解得.请用这种方法解下面的方程组:.20.甲、乙两车间一起加工一批零件,同时开始加工,10个小时完成任务.在这个过程中,甲车间的工作效率不变,乙车间在中间停工一段时间维修设备,然后按停工前的工作效率继续加工.设甲、乙两车间各自加工零件的数量为y (个),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为______个,这批零件的总个数为______个;(2)求乙车间维护设备后,乙车间加工零件的数量y 与x 之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间加工的时间.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点Px y ==22x xy y -+()()623452x y x yx y x y +-⎧-=⎪⎨⎪+--=⎩623452a ba b ⎧+=⎪⎨⎪-=⎩3236452a b a b +=⎧⎨-=⎩86a b =⎧⎨=⎩86x y x y +=⎧⎨-=⎩71x y =⎧⎨=⎩()()()()5316350x y x y x y x y +--=⎧⎪⎨+--=⎪⎩从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,同时停止.备用图(1)P 、Q 出发4秒后,求PQ 的长;(2)当点Q 在边CA 上运动时,出发几秒钟后,△CQB 能形成直角三角形?22.如图,已知A (3,0),B (0,4),点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求直线AB 的表达式;(2)求C 、D 的坐标;(3)在直线DA 上是否存在一点P ,使得?若存在,直接写出点P 的坐标;若不存在,请说明理由.六、(本大题共1小题,共12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.特例感知①等腰直角三角形______勾股高三角形(请填写“是”或者“不是”);②如图,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD =1,AD =2,试求线段CD的长度.10P A B S △深入探究如图,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明:推广应用如图,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,直接写出线段DE的长度(用含a的代数式表示).八年级阶段二数学答案1.【答案】C【分析】根据无理数的定义,即可求解.,,4个.故选:C2.【答案】D.3.【答案】C4.【答案】A【分析】根据一次函数的性质分k>0,k<0两种情形分别分析即可.【详解】解:当时,两条直线都经过第一,二,三象限,四个选项都不符合题意;当时,经过第一,二,四象限,的图象经过第一,三,四象限,只有选项A正确,故选:A.5.【答案】D6.【答案】B【分析】过作轴,垂足为B,求出,,求出前若干个点的坐标,找到规律点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,计算出2023与6的商和余数,据此得到结果.【详解】解:∵图中的三角形都是等边三角形,边长为1,如图,过作轴,垂足为B,则,∴,3=-k>k<3y kx=+3y x k=+1A1AB x⊥OB1AB A1111,,1,,,12222++++++ 1A1AB x⊥212OB A B==1A B==∴点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;…分析图象可以发现,点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,,∴点的坐标为,即,故选B .7.【答案】±28.【答案】9.【答案】10.【答案】611.【答案】12.【答案】6或13.(1)1A 12⎛⎝2A ()1,03A ()2,04A 5,2⎛ ⎝5A ()3,06A ()4,0A 1111,,1,,,12222++++++20236337......1÷=2023A 133742⎛⨯+ ⎝113482⎛ ⎝()23-,-12yy >12x y =⎧⎨=⎩2+)22++-.(2)【答案】14.【详解】(1)由题意得:2a -7+a +4=0,b -11=-8,解得:a =1,b =3;(2)∵a =1,b =3,∴a +b =4,4的平方根为±2.【答案】17米【详解】解:由勾股定理得;,∴(米),∵(米),∴在中,由勾股定理得,∴此时小鸟到地面C 点的距离17米.答;此时小鸟到地面C 点的距离为17米.16.点C 到AB,进而可找到点C 所在的直线,与网格的交点即为点C 的位置).(2)如图(3)所示(点拨:由,可知点C 的距离为,进而可找到点C 所在的直线,再结合△ABC 角三角形,且点C在格点处,即可找到点C 的位置)17.【答案】13∵x y,∴x =2,y =,∴x 2-xy ﹢y 2=(x -y )2﹢xy =+1=1318.【详解】解:设A 种品牌的学具售价为x 元,B 种品牌的学具售价为y 元,根据题意有,,解之可得,222=+-34=-1=11x y =⎧⎨=-⎩222222520225BC AC AB =-=-=15BC =20128BD AB AD =-=-=Rt BCD 17CD ==52ABC AB S ==△(2()14525150x y x y +=⎧⎨+=⎩{2520x y ==所以A 、B 两种学具每套的售价分别是25和20元;因为,其中购买A 型学具的数量为a ,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w 为最小值,即元;Ⅱ、由于受到购买A 型学具数量的限制,购买A 型学具30套w 已是最小,所以全部购买B 型学具45套,此时元元,综上所述,购买45套B 型学具所需费用最省钱,所需费用为:900元.故答案为(1)A 、B 两种学具每套的售价分别是25和20元;(2)①w =-5a +1100,(20<a ≤30);②购买45套B 型学具所需费用最省钱,所需费用为900元.19.【答案】【分析】根据举例,结合换元法a =x +y ,b =x -y ,可得方程组;解方程,可以得到a ,b 的值,代入所设,组成关于x ,y 的方程组,解方程组即可.【详解】解:设,,则原方程组变为,解得,所以,解得.20.【答案】(1)75,1110(2)(3)8.5小时【详解】(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个,故答案为:75,1110;(2)设乙车间维护设备后,y 与x 之间的函数关系式为,()2①2030a <≤()()2025202560%4520w a a =⨯+-⨯⨯+-⨯500153009002051100a a a =+-+-=-+51100w a =-+(2030)a <≤②①30a =5301100950(w =-⨯+=4520900(w =⨯=)950<41x y =⎧⎨=⎩5316350a b a b -=⎧⎨-=⎩a x y =+b x y =-5316350a b a b -=⎧⎨-=⎩53a b =⎧⎨=⎩53x y x y +=⎧⎨-=⎩41x y =⎧⎨=⎩4590y x =-750=7510750360=1110+y kx b =+将点代入,得,解得,∴设乙车间维护设备后,y 与x 之间的函数关系式为;(3)乙车间每小时加工零件的个数为个,设甲车间加工x 小时,则解得,∴甲车间加工8.5小时.21.【详解】(1)解:由题意可得,BQ =2×4=8(cm ),BP =ABAP =161×4=12(cm ),∵∠B =90°,∴PQcm ),即PQ 的长为cm ;(2)解:当BQ ⊥AC 时,∠BQC =90°,∵∠B =90°,AB =16cm ,BC =12cm ,∴AC (cm ),∵,∴,解得cm ,∴CQ(cm ),∴当△CQB 是直角三角形时,经过的时间为:(12+)÷2=9.6(秒);当∠CBQ =90°时,点Q 运动到点A ,此时运动的时间为:(12+20)÷2=16(秒);由上可得,当点Q 在边CA 上运动时,出发9.6秒或16秒后,△CQB 能形成直角三角形.22.【答案】(1)(2),(3)存在,或()()4,90,10,75049010360k b k b +=⎧⎨+=⎩4590k b =⎧⎨=-⎩4590y x =-90245÷=()75452930x x +-=8.5x ===20=22AB BC AC BQ = 16122022BQ ⨯=485BQ =365==365443y x =-+()80C ,()06D -,()14-,()54,【详解】(1)解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;(2)解:,,由题意得:,,,故点,设点D 的坐标为:,,解得:,故点;(3)解:存在,理由如下:设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD =4m =-6m =-()06D -,AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S ∴=⨯⨯= 10P A B S =DA (),26P a a -13102PAB BDP BDA S S S BD a ∴=-=⨯⨯-= 1a =即点P 的坐标为:或.23.【详解】解:特例感知:①等腰直角三角形是勾股高三角形.,∵,∵等腰直角三角形的一条直角边可以看作另一条直角边上的高,∴等腰直角三角形是勾股高三角形,故答案为:是;②∵是边上的高,,,∴,,∵为勾股高三角形,为勾股顶点,是边上的高,∴,∴,解得:或(负值不符合题意,舍去),∴线段;深入探究:.证明:∵为勾股高三角形,为勾股顶点且,是边上的高,∴,∴,∵,∴,∴;推广应用:过点作于,∴,∵等腰为勾股高三角形,且,为边上的高,∴,,由上问可知:,∵,∴,,∵,∴,∴,∴,()14-,()54,=)222a a -=CD AB 1BD =2AD =22221CB CD BD CD =+=+22224CA CD AD CD =+=+ABC C CD AB 222CD CA CB =-()()22241CD CD CD =+-+CD CD =CD AD CB =ABC C CA CB >CD AB 222CA CB CD -=222CA CD CB -=222CA CD AD -=22AD CB =AD CB =A AG ED ⊥G 90AGD ∠=︒ABC AB AC BC =>CD AB 222AC BC CD -=90CDB ∠=︒AD BC =ED BC ∥ADE B ∠=∠AED ACB ∠=∠AB AC =ACB B =∠∠ADE AED ∠=∠AE AD =∵,在和中,,∴,∴,∵为等腰三角形,∴,∵,,,∴,∴,∴线段的长度为.90AGD CDB ∠=∠=︒AGD △CDB △AGD CDB ADG CBD AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AGD CDB △≌△DG BD =ADE 22ED DG BD ==AB AC =AE AD =CE a =BD CE a ==2ED a =DE 2a。
2022-2023学年山东省东营市广饶县四校联考八年级(下)月考数学试卷(4月份)(五四学制)1. 式子在实数范围内有意义的条件是( )A. B. C. D.2. 下列方程中,是关于x的一元二次方程的是( )A.为常数 B.C. D.3. 若的整数部分为x,小数部分为y,则的值是( )A. B. C. 1 D. 34. 以2、为根的一元二次方程是( )A. B. C. D.5. 下列二次根式中,是最简二次根式的是( )A. B. C. D.6. 要组织一次篮球联赛,赛制为单循环形式每两队之间都赛一场,计划安排21场比赛,则应邀请个球队参加比赛.( )A. 6B. 7C. 8D. 97. 下列等式中正确的是( )A. B. C. D.8. 菱形的周长为40,它的一条对角线长为12,则菱形的面积为( )A. 24B. 48C. 96D. 1929. 下列根式中,与是同类二次根式的是( )A. B. C. D.10. 方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 有实数根11. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,两点重合,MN是折痕.若,则CN的长为( )A.B.C.D.12. 张宇设计了一种运算程序,其输入、输出如下表所示,若输入的数据是27,则输出的结果应为( )输入0149162536…输出012345…A. 26B. 28C.D.13. 方程的解为______ .14. 计算:______.15. 如果,则的值是__________.16. 观察并分析下列数据:寻找规律,那么第10个数据应该是______.17. 某种植物主干长出若干数目的枝干,每个分支又长出同样数目的小分支,主干、枝干、小分支的总数是91,每个枝干长出______小分支.18. 计算:;;19. 解下列方程:用配方法解方程:;因式分解法20. 已知关于x的一元二次方程当时,求方程的实数根.若方程有两个不相等的实数根,求实数m的取值范围.21. 已知,试化简:22. 为落实素质教育要求,促进学生全面发展,我市某中学2011年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2013年投资万元.求该学校为新增电脑投资的年平均增长率;从2011年到2013年,该中学三年为新增电脑共投资多少万元?23. 观察下列运算:由得由得由得…通过观察上面的式子,请用n的代数式表示第n个式子;利用中规律计算:…24. 如图,在中,,AF平分,,,,垂足分别为D、求线段BF的长;请判断四边形CGEF形状,并说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了二次根式有意义的条件,正确把握二次根式有意义的条件是解题关键.直接利用二次根式有意义的条件分析得出答案.【解答】解:式子在实数范围内有意义的条件是:,解得:故选2.【答案】B【解析】解:若,则该方程不是一元二次方程,A项错误,B.符合一元二次方程的定义,B项正确,C.属于分式方程,不符合一元二次方程的定义,C项错误,D.整理后方程为:,不符合一元二次方程的定义,D项错误,故选:根据一元二次方程的定义,依次分析各个选项,选出是关于x的一元二次方程即可得到答案.本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.3.【答案】C【解析】解:的整数部分为1,小数部分为,,,故选:因为的整数部分为1,小数部分为,所以,,代入计算即可.关键是会表示的整数部分和小数部分,再进行二次根式的加减运算,即将被开方数相同的二次根式进行合并.4.【答案】B【解析】解:将,代入公式,可得到,即,故选由一元二次方程根与系数关系,设该方程一般形式中,有:;,即可得出答案.本题考查了根与系数的关系.解题时熟记一元二次方程的根与系数的关系:,5.【答案】A【解析】解:A、是最简二次根式,故本选项符合题意;B、,不是最简二次根式,故本选项不符合题意;C、,不是最简二次根式,故本选项不符合题意;D、,不是最简二次根式,故本选项不符合题意;故选:满足下列两个条件的二次根式,叫做最简二次根式:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式.可以此来判断哪个选项是正确的本题考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.6.【答案】B【解析】解:设应邀请x个球队参加比赛,依题意,得:,整理,得:,解得:不合题意,舍去,故选:设应邀请x个球队参加比赛,根据单循环赛共赛21场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.7.【答案】D【解析】解:原式,故A错误;原式,故B错误;原式,故C错误;故选:根据二次根式的性质即可求出答案.本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.8.【答案】C【解析】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,菱形的周长为40,,一条对角线的长为12,当,,在中,,,菱形的面积,故选:根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.9.【答案】D【解析】解:A、与被开方数不同,不是同类二次根式,故A选项错误;B、与被开方数不同,不是同类二次根式,故B选项错误;C、与被开方数不同,不是同类二次根式,故C选项错误;D、,与被开方数相同,是同类二次根式,故D选项正确.故选根据同类二次根式的定义解答即可.此题主要考查了同类二次根式的定义:即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.【答案】C【解析】解:,所以方程无实数根.故选:先计算判别式的值,然后根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根.11.【答案】A【解析】解:连接AC、BD,如图,点O为菱形ABCD的对角线的交点,,,,在中,,,,在和中,,≌,,过点O折叠菱形,使B,两点重合,MN是折痕,,,,故选:连接AC、BD,利用菱形的性质得,,,再利用勾股定理计算出,由ASA证得≌得到,然后根据折叠的性质得,则,即可得出结果.本题考查了折叠的性质、菱形的性质、平行线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握折叠与菱形的性质,证明三角形全等是解题的关键.12.【答案】C【解析】解:,,,,,,,当输入的数是27时,输出的数应该是故选:根据表格数据可知输出的数是输入的数的算术平方根减去1,然后进行计算即可得解.本题是对算术平方根的考查,熟记算术平方根的定义,观察出输出的数是输入的数的算术平方根减去1是解题的关键.13.【答案】0或2【解析】解:由,得,解得,根据“两式相乘值为0,这两式中至少有一式值为0”进行求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.14.【答案】【解析】解:原式故答案为先利用积的乘方得到原式,然后利用平方差公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】5或【解析】【分析】本题考查的知识点为:二次根式的被开方数是非负数.根据被开方数大于等于0列式求出x的值,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,,,,解得,,,或,综上所述,的值是5或故答案为:5或16.【答案】【解析】解:,,,,,则第10个数据是:故答案是:把已知的式子写成的形式,然后根据被开方数的关系即可求解.本题考查了二次根式,正确把已知的式子写成的形式是关键.17.【答案】9【解析】解:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据题意得:整理,得,解得舍去,即每个枝干长出9小分支.故答案是:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据主干、枝干和小分支的总数是91,即可得出关于x的一元二次方程,此题得解.本题考查了一元二次方程的应用,根据主干、枝干和小分支的总数是91,列出关于x的一元二次方程是解题的关键.18.【答案】解:原式;原式;原式【解析】先把二次根式化为最简二次根式,然后合并即可;根据二次根式的乘除法则运算;先把二次根式化为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.【答案】解:,,,故,解得:,;,,,解得:,【解析】直接利用配方法解方程得出答案;直接利用十字相乘法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解一元二次方程的解法是解题关键.20.【答案】解:当时,方程为,方程有两个不相等的实数根,即,【解析】本题考查了一元二次方程的解法、根的判别式.令,用公式法求出一元二次方程的根即可;根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.21.【答案】解:,【解析】先根据二次根式的性质得出绝对值,再去掉绝对值符号,最后合并即可.本题考查了对二次根式的性质的应用,注意:当时,,当时,22.【答案】解:设该学校为新增电脑投资的年平均增长率为x,根据题意得:,解得:,不合题意,舍去答:该学校为新增电脑投资的年平均增长率为根据题意得:万元,答:从2011年到2013年,该中学三年新增电脑共投资万元.【解析】设该学校为新增电脑投资的年平均增长率为x,根据以后每年以相同的增长率进行投资,2013年投资万元,列出方程,求出方程的解即可;分别求出该中学每年为新增电脑投资的钱数,再把所得的结果相加即可.本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,注意把不合题意的解舍去.23.【答案】解:第n个式子为:得;原式…【解析】利用平方差公式求解;先分母有理化,然后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.【答案】解:在中,,,,,,,,,≌,,,,设,在中,则有,解得,结论:四边形CGEF是菱形.理由:,,,,≌,,,,,,,四边形CGEF是平行四边形,,四边形CGEF是菱形.【解析】证明≌,推出,,推出,设,在中,则有,求出x即可解决问题.证明,即可解决问题.本题考查勾股定理,菱形的判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
华东师大版数学八年级上册第一次月考测试题(适用于第11、12章)一、选择题。
(27分)1.若(x+a)(x+b)=x2+px+q,且p>0,q<0,那么a、b必须满足的条件是()A. a、b都是正数B. a、b异号,且正数的绝对值较大C. a、b都是负数D. a、b异号,且负数的绝对值较大2.一个长方体的长、宽、高分别是3x-4、2x-1和x,则它的体积是()A. 6x3−5x2+4xB. 6x3−11x2+4xC. 6x3−4x2D. 6x3−4x2+x+43.观察下列多项式的乘法计算:(1)(x+3)(x+4)=x2+7x+12;(2)(x+3)(x-4)=x2-x-12;(3)(x-3)(x+4)=x2+x-12;(4)(x-3)(x-4)=x2-7x+12根据你发现的规律,若(x+p)(x+q)=x2-8x+15,则p+q的值为()A. −8B. −2C. 2D. 84.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有()A. ①②B. ③④C. ①②③D. ①②③④5.下列说法正确的是()A.的相反数是B.2是4的平方根C.是无理数 D.计算: =﹣36.下列各数中,是无理数的是()A.B.3.14 C.D.7.如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上8.估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1二、填空题。
⎝2⎭5八年级下学期4月份月考数学试题一、填空题(每小题3分,共计30分)1.下列运算正确的是()A.(a2)=a7B.a2⋅a4=a6C.3a2b-3ab2=0⎛a⎫2D. ⎪=a222.如图,下列图案是轴对称图形的是()A B C D3.由线段a,b,c可以组成直角三角形的是()A.a=5,b=8,c=7B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=5,b=5,c=64.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.AB=CD,AD=BCC.∠A=∠B,∠C=∠DD.AB=AD,CB=CD5.矩形具有而平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分6.如图,有一根16米的电线杆在A处断裂,电线杆顶部C落在离电线杆底部B点8米远的地方,则电线杆断裂处A离地面的距离AB的长为()A.6米B.7米C.8米D.9米AB C(第6题图)(第7题图)7.以直角三角形ABC的三边向外作正方形,三个正方形的面积分别为S1,S2,S3,若S1=9,S2=16则S3=()A.25B.50C.72D.144.8.如图,在矩形 ABCD 中,E 是 BC 的中点,∠BAE=30°,AE=2,则四边形 AECD 的面积是()A .B .2C .D .AC ′B ′BEDFC(第 8 题)(第 9 题)9.将矩形纸片 ABCD 按如图所示的方式折叠,AE 、EF 为折痕,∠BAE =30°,AB = 3 ,折叠后,点 C 落在 AD 边上的 C ′处,并且点 B 落在 EC ′边上的 B ′处.则 BC 的长为()A. 3B. 2 3C.2D.310.下列说法正确的有( )个①一组对边平行且一组对角相等的四边形是平行四边形;②一组对边相等且有一个角是直 角的四边形是矩形;③三角形的中位线平行于三角形的第三边且等于第三边的一半;④两 条对角线相等的四边形是矩形A .1B .2C .3D .4二、填空题(每小题 3 分,共计 30 分)11.二次根式 x 2 有意义,则 x 的取值范围是.12.如图,平行四边形ABCD 中,AC 为对角线,已知点E 、F 在 AC 上,添加一个条件____________, 可使四边形BFDE 为平行四边形13.在平行四边形 ABCD 中,∠A 与∠B 的度数之比为 2:3,则∠B 的度数是. 14.矩形的一边长是 2 3 ,一条对角线的长是 4,则这个矩形的面积是.15.如图,在平行四边形 ABCD 中,AC 、BD 相交于 O ,E 是 CD 的中点,连接 OE ,△BCD 的周长为 △10,则 ODE 的周长为.ADA DOE BCBE C(第 12 题)(第 15 题)(第 16 题)16.如图,在平行四边形 ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形 ABCD 的周长是.17.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B点的纵坐标是___________.ADF E B C(第17题)(第18题)(第20题)18.如图,在矩形ABCD中,AE⊥BD于E,BE:DE=1:3,则∠EAD=_____.△19.已知ABC中,有两边长分别为15和13,第三边上的高为12,则第三边长为.20.如图,△ABC中,∠C=60°,AC=6,BC=2,D是△ABC外一点,使∠DAB=60°,连接AD,且AD=27,延长AD、CB交于点F,过D作DE⊥FC于点E,则DE=_______.三、解答题(21、22各7分,23、24各8分,25、26、27各10分,共计60分)21.先化简,再求值m-11+m2÷(2m-),其中m=2-1 m m22.图1、图2分别是8×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB为一边且周长为10+25的平行四边形,所画图形的各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并直接写出该等腰三角形的周长.23.如图,在△ABC中,D是BC边的中点,分别过点B、C作射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)若AF=FD,在不添加辅助线的条件下△直接写出与ABD面积相等的所有三角形.24.如图1,P为正方形ABCD内一点,且PA∶PB∶PC=1∶2∶3,求∠APB的度数.小明同学的想法是:不妨设PA=x,PB=2x,PC=3x,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转△90°得到BAE(如图2),然后连结PE,问题得以解决。
湖南省衡阳市八中教育集团先修班2023-2024学年八年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、多选题1.已知自然数n 小于50,且(45)n +和(76)n +有大于1的公因数,则所有n 的可能值为( )A .18B .20C .30D .40二、单选题2.已知ABC V 中,15AB =,AC =,且BC 边上的高12AD =,则BC 的长为( ) A .2B .3C .3或15D .15三、多选题3.已知关于x 的不等式组()21329x x k x x ⎧--≤⎪⎨+>⎪⎩有且只有三个整数解,且一次函数5y kx k =+-的图象不经过第四象限,则下列四个数中符合条件的整数k 值有( ) A .5B .6C .7D .8四、单选题 4)ABCD五、多选题5.如图,己知在,ABC ADE V V 中,90,,BAC DAE AB AC AD AE ∠=∠=︒==,点C ,D ,E 点在同一条直线上,连接BD ,BE .以下四个选项正确的是( )A . BD CE =B .BDE BDC V V ≌C .若22.5ABE AEB ∠∠+=︒,则AD CD =D .()22222BE AD AB CD =+-6.如图,直线:l y t =+与x 轴交于点(3A ,直线m 与x 交于点(2,0)B -与l 交于第一象限内一点C ,点D 与点B 关于y 轴对称,点E 为直线l 上一动点,连接DC DE BE 、、,若DBE DEB ∠=∠,2DEC DCE ∠=∠,则2CD 的值为( )A .20+B .44+C .20-D .44-六、填空题7.左图是我国古代南北朝时期独孤信的印章,其俯视图如右图所示,该印章有 条棱,若棱长均为1、则表面积等于 .8.设x ,y ,z 2222228627221061271427x y z xy xz yzx y z xy xz yz-++--=----+ .9.已知232131250n n n n a x a ay a x a y --⎧-+=⎨--=⎩,若9n a =,则1n n a x a y --= . 10.如图,在Rt ABC △内一动点P ,90C ∠=︒,连接AP 并延长与BC 交于点E ,连接BP 并延长与AC 交于点F .若,,AC BE AF EC APF ==∠= .七、解答题11.长沙市某中学举办球赛,分为若干组,其中第一组有A ,B ,C ,D ,E 五个队,这五个队要进行单循环比赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜,每场比赛胜负双方根据比分会获得相应的积分(如2:0或2:1的积分不同),积分均为正整数.(注:圈中的“2:1”表示在E 队与B 队的这场比赛中E 队赢两局,输一局,E 队以2:1的比分战胜B 队.)根据上表回答问题:(1)当B 队的总积分8y =时,上表中m 处应填 ; (2)写出C 队总积分p 的所有可能值为 . 12.计算:(1)设实数a ,b 满足22861050a ab a b b --++=,求216643W a b =-+的最小值. (2)设333311111232024T =++++L ,求4T 的整数部分. 13.1月份,甲、乙两超市从批发市场购进了相同单价的某种商品,甲超市用1260元购进的商品数量比乙超市用1470元购进的数量少10件. (1)求该商品的单价:(2)2月份,两超市以单价a 元/件(低于1月份单价)再次购进该商品,购进总价均不变. ①试用含a 的代数式表示两家超市两次购进该商品的平均单价.②已知15a =,甲超市1月份以每件30元的标价售出了一部分,剩余部分与2月份购进的商品一起售卖,2月份第一次按标价9折售出一部分且未超过1月份售出数量的一半,第二次在第一次基础上再降价2元全部售出,两个月的总利润为1260元,求甲超市1月份可能售出该商品的数量.14.在ABC V 中,点E 在BC 上,点H 在AC 上,连接AE 和BH 交于点F .(1)如图1,AB AC =,2AFB ACB ∠=∠.求证:ABH CAE ∠=∠;(2)在(1)的条件下,如图2,连接FC ,若AH CH =,求证:FC 平分EFH ∠;(3)如图3,=45ABC ∠︒,AB =8AC =,7BC >,若AH CE =,求AE BH +的最小值.15.阅读:多项式232x x ++可以分解因式得232(2)(1)x x x x ++=++,故方程2320x x ++=可以变形为(2)(1)0x x ++=,解得2x =-或=1x -.通过观察多项式的因式与方程的解的关系,发现2x =-,=1x -是该方程的解,()()21x x ++,是对应多项式的因式.这样,若要把一个多项式分解因式,可以通过对其对应方程的解来确定其中的因式.运用:已知432631M x x ax bx =+++-,43232544N x ax x bx =-+--,其中a b ,为整数,试求出使M N ,有公共因式的全部a b ,,并写出相应的公共因式.16.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,例如,1ab =,求证:11111a b+=++.证明:左边111111ab b ab a b b b=+=+==++++右边. 阅读材料二:第24届国际数学家大会会标,设两条直角边的边长为a ,b ,则面积为12ab ,四个直角三角形面积和小于正方形的面积得:222a b ab +≥,当且仅当a b =时取等号.在222a b ab +≥中,若00a b >>,,a ,b 得,a b +≥即*2a b+≥),我们把(*)式称为基本不等式.例如:在0x >的条件下,1x x +≥12x x ∴+≥,当且仅当1x x =,即1x =时,1x x+有最小值,最小值为 2.阅读材料三:正实数a ,b 满足1a b +=,求12a b+的最小值?其中一种解法是:12122()123b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭2b aa b=且1a b +=时,即1a 且2b =请同学们根据以上所学的知识解决下列问题.(1)若2x >,求12y x x =+-的最小值________;若0x ≥,求y =的最小值________.(2)已知0,0a b >>且1a b +=,求1811a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是?(3)0,0a b >>,且21a b +=,不等式1102m b a b+-≥+恒成立,求m 的范围? (4)已知0,0,a b >>且2233a b ab a b +=+,求3a b +的最小值?。
2023—2024学年度下学期八年级第一次质量调研数学试题本试卷共4页,三个大题,满分120分,考试时间100分钟.★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题(本题共10小题,每小题3分,共30分)1.下列四个二次根式中,是最简二次根式的是( )ABCD2.下列计算正确的是( )A B .CD3.计算的结果是()AB .3C .D4.如图,矩形内有两个相邻的白色正方形,其面积分别为2和18,则图中阴影部分的面积为()A .B .C .4D .65.在中,,,的对边分别是a ,b ,c ,下列条件不能判定为直角三角形的是()A .B .C .D .,,6n 是( )A .6B .3C .48D .2=3===))2023202433⋅+-3+3-3-ABC △A ∠B ∠C ∠ABC △C A B ∠=∠+∠345A B C ∠∠∠=::::()()2b c b c a+-=3a =4b =5c =7在实数范围内成立,则x 的取值范围是( )A .B .C .D .8.如图,在中,,正方形AEDC ,BCFG 的面积分别为25和144,则AB 的长度为()第8题图A .13B .169C .12D .59.如图的数轴上,点A,C 对应的实数分别为1,3,线段于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为()第9题图A B .C D .10.如图,中,,,,将沿DE 翻折,使点A 与点B 重合,则AE的长为()第10题图A .B.3C .D .二、填空题(本题共5小题,每小题3分,共15分)11.比较大小:.(用“=”、“>”、“<”填空)12.请任意写出一组勾股数______.13.命题“对角线相等的四边形是矩形”的逆命题是______.14.一等腰三角形的底边长是12,腰长为10,则底边上的高是______.15.如图是一个按某种规律排列的数阵:1第1行2第2行 3第3行4第4行=1x ≥4x ≥14x ≤≤4x >Rt ABC △90ACB ∠=︒AB AC ⊥3-333ABC △90ACB ∠=︒4AC =3BC =ADE △78258254--… … … … … … … ……根据数阵排列的规律,第n (n 是整数,且)行从左向右数第个数是(用含n 的代数式表示)______.三、解答题(本题共8小题,共75分)16.(8分)计算:(1);(2.17.(8分)已知,,求下列代数式的值:(1);(2).18.(9分)图1是某品牌婴儿车,图2为其简化结构示意图.根据安全标准需满足,现测得,,,其中AB 与BD 之间由一个固定为90°的零件连接(即),通过计算说明该车是否符合安全标准.图1 图219.(10分)(1)用“=”、“>”、“<”填空:______,______,______(2)由(1)中各式猜想与(,)的大小,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为的花圃,所用的篱笆至少需要______m .20.(9分)问题背景:在中,AB、BC 、AC,求这个三角形的面积.4n ≥()3n -+-2a =+2b =-22a b b a +22a b -BC CD ⊥6AB CD dm ==3BC dm =9AD dm =90ABD ∠=︒43+116+55+m n +0m ≥0n ≥2200m ABC △小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点(即三个顶点都在小正方形的顶点处),如图1所示.这样不需求的高,而借用网格就能计算出它的面积.(1)请你将的面积直接填写在横线上______.思维拓展:(2)我们把上述求面积的方法叫做构图法.若、(),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的,并求出它的面积.图1图221.(10分)“儿童散学归来早,忙趁东风放纸鸢”,又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?22.(10分)先阅读下列的解答过程,然后再解答:嘉嘉在学习二次根式的运算时发现有这样一类题目:反之她说如果化简可以这样做∵(1;ABC △ABC △ABC △ABC △ABC △ABC △0a >ABC △)2221211213-=-⨯+=-+=-)23211-=-+=-3-)231-=1=(223.(11分)如图,和都是等腰直角三角形,,的顶点D 是的斜边AB 上的点.(1)试探究线段AD ,CD ,BD 之间存在的数量关系,并说明理由;(2)若,请直接写出的值.2023-2024学年度下学期八年级第一次质量调研数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案DCDCBBDABC二、填空题(每小题3分,共15分)11.<12.3,4,5(答案不唯一)13.矩形是对角线相等的四边形14.815三、解答题(共75分)16.解:(1)原式;(2)原式.17.解:,,.(1);(2).18.解:在中,,在中,,∴,∴,∴.++⋅⋅⋅ABC △ECD△90ACB ECD ∠=∠=︒ECD△ACB △3BD AD =ECAE44=-+==+=+=+=22a b +=+-=224a b -=+=222)23ab ==-=22()3a b b a ab a b +=+=⨯=22()()4a b a b a b -=+-==Rt ABD △222229615BD AD AB =-=-=BCD △22223645BC CD +=+=222BC CD BD +=90BCD ∠=︒BC CD ⊥故该车符合安全标准.19.解:(1)>,>,=.(2).理由如下:当,时,∵,∴,∴,∴.(3)4020.解:(1)3.5(2)如图所示,.21.解:(1)在中,由勾股定理得,,所以,,所以,(米),答:风筝的高度CE 为21.6米;(2)由题意得,,∴,∴(米),∴(米),∴他应该往回收线8米.22.解:(1(2)0,0m nm n +≥≥≥0m ≥0n≥20≥220-≥0m n -+≥m n +≥ABC △222221112422248223222ABC S a a a a a a a a a a a a a =⋅-⨯⋅-⨯⋅-⨯⋅=---=△Rt CDB △222222515400CD BC BD =-=-=20CD =20 1.621.6CE CD DE =+=+=12CM =8DM =17M ===25178BC BM -=-=1===+⋅⋅⋅+23.解:(1)连接AE ,∵与都是等腰直角三角形,∴,,,,,∴.∴.∴,.∴,即.∴,在中,∴.∴,即(2)设,则∵,,所以=+⋅⋅⋅+11=-+++⋅⋅⋅=-+222AD BD CD +=ACB △ECD △90ECD ACB ∠=∠=︒45CED EDC ABC CAB ∠=∠=∠=∠=︒EC DC =AC BC =ECD ACD ACB ACD ∠-∠=∠-∠ACE BCD ∠=∠()AEC BDC SAS ≌△△AE BD =45EAC ABC ∠=∠=︒90EAC CAB ∠+∠=︒90EAD ∠=︒222AD AE DE +=ECD △222CD CE DE +=222CD DE =2222AD BD CD +=33BD AE AD a ===4AB a =2222AD BD CD +=CD EC ==EC AE =。
数学一、选择题(本大题10个小题,每小题4分,共40分)1.的相反数是()A.B.C.3D.2.地铁是城市轨道交通的一种,截止2024年年初,重庆已运营12条轨道交通线路,建成全国规模最大的山地城市交通运营网络,进入世界级轨道交通城市行列.下列分别是我国深圳、石家庄、重庆、北京的地铁图标,其中是轴对称图形的是()A.B.C.D.3.下列式子中,运算正确的是()A.B.C.D.4.如图,在中,,在的延长线上取点D,过点D作.若,则的度数为()A.38°B.42°C.52°D.62°5.设n为正整数,且,则n的值为()A.3B.4C.5D.66.为了促进A,B两小区居民的阅读交流,区政府准备在街道上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.7.《九章算术》中有这样一道题:“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之,问几何步及之?”意思是:走路快的人走100步时,走路慢的人只走60步,走路慢的人先走100步,走路快的人要走多少步才能追上?设走路快的人走m步才能追上走路慢的人,此时走路慢的人走了n 步,则可列方程组为()3-13-3-13224a a a+=358a a a⋅=632a a a÷=()32626a a=Rt ABC△90A∠=︒AB DE BC∥38C∠=︒D∠1n n<<+A .B .C .D .8.下列说法正确的是( )A .等腰三角形是一个轴对称图形,它的对称轴是底边的高线B .三角形三边垂直平分线的交点到三角形三个顶点的距离相等C .有两个角相等的等腰三角形是等边三角形D .全等的两个图形一定关于某条直线成轴对称9.如图,在长方形中,点E 是边上一点,连接、,将沿着翻折,点C 恰好落在边上的点F 处.若,,则面积是( )A .9B .12C .15D .1810.已知单项式串:,,,,…,,其中n ,为非负整数,,,,…,均为正整数.规定:,,,…,,整式的所有系数的和记作.如:因为,所以;因为,所以;因为,所以.以下说法:①若,,,,则;②若,则所有满足条件的整式的和为;③若,则所有满足条件的整式有9个.其中正确的个数是( )A .0B .1C .2D .3二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一个多边形的内角和是外角和的3倍,则这个多边形的边数为______.13.如图,在中,,的垂直平分线交于点E ,交于点D ,连接.若10010060m n m n =+⎧⎪⎨=⎪⎩10060100m n m n =+⎧⎪⎨=⎪⎩10010060m n m n =-⎧⎪⎨=⎪⎩10060100m n m n =-⎧⎪⎨=⎪⎩ABCD BC AE DE CDE △DE AE 75DEC ∠=︒3CD =ADE △0a 1a x 22a x 33a x n n a x 0a 1a 2a 3a na 00M a =11M a x =2222020M a x M a x a =+=+()22n n n n M a x M n -=+≥n M ()n F M 00M a =()00F M a =11M a x =()11F M a =2220M a x a =+()220F M a a =+01a =12a =23a =34a =()36F M =()34F M =3M 3610x x +()6n n F M +=n M ()201π32⎛⎫--= ⎪⎝⎭ABC △6cm AC =AC BC AC AE的周长为,则的周长为______cm .14.若,则______.15,则以a 、b 为边的等腰三角形的底边长为______.16.若关于x 的不等式组的解集为,且点关于y 轴对称的点在第二象限,则所有满足条件的整数m 的值之和为______.17.如图,在中,,点D 为外一点,连接、、,使得,,,则的度数是______.18.如果一个四位自然数的各数位上的数字互不相等且均不为0,满足千位数字与十位数字之和等于百位数字与个位数字之和,且都为8,则称这个四位数为“拜拜数”.例如:对于7216,因为,所以7216为“拜拜数”.请写出符合条件的最小“拜拜数”是______.已知一个“拜拜数”M 的千位数字是,百位数字是b ,十位数字是(其中,,,且a ,b ,c ,d 均为整数),记M 的千位数字与个位数字的乘积为,百位数字与十位数字的乘积为.若是一个自然数的平方,则满足此条件的最大“拜拜数”是______.三、解答题(本大题8个小题,共78分)19.(1);(2);(3);(4).20.(6分)化简求值:,其中,.21.(8分)在学习了全等三角形的知识后,一位同学进行了如下的探究,他发现:在一组对边平行且相等ABE △14cm ABC △2340x y +-=927x y⋅=30b +-=12333x m x x -⎧≥-⎪⎨⎪-<+⎩3x >-()27,4m +ABC △AB AC =ABC △AD BD CD 60ABD ∠=︒79ADB ∠=︒22BDC ∠=︒CBD ∠71268+=+=2a 2c d +14a ≤≤17b ≤≤127c d ≤+≤()F M ()K M ()()442F M K M a c d --++242x y xy ⋅()()23x x y ⋅-()1323a b a b ⎛⎫-⋅+ ⎪⎝⎭()()()23a b b a a a b +⋅-+-()()11222x x y x y x y ⎛⎫+-+- ⎪⎝⎭2x =1y =-的四边形中,它的一组对角顶点到另一组对角顶点所连线段的距离存在着一定的数量关系.这位同学利用三角形全等证明了他的猜想,请根据他的想法与思路,完成以下作图与填空.(1)如图,在四边形中,,,连接,于点F .利用尺规作图,过点B 作的垂线,垂足为点E (不写作法,保留作图痕迹)·(2)在(1)问所作的图形中,求证:.证明:∵,∴___①___,∵,,∴在和中,∴.∴___③___.于是这位同学得到的结论是:在一组对边平行且相等的四边形中,___④___.22.(8分)为了解某校八年级学生的体育测试情况,随机抽取了该校若干名八年级学生的体育测试成绩进行了统计分析,并根据抽取的成绩绘制了如下的频数分布表和频数分布直方图:成绩x /分频数频率40a b0.4550c 200.1请根据所给信息,解答下列问题:(1)上述图表中______,______,______,(2)请补全频数分布直方图;(3)若该校八年级共有2200名学生参加此次体育测试,估计该年级体育成绩不低于36分的学生人数是多ABCD AB CD =AB CD ∥AC DF AC ⊥AC BE DF =AB CD ∥BE AC ⊥DF AC ⊥90AEB CFD ∠=∠=︒ABE △CDF △______BAE DCF AB CD ∠=∠⎧⎪⎨⎪=⎩②()AAS ABE CDF ≌△△4350x ≤≤3643x ≤<2936x ≤<2229x ≤<a =b =c =少?23.(10分)如图,在和中,点C 在线段上,与交于点F .若,,.(1)求证:;(2)若,,求的度数.24.(10分)“金秋墨彩庆华诞,笔落惊云书国魂.”为庆祝建国75周年,年级决定举行书法比赛,为奖励在比赛中表现优秀的同学,年级提前购买了甲、乙两种奖品。
江西省2024-2025学年八年级上学期第一次月考数学试题一、单选题1. 在ABC 中,已知3AC =,4BC =,则AB 的取值范围是( )A. 68AB <<B. 17AB <<C. 214AB <<D. 114AB <<【答案】B【解析】【分析】根据三角形三边关系求解.【详解】解: 在ABC 中,3AC =,4BC =, ∴BC AC AB BC AC −<<+,∴4343AB −<<+,即17AB <<.故选B .【点睛】本题考查三角形三边关系的应用,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.2. 如图,△ABC ≌△ABD ,若∠ABC =30°,∠ADB =100°,则∠BAC 的度数是( ).A. 30°B. 100°C. 50°D. 80°【答案】C【解析】 【分析】根据全等三角形的性质得到∠C 的度数,然后利用三角形内角和定理计算即可.【详解】解:∵△ABC ≌△ABD ,∴∠C =∠ADB =100°,∴∠BAC =180°-100°-30°=50°,故选C.【点睛】本题考查了全等三角形的性质和三角形内角和定理,熟知全等三角形的对应边相等,对应角相等是解题关键.3. 如图,在ABC 中,AB AC =,AE AF =,AD BC ⊥,垂足为D .则全等三角形有( )A. 2组B. 3组C. 4组D. 5组【答案】C【解析】 【分析】本题主要考查了全等三角形的性质和判定,先根据HL 证明Rt ADE ≌Rt ADF ,可得DE DF =,进而得出Rt ABD △≌Rt ACD △,可得BD CD =,即可得出BE CF =,再根据SSS 证明ABE ≌ACF △,ACE △≌ABF △,可得答案.【详解】∵AE AF =,AD AD =,∴Rt ADE ≌Rt ADF ,∴DE DF =.∵AB AC =,AD AD =,∴Rt ADB △≌Rt ADC ,∴BD CD =,∴B D D E C D D F −=−,即BE CF =.∵AB AC =,AE AF =,∴ABE ≌ACF △.∵B D D F C D D E +=+,即BF CE =.∵AB AC =,AE AF =,∴ABF △≌ACE △.全等三角形有4组.故选:C .4. 如图,在ABC 中,,ABC ACB ∠∠的平分线交于点O ,连接AO ,过点O 作,,OD BC OE AB ABC ⊥⊥△的面积是16,周长是8,则OD 的长是( )A. 1B. 2C. 3D. 4【答案】D【解析】 【分析】本题主要考查了角平分线的性质,先过点O 作OF AC ⊥于点F ,然后根据角平分线的性质,证明OE OF OD ==,然后根据ABC 的面积AOB =△的面积BOC +△的面积AOC +△的面积,求出答案即可.【详解】如图所示:过点O 作OF AC ⊥于点F ,OB ,OC 分别是ABC ∠和ACB ∠角平分线,OD BC ⊥,OE AB ⊥,OF AC ⊥,OE OD OF ∴==,16ABC AOB BOC AOC S S S S =++= , ∴11116222AB OE BC OD AC OF ⋅+⋅+⋅=, 11116222AB OD BC OD AC OD ⋅+⋅+⋅=, 1()162OD AB BC AC ++=, 8++= AB BC AC ,4OD ∴=,故选:D .5. 如图,ABC ∆中,AB BC =,点D 在AC 上,BD BC ⊥.设BDC α∠=,ABD β∠=,则( )的A. 3180αβ+°B. 2180αβ+°C. 390αβ−=°D. 290αβ−=°【答案】D【解析】 【分析】根据三角形外角等于不相邻两个内角的和,直角三角形两锐互余解答【详解】解:AB BC = ,A C ∴∠=∠,A αβ−∠= ,90C α+∠=°,290αβ∴=°+,290αβ∴−=°,故选:D .【点睛】本题考查了三角形外角,直角三角形,熟练掌握三角形外角性质,直角三角形两锐角性质,是解决此类问题的关键6. 下列条件,不能判定两个直角三角形全等的是( )A. 两个锐角对应相等B. 一个锐角和斜边对应相等C. 两条直角边对应相等D. 一条直角边和斜边对应相等【答案】A【解析】【分析】本题主要考查全等的判定方法,熟练掌握判定方法是解题的关键.根据判定方法依次进行判断即可.【详解】解:A 、两个锐角对应相等,不能判定两个直角三角形全等,故A 符合题意;B 、一个锐角和斜边对应相等,利用AAS 可以判定两个直角三角形全等,故B 不符合题意;C 、两条直角边对应相等,利用SAS 可以判定两个直角三角形全等,故C 不符合题意;D 、一条直角边和斜边对应相等,利用HL 可以判定两个直角三角形全等,故D 不符合题意;故选:A .7. 如图,在ACD 和BCE 中,,,,,AC BC AD BE CD CE ACE m BCD n ===∠=∠= ,AD 与BE 相交于点P ,则BPA ∠的度数为( )A. n m −B. 2n m −C. 12n m −D. 1()2n m − 【答案】D【解析】 【分析】由条件可证明△ACD ≌△BCE ,根据全等三角形的性质得到∠ACB 的度数,利用三角形内角和可求得∠APB=∠ACB ,即可解答.【详解】在△ACD 和△BCE 中AC BC AD BE CD CE===∴△ACD ≌△BCE (SSS ),∴∠ACD=∠BCE ,∠A=∠B ,∴∠BCA+∠ACE=∠ACE+∠ECD ,∴∠ACB=∠ECD=12(∠BCD-∠ACE )=12×(n-m ) ∵∠B+∠ACB=∠A+∠BPA ,∴BPA ∠=∠ACB=1()2n m −. 故选D .【点睛】此题考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.8. 如图,EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,90E F ∠=∠=°,B C ∠=∠,AE AF =,给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ≌;④CD DN =.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】 【分析】根据90E F ∠=∠=°,B C ∠=∠,AE AF =,可得ABE ACF ≌,三角形全等的性质BE CF =;BAE CAF ∠=∠可得①12∠=∠;由ASA 可得ACN ABM ≌,④CD DN =不成立.【详解】解:∵90E F ∠=∠=°,B C ∠=∠,AE AF =,∴ABE ACF ≌,∴BE CF =;BAE CAF ∠=∠,故②符合题意;∵BAE BAC CAF BAC ∠−∠=∠−∠,∴12∠=∠;故①符合题意;∵ABE ACF ≌∴B C ∠=∠,AB AC =,又∵BAC CAB ∠=∠∴ACN ABM ≌,故③符合题意;∴AM AN =,∴MC BN =,∵,B C MDC BDN ∠=∠∠=∠, ∴MDC NDB ≌,∴CD DB =,∴CD DN =不能证明成立,故④不符合题意.故选:B .【点睛】本题考查三角形全等的判定方法和三角形全等的性质,难度适中.9. 已知AOB ∠,下面是“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹.该尺规作图的依据是( )A. SASB. SSSC. AASD. ASA【答案】B【解析】 【分析】本题主要考查了尺规作图作一个角等于已知角、全等三角形判定等知识点,掌握尺规作图作一个角等于已知角的作法成为解题的关键.根据“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图痕迹,结合全等三角形的判定定理即可解答.【详解】解:由题意可知,“作一个角等于已知角,即作A O B AOB ′′′=∠∠”的尺规作图的依据是SSS .故选:B .10. 如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AB AC >,下列结论正确的是( )A. AB AD CB CD −>−B. AB AD CB CD −=−C. AB AD CB CD −<−D. AB AD −与CB CD −的大小关系不确定【答案】A【解析】 【分析】先通过在AB 上截取AE =AD ,得到一对全等三角形,利用全等三角形的性质得到对应边相等,再利用三角形的三边关系和等量代换即可得到A 选项正确.【详解】解:如图,在AB 上取AE AD =,对角线AC 平分BAD ∠,BAC DAC ∴∠=∠,在ACD ∆和ACE ∆中,的AD AE BAC DAC AC AC = ∠=∠ =, ()ACD ACE SAS ∴∆≅∆,CD CE ∴=,BE CB CE >− ,AB AD CB CD ∴−>−.故选:A .【点睛】本题考查了全等三角形的判定与性质、角平分线的定义和三角形的三边关系,要求学生能根据已知条件做出辅助线构造全等三角形,并能根据全等三角形的性质得到不同线段之间的关系,利用三角形三边关系判断大小,解决本题的关键是牢记概念和公式,正确作辅助线构造全等三角形等.二、填空题11. 若正多边形的一个外角为60°,则这个正多边形的边数是______.【答案】六##6【解析】【分析】本题考查了多边形的外角和,熟练掌握任意多边形的外角和都是360度是解答本题的关键.根据任意多边形的外角和都是360度求解即可.【详解】解:360606°÷°=.故答案为:六.12. 四条长度分别为2cm ,5cm ,8cm ,9cm 的线段,任选三条组成一个三角形,可以组成的三角形的个数是___________个.【答案】2【解析】【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:四条木棒的所有组合:2,5,8和2,5,9和5,8,9和2,8,9;∵2+5=7<8,∴2,5,8不能组成三角形;∵2+5=7<9,∴2,5,9不能组成三角形;∵5+8=13>9,∴5,8,9能组成三角形;∵2+8=10>9,∴2,8,9能组成三角形.∴ 5,8,9和2,8,9能组成三角形.只有2个三角形.故答案是:2.【点睛】此题主要考查了三角形三边关系,三角形的三边关系:任意两边之和>第三边,任意两边之差<第三边;注意情况的多解和取舍.13. 如图,在ABC 中,AD BC ⊥,AE 平分BAC ∠,若140∠=°,230∠=°,则B ∠=______.【答案】40°##40度【解析】【分析】本题考查了三角形的角平分线,高线的定义;由AE 平分BAC ∠,可得角相等,由140∠=°,230∠=°,可求得EAD ∠的度数,在直角三角形ABD 在利用两锐角互余可求得答案.【详解】解:AE 平分BAC ∠12EAD ∴∠=∠+∠,12403010EAD ∴∠=∠−∠=°−°=°,Rt ABD 中,9090401040BBAD ∠=°−∠=°−°−°=°. 故答案为:40°.14. 如图,BE 平分∠ABC ,CE 平分外角∠ACD ,若∠A =52°,则∠E 的度数为_____.【答案】26°【解析】【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【详解】∵BE 平分∠ABC ,CE 平分外角∠ACD ,∴∠EBC =12∠ABC ,∠ECD =12∠ACD , ∴∠E =∠ECD ﹣∠EBC =12(∠ACD ﹣∠ABC ) ∵∠ACD-∠ABC=∠A ,∴∠E =12∠A =12×52°=26° 故答案为26°【点睛】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.15. 如图1,123456∠+∠+∠+∠+∠+∠为m 度,如图2,123456∠+∠+∠+∠+∠+∠为n 度,则m n −=__________.【答案】0【解析】【分析】将图1原六边形分成两个三角形和一个四边形可得到m 的值,将图2原六边形分成四个三角形可得到n 的值,从而得到答案.【详解】解:如图1,将原六边形分成两个三角形和一个四边形,,1234562180360720m ∴°=∠+∠+∠+∠+∠+∠=×°+°=°,如图2,将原六边形分成四个三角形,,∴°=∠+∠+∠+∠+∠+∠=×°=°,1234564180720n∴==,m n720∴−=,m n故答案为:0.【点睛】本题考查了多边形的内角和,此类问题通常连接多边形的顶点,将多边形分割成四边形和三角形,通过计算四边形和三角形的内角和,求得多边形的内角和.16. 如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③ ACN≌ ABM;④CD=DN.其中符合题意结论的序号是_____.【答案】①②③【解析】【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【详解】∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(AAS),∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC,∴∠1=∠2,即结论①正确;∴△AEM ≌△AFN (ASA ),∴AM =AN ,∴CM =BN ,∵∠CDM =∠BDN ,∠C =∠B ,∴△CDM ≌△BDN ,∴CD =BD ,无法判断CD =DN ,故④错误,∴题中正确的结论应该是①②③.故答案为:①②③.【点睛】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.三、解答题17. 如图,已知点D ,E 分别AB ,AC 上,B C ∠=∠,DC BE =,求证:ABE ACD △△≌.【答案】见解析【解析】【分析】本题考查了全等三角形的判定,根据已知条件选择恰当的判定方法是解题的关键.【详解】解:在ABE 和ACD 中,B C A A BE DC ∠=∠ ∠=∠ =, ∴()AAS ABE ACD ≌.18. 如图,请你仅用无刻度直尺作图.在(1)在图①中,画出三角形AB 边上的中线CD ;(2)在图②中,找一格点D ,使得ABC CDA △△≌.【答案】(1)见解析 (2)见解析【解析】【分析】(1)如图,连接CD 即可;(2)按如图所示,找到点D ,连接AD CD ,即可.【小问1详解】【小问2详解】如图,CDA 即为所求;【点睛】本题考查了作图,三角形中线的性质、全等三角形的判定方法,掌握中线的性质及全等三角形判定的方法是关键.19. (1)在ABC 中,ABC ∠的角平分线和ACB ∠的角平分线交于点P ,如图1,试猜想P ∠与A ∠的关系,直接写出结论___________:(不必写过程)(2)在ABC 中,一个外角ACE ∠的角平分线和一个内角ABC ∠的角平分线交于点P ,如图2,试猜想P ∠与A ∠的关系,直接写出结论____________;(不必写过程) (3)在ABC 中,两个外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,如图3,试猜想P ∠与A ∠的关系,直接写出结论_________,并予以证明.【答案】(1)1902P A∠=°+∠;(2)12P A∠=∠;(3)1902P A∠=°−∠【解析】【分析】(1)根据三角形的内角和定理表示出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后根据三角形的内角和定理列式整理即可;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,再根据角平分线的定义可得∠PBC=12∠ABC,∠PCE=12∠ACE,然后整理即可得证;(3)根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠PBC+∠PCB,然后利用三角形的内角和定理列式整理即可得解.【详解】解:(1)1902P A ∠=°+∠;理由:在△ABC中,∠ABC+∠ACB=180°-∠A,∵点P为角平分线的交点,∴1=2PBC ABC∠∠,1=2PCB ACB∠∠,∴∠PBC+∠PCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,在△PBC中,∠P=180°-(90°-12∠A)=90°+12∠A;故答案为:1902P A ∠=°+∠;(2)12P A ∠=∠.理由:由三角形的外角性质得,∠ACE=∠A+∠ABC,∠PCE=∠P+∠PBC,∵外角∠ACE的角平分线和内角∠ABC的角平分线交于点P,∴∠PBC=12∠ABC,∠PCE=12∠ACE,∴12(∠A+∠ABC)=∠P+12∠ABC,∴∠P=12∠A;(3)1902P A ∠=°−∠; 证明: 外角EBC ∠的角平分线和FCB ∠的角平分线交于点P ,11()()22PBC PCB A ACB A ABC ∴∠+∠=∠+∠+∠+∠ 111()90222A A ABC ACB A =∠+∠+∠+∠=∠+° 在PBC ∆中,11180909022P A A ∠=°−∠+°=°−∠. 故答案为:1902P A ∠=°−∠; 【点睛】本题考查的是三角形内角和定理,角平分线的定义和三角形外角的性质,熟记性质与概念是解题的关键,要注意整体思想的利用.20. 如图,在ABC 中,AE 为边BC 上的高,点D 为边BC 上的一点,连接AD .(1)当AD 为边BC 上的中线时,若6AE =,ABC 的面积为30,求CD 的长;(2)当AD 为BAC ∠的角平分线时,若6636C B ∠=°∠=°,,求DAE ∠的度数.【答案】(1)5 (2)15°【解析】【分析】本题考查了用三角形中线求三角形面积、三角形外角性质、直角三角形性质.(1)利用三角形中线定义及三角形面积求出CD 长;(2)利用三角形内角和先求BAC ∠,再用外角性质和直角三角形性质求出DAE ∠.【小问1详解】∵AD 为边BC 上的中线, ∴1152ADC ABC S S == , ∵AE 为边BC 上的高, ∴1152DC AE ××=, ∴5CD =.【小问2详解】∵6636C B ∠=°∠=°,∴18078BAC B C =°−−=°∠∠∠,∵AD 为BAC ∠的角平分线,∴39BAD DAC ∠=∠=°,∴393675ADC BAD B ∠=∠+∠=°+°=°,∵AE BC ⊥,∴90AED ∠=°,∴9015DAE ADC ∠=°−∠=°21. 如图,点A ,D ,B ,E 在同一直线上,AC =DF ,AD =BE ,BC =EF .求证:AC ∥DF .【答案】详见解析【解析】【分析】根据等式的性质得出AB =DE ,利用SSS 证明△ABC 与△DEF 全等,进而解答即可.【详解】证明:∵AD =BE ,∴AD +DB =BE +DB ,∴AB =DE ,在△ABC 与△DEF 中,AB DE AC DF BC EF = = =,∴△ABC ≌△DEF (SSS ),∴∠A =∠FDE ,∴AC ∥DF .【点睛】此题主要考查了平行线的性质和判定,全等三角形的判定和性质,做题的关键是找出证三角形全等的条件.22. 如图,在ACB △中,90ACB ∠=°,CD AB ⊥于D .(1)求证:ACD B ∠=∠;(2)若AF 平分CAB ∠分别交CD 、BC 于E 、F ,求证:CEF CFE ∠=∠.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中. (1)由于ACD ∠与B ∠都是BCD ∠的余角,根据同角的余角相等即可得证;(2)根据直角三角形两锐角互余得出9090CFA CAF AED DAE ∠=°−∠∠=°−∠,,再根据角平分线的定义得出CAF DAE ∠=∠,然后由对顶角相等的性质,等量代换即可证明CEF CFE ∠=∠.【小问1详解】证明:90ACB ∠=° ,CD AB ⊥于D ,90ACD BCD ∴∠+∠=°,90B BCD ∠+∠=°,ACD B ∴∠=∠;【小问2详解】证明:在Rt AFC △中,90CFA CAF ∠=°−∠,同理Rt AED △中,90AED DAE ∠=°−∠.又AF 平分CAB ∠,CAF DAE ∴∠=∠,AED CFE ∴∠=∠,又CEF AED ∠=∠ ,CEF CFE ∴∠=∠.23. 如图,AC ,BD 相交于点O ,OB OD =,A C ∠=∠,求证:△≌△AOB COD .在【答案】见解答【解析】【分析】本题主要考查全等三角形的判定,熟练掌握判定方法是解题的关键.根据全等三角形的判定方法证明即可.【详解】证明:AOB 和COD △中,A C AOB COD OB OD∠=∠ ∠=∠ = , (AAS)AOB COD ∴≌△△.24. 材料阅读:如图①所示的图形,像我们常见的学习用品—— 圆规.我们不妨把这样图形叫做 “规形图 ”.解决问题:(1)观察“规形图 ”,试探究BDC 与A B C ∠∠∠,,之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图② ,把一块三角尺 DEF 放置在ABC 上,使三角尺的两条直角边DE DF ,恰好经过点B C ,,若40A ∠=°,则ABD ACD +=∠∠ ° . Ⅱ.如图③ ,BD 平分ABP CD ∠,平分ACP ∠,若40130A BPC ∠=°∠=°,,求BDC ∠的度数.【答案】(1) BDC A B C ∠=∠+∠+∠,理由见解析(2)Ⅰ.50;Ⅱ. 85°【解析】【分析】本题考查的是三角形内角和定理,三角形外角性质以及角平分线的定义得运用.根据题意连接AD 并延长至点 F ,利用三角形外角性质即可得出答案.Ⅰ.由(1)可知BDC A B C ∠=∠+∠+∠,因为40A ∠=°,90D ∠=︒,所以904050ABD ACD ∠+∠=°−°=°;Ⅱ.由(1)的已知条件,由于BD 平分ABP CD ∠,平分ACP ∠,即可得出在1452ABD ACD ABP ACP ∠+∠=∠+∠=°(),因此4540=85BDC ∠=°+°°. 【小问1详解】 解:如图连接AD 并延长至点 F , 根据外角的性质,可得 BDF BAD B ∠=∠+∠, CDF C CAD ∠=∠+∠, 又∵BDC BDF CDF BAC BAD CAD ∠=∠+∠∠=∠+∠,, ∴BDC BAC B C ∠=∠+∠+∠;【小问2详解】解:Ⅰ. 由(1)可得,BDC ABD ACD A ∠=∠+∠+∠; 又∵4090A D ∠=°∠=°,, ∴9040=50ABD ACD ∠+∠=°−°°, 故答案为:50; Ⅱ.由(1),可得BPC ABP ACP BDC BAC ABD ACD ∠=∠+∠+∠∠=∠+∠+∠,, ∴1304090ABP ACP BPC BAC ∠+∠=∠−∠=°−°=°, 又∵BD 平分ABP CD ∠,平分ACP ∠, ∴1452ABD ACD ABP ACP ∠+∠=∠+∠=°(), ∴4540=85BDC ∠=°+°°.。
2023-2024学年度第一学期八年级学科素养练习(二)数学注意事项:1.数学试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题无效.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的)1.在中,,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.在平面直角坐标系中,点的坐标为,则点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列命题的逆命题为真命题的是()A.对顶角相等 B.如果,那么C.若,则 D.同位角相等,两直线平行4.在同一平面直角坐标系中,直线与直线的交点坐标为()A. B. C. D.5.已知轴,且点的坐标为,点的坐标为,则点的纵坐标为()A.3B.4C.0D.-36.如图,已知点,,,在一条直线上,,,要使,还需添加一个条件,这个条件可以是()A. B. C. D.7.“五岳归来不看山,黄山归来不看岳”中的黄山是中国十大风景名胜唯一的山岳风光,为国家5A 级旅游景区.每当雨后天晴或暮春时节,山间白云缭绕,蔚为奇观.五一假期,亚男一家从家出发自驾前往黄山游玩,经过服务区时,休息一段时间后继续驶往目的地,汽车行驶路程(千米)与汽车行驶时间(分钟)之间的函ABC △::3:2:1A B C ∠∠∠=P ()21,2a -+P a b =22a b =a b >22a b >5y x =+1y x =--()2,3()3,2-()2,3-()3,2-AB y ∥A (),21m m -B ()2,4A A D B F AC FE =BC DE =ABC FDE △≌△CD EB =AD FB =AC EF ∥CB DE∥y x数关系如图所示.下列判断不正确的是()A.他们出发80分钟后到达服务区B.他们在服务区休息了20分钟C.亚男家距离黄山350千米D.在服务区休息前的行驶速度比休息后快8.如图,在中,,分别是,的平分线.若,,则()A.70°B.60°C.50°D.40°9.如图,已知,以点为圆心,以任意长为半径画弧①,分别交,于点,,再以点为圆心,以长为半径画弧,交弧①于点,画射线.若,则的度数为()A.32°B.54°C.64°D.68°10.如图,边长为4的正方形的边上一动点,沿的路径匀速移动,设点经过的路径长为,的面积是,则下列关于变量与变量的关系图象正确的是()A.B.ABC △BP CP ABC ∠ACM ∠22ABP ∠=o 62ACP ∠=o A P ∠∠-=AOB ∠O OA OB E F E EF D OD 32AOB ∠=o BOD ∠ABCD P A B C D A →→→→P x APB △y y xC. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.命题“如果,那么”是____________(填“真命题”或“假命题”).12.平面直角坐标系中,点在第二象限,且点到轴和轴的距离分别为4,5.若把点向右平移3个单位长度,则平移后对应点的坐标为____________.13.已知一次函数的图象过轴上一点,且随的增大而减小,则____________.14.在中,,以为边作,满足,点为上一点,连接,,交于点.解决下列问题,图1图2(1)如图1,若,,且,则____________;(2)如图2,延长至,使.若,,,则线段的长为____________.三、(本大题共2小题,每小题8分,满分16分)15.如图,在中,,分别为的中线和高,为的角平分线.若,,求的度数.16.如图,在平面直角坐标系中,将向左、向下分别平移5个单位长度,得到.225x =5x =(),M x y M x y M M '()27y nx n =+-y ()0,2y x n =Rt ABC △90ABC ∠=o AC ACD △AD AC =E BC AE DE DE AC M AC DE ⊥AB AM =26ACB ∠=o ADE ∠=CB G BE BG =12BAE CAD ∠∠=3BE =5CE =DE ABC △AD AF ABC △BE ABD △40BED ∠=o 25BAD ∠=o BAF ∠ABC △111A B C △(1)画出,并写出点的坐标:___________;(2)求的面积.四、(本大题共2小题,每小题8分,满分16分)17.探索计算:弹簧挂上物体后会伸长,已知一弹簧的长度与所挂物体的质量之间的关系如表,所挂物体的质量/kg 01234567弹簧的长度/cm1212.51313.51414.51515.5(1)在弹性限度内如果所挂物体的质量为,弹簧的长度为,根据上表写出与之间的关系式;(2)如果弹簧的最大长度为,那么该弹簧最多能挂的物体质量为多少?18.如图,在中,,直线经过顶点,过,两点分别作的垂线,,,为垂足,且.求证:(1);(2).五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系中,,,对于任意的实数,我们称点为点和点的系点.例如:已知,,点和点的2系点为.已知,.(1)点和点的3系点的坐标为___________;(2)已知点,若点和点的系点为点,点在第二、四象限的角平分线上.①求的值;②连接,若轴,求的面积.111A B C △1A ABC △()cm ()kg kg x cm y y x 20cm ABC △AC BC =C A B AE BF E F AE CF =AC BC ⊥AE BF EF +=(),P a b (),Q c d (),K kc ka kd kb --P Q k ()0k ≠()1,2P -()3,1Q P Q ()4,6K ()0,2A ()1,3B -A B ()2,C m B C k D D m CD CD x ∥BCD △20.阿进在物理课上学习了发声物体的振动实验后,对其作了进一步的探究:如图,在一个支架的横杆点处用一根细绳悬挂一个小球,小球可以自由摆动,表示小球静止时的位置.当阿进用发声物体靠近小球时,小球从摆到位置,此时过点作于点.当小球撰到位置时,与恰好垂直(图中的,,,在同一平面上),过点作于点.(1)求证:;(2)若阿进测得,,求的长.六、(本题满分12分)21.明明、亮亮在学校操场上玩飞机模型,已知1号、2号两个飞机模型分别从距水平线起点和距水平线起点处同时出发,匀速上升.如图是1号、2号两个飞机模型所在位置的高度与飞机上升时间的函数图象.(1)求这两个飞机模型在上升过程中关于的函数表达式;(2)当这两个飞机模型的高度相差时,求上升的时间.七、(本题满分12分)22.在沪科版数学八年级上册第80页探索了“三角形的内角和等于180°”,晓波在研究完上面的问题后,对这个图形进行了深入的研究,他的研究过程如下:图1图2【图形再现】(1)如图1,对任意三角形,延长到,过点作的平行线,就可以证明:O A A OA OA OB B BD OA ⊥D OC OB OC A B O C C CE OA ⊥E COE B ∠∠=8cm BD =17cm OA =AE 5m 15m ()m y ()min x y x 4m ABC BA D A BC AE,即三角形的内角和等于180°,请完成上述证明过程;【图形探究】(2)如图2,在中,的平分线与的平分线交于点,过点作,点在射线上,且,的延长线与的延长线交于点.①求的度数;②探究与的数量关系,并说明理由.八、(本题满分14分)23.已知直线与轴交于点,与轴交于点.备用图(1)求的值;(2)把绕原点顺时针旋转90°后,点落在轴的处,点落在轴的处.①求直线的函数表达式;②设直线与直线交于点,长方形的顶点都在的边上,其中点,在线段上,点在线段上,点在线段上.若长方形的两条邻边的比为,求长方形的周长.180BAC B C ∠∠∠++=o ABC △BAC ∠ACB ∠P A AE BC ∥M AE ACM AMC ∠∠=MC AP D PCD ∠ABC ∠D ∠3y ax =+x ()6,0A -y B a AOB △O A y A 'B x B 'A B ''AB A B ''C PQMN AB C '△P Q AB 'M B C 'N AC PQMN 1:2PQMN2023-2024学年度第一学期八年级学科素养练习(二)数学参考答案及评分标准一、选择题(本大题共10小题,每小题4分,满分40分)1.B2.B3.D4.B5.A6.B7.C8.D9.C10.B 【解析】由题意知,动点在运动过程中,分为以下四种情况:①当时,点在上运动,的值为0;②当时,点在上运动,,随的增大而增大;③当时,点在上运动,,的值不变;④当时,点在上运动,,随的增大而减小.综上所述,选项B 符合题意.二、填空题(本大题共4小题,每小题5分,满分20分)11.假命题12.13.-314.(1)26(2分)(2)11(3分)【解析】(1),,,,.(2),,,,,,.又,,,即.在和中,,.,.又,,.三、(本大题共2小题,每小题8分,满分16分)15.解:,,,.平分,.………………(5分)为高,,.………………(8分)16.解:(1)如图,即为所作;………………(3分)P 04x ≤<P AB y 48x ≤<P BC ()144282y x x =⨯-=-y x 812x ≤<P CD 14482y =⨯⨯=y 1216x ≤≤P DA ()14162322y x x =⨯-=-+y x ()2,4-90ABC AMD ∠∠==o Q AD AC =AB AM =()Rt Rt HL ADM ACB ∴△≌△26ADE ACB ∠∠∴==o 90ABE ABG ∠∠==o Q BE BG =AB AB =()SAS ABE ABG ∴△≌△AG AE ∴=BAE GAB ∠∠=12BAE GAE ∠∠∴=12BAE CAD ∠∠=Q GAE CAD ∠∠∴=GAE EAC CAD EAC ∠∠∠∠∴+=+GAC EAD ∠∠=GAC △EAD △,,,AG AE GAC EAD AC AD ∠∠=⎧⎪=⎨⎪=⎩()SAS GAC EAD ∴△≌△CG DE ∴=2CG CE GE CE BE =+=+Q 2DE CE BE ∴=+3BE =Q 5CE =52311DE ∴=+⨯=BED ABE BAE ∠∠∠=+Q 25BAE ∠=o 40BED ∠=o 402515ABE BED BAE ∠∠∠∴=-=-=o o o BE Q ABF ∠230ABF ABE ∠∠∴==o AF Q 90AFB ∠∴=o 90903060BAF ABF ∠∠∴=-=-=o o o o 111A B C △………………(5分)(2).…………(8分)四、(本大题共2小题,每小题8分,满分16分)17.解:(1)由表格中的对应数值可以看出:弹簧伸长的长度与所挂物体的质量成正比,即弹簧所挂物体的质量每增加,弹簧伸长,当弹簧所挂物体的质量为时,弹簧伸长的长度为.又由表知,当弹簧上所挂物体的质量为时,弹簧的长度为,与之间的关系式为.………………(5分)(2)弹簧的最大长度为,对于,则当时,,解得.答:该弹簧最多能挂物体的质量为.………………(8分)18.证明:(1),,.在和中,,.,,即.()1,2--111353212121361122222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=△1kg 0.5cm ∴kg x 0.5cm x 0kg 12cm y ∴x ()0.5120y x x =+≥Q 20cm 0.512y x =+20y =0.51220x +=16x =16kg AE l ⊥Q BF l ⊥90AEC BFC ∠∠∴==o Rt ACE △Rt CBF △,,AC BC AE CF =⎧⎨=⎩∴()Rt Rt HL ACE CBF △≌△EAC BCF ∠∠∴=90EAC ACE ∠∠+=o Q 90ACE BCF ∠∠∴+=o 1809090ACB ∠=-=o o o.………………(5分)(2),.又,,.………………(8分)五、(本大题共2小题,每小题10分,满分20分)19.解:(1)………………(3分)【解析】,,点和点的3系点的坐标为,即.(2)①点,点和点的系点为点,点的坐标为,即.点在第二、四象限的角平分线上,,解得.………………(6分)②由①可得点,点.轴,,解得,点,,点到的距离为,.………………(10分)20.(1)证明:,.又,,,,.………………(5分)(2)解:在和中,,.AC BC ∴⊥Q Rt Rt ACE CBF △≌△CE BF ∴=AE CF =Q CF CE EF +=AE BF EF ∴+=()3,15-()0,2A Q ()1,3B -∴A B ()()3130,3332⨯-⨯⨯--⨯()3,15-Q ()2,C m B C k D ∴D ()2,3k k mk k -+(),3D k mk k +Q D ()30k mk k ∴++=4m =-()2,4C -(),D k k -CD x Q ∥4k ∴-=-4k =∴()4,4D -422CD ∴=-=B CD ()341---=12112BCD S ∴=⨯⨯=△OB OC ⊥Q 90BOD COE ∠∠∴+=o CE OA ⊥Q BD OA ⊥90CEO ODB ∠∠∴==o 90BOD B ∠∠∴+=o COE B ∠∠∴=COE △OBD △,,,CEO ODB COE B OC OB ∠∠∠∠=⎧⎪=⎨⎪=⎩()AAS COE OBD ∴△≌△8cm OE BD ∴==,.………………(10分)六、(本题满分12分)21.解:(1)设1号飞机模型的函数表达式为.将,代入中,得解得1号飞机模型的函数表达式为;……………………(4分)设2号飞机模型的函数表达式为.将,代入中,得解得2号飞机模型的函数表达式为.………………(8分)(2)由题意知,当这两个飞机模型的高度相差时,可得,解得或,当这两个飞机模型的高度相差时,上升的时间为或………………(12分)七、(本题满分12分)22.(1)证明:由题意知,,.,,即三角形的内角和等于180°.(2)解:如图.17cm OB OA OC ===Q ()1789cm AE OA OE ∴=-=-=()0y kx b k =+≠()20,20()0,5y kx b =+2020,5,k b b =+⎧⎨=⎩3,45,k b ⎧=⎪⎨⎪=⎩∴354y x =+()0y mx n m =+≠()0,15()20,20y mx n =+15,2020,n m n =⎧⎨+=⎩1,415,m n ⎧=⎪⎨⎪=⎩∴1154y x =+4m 31515444x x ⎛⎫+-+= ⎪⎝⎭12x =28x =∴4m 12min 28min BC AE ∥DAE B ∠∠∴=CAE C ∠∠=180BAC CAE DAE ∠∠∠++=o Q 180BAC C B ∠∠∠∴++=o①,.是的平分线,,.又,,,,.……………………(8分)②理由:是的平分线,.在中,,即.,.又,,,,.……………………(12分)八、(本题满分14分)23.解:(1)把代入,得,解得,的值为.………………(3分)(2)①由(1)知直线的函数表达式为.令,得,.把绕原点顺时针旋转90°后,点落在轴的处,点落在轴的处,AE BC Q ∥MAC ACB ∠∠∴=CP Q ACB ∠122PCB ACB ∠∠∠∴==22MAC ∠∠∴=180MAC ACM AMC ∠∠∠++=o Q ACM AMC ∠∠=222180ACM ∠∠∴+=o 290ACM ∠∠∴+=o ()180********PCD ACM ∠∠∠∴=-+=-=o o o o 2ABC D∠∠=AP Q BAC ∠132BAD BAC ∠∠∠∴==ABC △180ABC ACB BAC ∠∠∠++=o 2223180ABC ∠∠∠++=o 90PCD ∠=o Q 190D ∠∠∴=-o 123∠∠∠=+Q 2390D ∠∠∠∴+=-o ()2223290180ABC ABC D ∠∠∠∠∠∴++=+-=o o 1802180ABC D ∠∠∴+-=o o 2ABC D ∠∠∴=()6,0A -3y ax =+063a =-+12a =a ∴12AB 132y x =+0x =3y =()0,3B ∴Q AOB △O A y A 'B x B ',.……………………(5分)设直线的函数表达式为.把,代入,得解得直线的函数表达式为.……………………(8分)②设,,则,,,,.四边形是长方形,,即,.…………………………(10分)图1图2(Ⅰ)如图1,当,即时,把代入,得,解得,,,,长方形的周长为.………………(12分)(Ⅱ)如图2,当,即时,()0,6A ∴'()3,0B 'A B ''y mx n =+()0,6A '()3,0B '6,30,n m n =⎧⎨+=⎩2,6,m n =-⎧⎨=⎩∴A B ''26y x =-+(),0P m (),0Q n 1,32N m m ⎛⎫+ ⎪⎝⎭(),26M n n -+PQ n m ∴=-132PN m =+26MQ n =-+Q PQMN PN MQ ∴=13262m n +=-+46m n ∴=-+:1:2PN PQ =()13:1:22m n m ⎛⎫+-= ⎪⎝⎭46m n =-+()()233:461:2n n n -+++-=2n =464262m n ∴=-+=-⨯+=-()224PQ n m ∴=-=--=()11323222PN m =+=⨯-+=∴PQMN ()24212⨯+=:1:2PQ PN =()1:31:22n m m ⎛⎫-+= ⎪⎝⎭把代入,得,解得,,,,长方形的周长为.综上所述,长方形的周长为12或9.……………………(14分)46m n =-+()()46:2331:2n n n +--++=32n =3464602m n ∴=-+=-⨯+=32PQ n m ∴=-=1332PN m =+=∴PQMN 32392⎛⎫⨯+= ⎪⎝⎭PQMN。
一、选择题(每题5分,共30分)1. 下列数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 若x + y = 5,x - y = 1,则x² + y²的值为:A. 10B. 16C. 25D. 303. 在直角坐标系中,点A(2, 3)关于y轴的对称点坐标是:A. (2, -3)B. (-2, 3)C. (-2, -3)D. (2, 3)4. 若a² + b² = 25,a - b = 3,则a + b的值为:A. 4B. 6C. 8D. 105. 下列函数中,是二次函数的是:A. y = 2x + 3B. y = x² + 2x + 1C. y = 3x³ - 2D. y = x + 1/x二、填空题(每题5分,共25分)6. 若a = 2,b = -3,则a² - b²的值为______。
7. 在等腰三角形ABC中,AB = AC,∠B = 40°,则∠A的度数为______。
8. 若x² - 5x + 6 = 0,则x的值为______。
9. 已知函数y = 2x - 1,当x = 3时,y的值为______。
10. 在直角坐标系中,点P(-4, 5)到原点O的距离为______。
三、解答题(每题15分,共45分)11. 解方程:2x² - 4x - 6 = 0。
12. 已知函数y = -3x² + 4x + 1,求该函数的顶点坐标。
13. 在等边三角形ABC中,边长为6cm,求三角形的高。
四、附加题(20分)14. 已知正方体ABCD-A1B1C1D1的边长为a,求正方体的体积V。
解答:一、选择题1. C2. C3. B4. C5. B二、填空题6. 77. 80°8. 2 或 39. 510. 5√2三、解答题11. 解:2x² - 4x - 6 = 0使用求根公式得:x = [4 ± √(16 + 48)] / 4x = [4 ± √64] / 4x = [4 ± 8] / 4x₁ = 3,x₂ = -112. 解:y = -3x² + 4x + 1顶点坐标公式为(-b/2a, f(-b/2a)),其中a = -3,b = 4x = -4 / (2 -3) = 2/3y = -3(2/3)² + 4(2/3) + 1 = 1/3顶点坐标为(2/3, 1/3)13. 解:等边三角形的高可以通过勾股定理求得高= √(边长² - (边长/2)²) = √(6² - (6/2)²) = √(36 - 9) = √27 = 3√3 cm四、附加题14. 解:正方体的体积V = a³,其中a为边长V = a³ = (2√3)³ = 8 3√3 = 24√3 cm³。
第一至三章综合卷
一、选择题(每小题3分,共30分) 1.下列计算中正确的是( ) A .2221-= B .2(13)13
-=±
C .
()
2
1331
-=- D .2
2
2
2
5454541-=-=-=
2.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数( ) A.19,20 B.19,19 C.19,20.5 D.20,19 3.把方程2
470x
x --=化成()
2
x m n
-=的形式,则m 、n 的值是( )
A .2, 7
B .-2,11
C .-2,7
D .2,11
4.某班同学毕业时都将自己的照片向全班其他同学送一张表示留念,全班共送1035张照片, 如果全班有x 名同学,根据题意,列出方程为…………………………………………( ) A . 1035)1(2=+x x B .21035)1(⨯=-x x C .1035)1(=-x x D .1035)1(=+x x
5.当m >0时,关于x 的方程()()2
5220m x m x m --++=的实数根的个数为( ).
A .2个
B .1个
C .0个
D .1个或2个
6.为使23
12x x --有意义,x 的取值范围是( )
23.>
x A 23.≥x B 21.≠x C 2
123.≠≥x x D 且 7.某镇2012年投入教育经费3600万元,为了发展教育事业,该镇每年教育经费的年增长率均为x ,现决定2014年投入6000万元,则下列方程正确的是( )
A .2
36006000x = B .
23600(1)6000x += C .3600(1)6000x += D .2
36003600(1)3600(1)6000x x ++++= 8.253=-+-x x 已知,()()22
51x x -+
-则化简
的结果是( )
A.4
B.x 26-
C.4-
D.62-x
9.如果一元二次方程02
=++c bx ax )0(≠a 满足024=+-c b a ,那么我们称这个方程为“阿凡达”方程,已知02
=++c bx ax 是“阿凡达”方程,且有两个相等的实数根,则下
列结论正确的是( )A. c a = B. b a = C. c b a ==2 D. c b = 10.下列给出的四个命题: ①若
a b
=,则
a a
b b
=;②若2
550a a -+=,则
()
2
11
a a -=-;
年龄(单位:岁) 18 19 20 21 22 人 数
1 4 3
2 2
第2题
③
a a a -=--111
)
1(④若方程
02
=++q px x 的两个实数根中有且只有一个根为0,那么0,0=≠q p .其中是真命题是( ) A .①② B .②③ C .②④ D .③④ 二、填空题(本大题有6小题,每小题4分,共24分) 11.当6-=x 时,二次根式73x -的值为____
12.一组数据-1,0,2,3,x 的极差是5,那么这组数据的中位数为____ .
13.我们知道若关于x 的一元二次方程
)0(02≠=++a c bx ax 有一根是1,则0=++c b a ,那么如果b c a 39=+,则方 程02=++c bx ax 有一根为____
14.如图,已知AB=3,BC=7,CD=25.且AB ⊥BC ,∠BCD=135°。
点M 是线段BC 上的
一个动点,连接AM 、DM 。
点M 在运动过程中,则AM+DM 的最小值= ____ .
15.若等腰三角形的一边长为6,另两边长分别是关于x 的方程
063)5(2
=+++-k x k x 的两个根,则k= ____ .
16.若b a ,都是有理数,且084222
2=+++-a b ab a ,则ab = ____ .
三、解答题(本大题有6小题,共66分) 17.计算 ( 每小题3分,共6分 ):
(1)1
184
24 3.2-+÷
(2))23)(23()23(2
-++-
18.选用适当的方法解下列方程(每小题4分,共16分):
(1)
09)2(2
=--x (2)322=+x x
(3)
03322=+-x x (4)()()()x x x --=-51252
A
M D
C
B
第14题
19.(本题满分10分)某校要从小王和小李
两名同学中挑选一人参加全国数学竞
赛,在最近的五次选拔测试中,他俩的成
绩分别如左表:根据上表解答下列问题:(1)完成下表:
姓名极差(分)平均成绩(分)中位数(分)众数(分)方差
小王40 80 75 75 190
小李20 80
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由。
20.(本题满分10分)问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上:______________.(2)
我们把上述求△ABC面积的方法叫做构图
法.如果△
ABC三边的长分别为5a、22a、
17a(a>0),请利用图②的正方形网格(每个小
正方形的边长为a)画出相应的△ABC,并求出
它的面积.(3)若△ABC三边的长分别为
2
216n
m+、2
24
9n
m+、2
2
2n
m+(m
>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
图①图②
第20题图
A
C
B
21.(本小题满分12分)已知:关于x 的一元二次方程022)23(2=+++-m x m mx (m>0)
(1) 求证:方程有两个不相等的实数根且其中一根为定值。
(2) 设方程的两个实数根分别为
12,x x (其中x 1
<x 2
)。
若y 是关于m 的函数,且
127y x mx =-,求这个函数的解析式;并求当自变量m 的取值范围满足什么条件时,
3y m ≤。
22.(本题满分12分)如图,已知A , B 两点是直线AB 与x 轴的正半轴,y 轴的正半轴的
交点,且OA ,OB 的长分别是
048142=+-x x 的两个根(OA > OB),射线BC 平分∠ABO 交x 轴于C 点, 若有一动点P 以每秒1个单位的速度从B 点开始沿射线BC 移动, 运动时间为t 秒.(1)设△APB 和△OPB 的面积分别为1S ,2S ,求1S :2S ;(2)求直线BC 的解析式;
(3)在点P 的运动过程中,△OPB 可能是等腰三角形吗?若可能,直接写出时间t 的值,若不可能,请说明理由。