小学六年级奥数讲座(一)
- 格式:doc
- 大小:2.73 MB
- 文档页数:22
小学奥数基础教程(六年级)109页第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
正方体、长方体(一)姓名1、一个正方体木块的表面积是24平方厘米,将它锯成两个同样大小的长方体,求每个长方体木块的表面积?2、一个正方体表面积是12平方厘米,用4个这样的正方体拼成一个长方体,求长方体的表面积?3、用6个大小完全一样的正方体拼成一个大长方体,它的表面积比留个正方体的表面积减少了56平方厘米,每个小正方体的表面积?4、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积是多少?5、有一个正方体木块,把他分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少?6、一根长2米的长方体木料沿横截面锯成3段之后,表面积增加了0.48平方米,原来这根木料的体积是多少立方米?7、把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?8、把一个长方体木块,长4分米,宽3分米,高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?9、有三块完全一样的长方体积木,它们的长是8厘米,宽是4厘米,高2厘米,现在把三块积木搭成一个大的长方体,怎么样搭表面积最大?最大的表面积是多少平方厘米?10、一根长80厘米,宽和高都是12厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?11、把4块棱长都是2分米的正方体粘成一个长方体,它们的表面积最多会减少多少平方厘米?12、一个正方体木块,表面积是96平方厘米。
把它锯成体积相等的8个小正方体小木块,每个小木块的表面积是多少平方厘米?13、把8个同样大小的小正方体拼成一个大正方体。
已知小正方体的表面积是150平方厘米,大正方体的表面积是多少平方厘米?14、一块小正方体的表面积是6平方厘米,那么,由1000个这样的小正方体所组成的大正方体的表面积是多少平方厘米?15、一个长方体的体积是385立方厘米,并且长、宽、高都是质数,求这个长方体的表面积16、有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,那么表面积增加了多少平方米?17、一个长方体,若高截去2分米,则成为一个正方体,表面积比原来减少32平方分米,原来长方体的体积是多少立方分米?割圆术数学意义:“割圆术”,则是以“圆内接正多边形的面积”,来无限逼近“圆面积”。
年龄问题小学六年级数学奥数讲座讲含答案本文介绍了年龄问题在数学中的应用,这类问题通常涉及到年龄的差异,需要抓住这个特点来解答。
例如,题目给出哥哥和弟弟的年龄和以及4年后哥哥比弟弟大4岁,我们可以通过加上4岁来计算出哥哥的年龄,从而得出他们各自的年龄。
另一个例子是父亲比儿子大30岁,明年父亲的年龄是儿子的4倍,我们可以通过计算出年龄差来推算出儿子的年龄。
类似地,本文还给出了其他两个例子,分别涉及到多少年后妈妈的年龄是女儿的3倍和再过多少年父亲的年龄正好是___的2倍。
分析:老师比学生大了多少岁,就意味着老师比学生多经历了多少个学生的年龄。
所以,老师现在的年龄应该是学生的年龄加上老师比学生大的年龄差。
根据题目中的信息,可以列出一个方程组,解出老师的年龄。
解:设学生今年的年龄为x,老师比学生大的年龄差为y,则有:y = 36 - 3 = 33x + y = t (t代表老师今年的年龄)代入y=33,得:x + 33 = t又因为老师比学生大的年龄差不变,所以:t - x = y代入y=33,得:t - x = 33联立以上两个方程,解得:x = 15,t = 48答:老师今年48岁。
1、母亲比儿子大27岁,3年前,母亲的年龄是儿子的4倍,儿子现在多少岁?解:设儿子的年龄为x岁,则母亲的年龄为x+27岁。
根据题意,可列出方程:x+27)-3=4(x-3)解得x=15,因此儿子现在15岁。
2、爷爷比孙子大60岁,爷爷的年龄是孙子的16倍。
孙子多少岁?解:设孙子的年龄为x岁,则爷爷的年龄为16x岁。
根据题意,可列出方程:16x=x+60解得x=4,因此孙子现在4岁。
3、一家三口人的年龄和是100岁,妈妈比爸爸小1岁,妈妈的年龄是儿子的4倍。
爸爸、妈妈、儿子各多少岁?解:设爸爸的年龄为x岁,则妈妈的年龄为x-1岁,儿子的年龄为4y岁(其中y为儿子的年龄)。
根据题意,可列出方程:x+x-1+4y=100解得x=32,y=7,因此爸爸32岁,妈妈31岁,儿子7岁。
小学数学人教新版六年级上册实用资料勾股定理内容概述1.勾股定理(毕达哥拉斯定理):直角三角形中的两直角边平方后的和等于斜边的平方.公元前500年古希腊的毕达哥拉斯发现了勾股定理后,曾宰牛百头,广设盛筵以示庆贺.2. 公元前11世纪的《周髀算经》中提到:故折矩,以为句广三,股修四、径修五.既方之.外半卿一矩,环而共盘.得成三、四、五.三国时期的赵爽注解道:句股各自乘,并之为弦实,开方除之,即弦.案:弦图又可以句股相乘为朱实二,倍之为朱实四,以句股之差自相乘为中黄实,加差之,亦成弦实.汉朝张苍、狄昌寿整理的《九章算术》第九卷为《句股》.其中解释到:短面曰句,长面曰股,相与结角曰弦.句短其股,股短其弦.句股各自乘,并,而开方除之,即弦.中国科学院数学与系统科学研究院的徽标(右图所示)采用的就是赵爽的弦图.2002年在北京举行的国际数学家大会的徽标也是弦图.如下,在弦图中有EFGH S =四边形()12ABCD MNPQ S S +矩形矩形C DG ADG CDE S S S '==V V V3. 伽菲尔德证法:美国第20任总统伽菲尔德对数学有浓厚的兴趣,在还是中学教师时曾给出一种勾股定理的证明方法:梯形面积=12(上底+下底)×高 =12(a+b)×(a+b) =12(a+b)2;三个直角三角形的面积和=12ab+12ab+12c 2; 梯形面积=三个直角三角形面积和.12(a+b)2=12ab+12ab+12c 2,所以a 2+b 2=c 2. 4.公元前3世纪的欧几里得在《几何原本》中给出一种证明,简叙如下:如图,作出三个正方形,它们的边长分别为直角三角形ABC 的三边长.连接图中的虚线段对应的点;过C 作CK 平行于AF,交AB 、FG 分别于J 、K 点.易证△AFC ≌△BAE ,有12FAC S =V AF.FK=12AFKJ S 矩形,12BAE S =V EA.CA=ACDE S 正方形,所以AFKJ S =矩形ACDE S 正方形;易证△C BG ≌△HBA,有12CBG S =V BG.KG=12KGBJ S 矩形,12HBA S =V BH.IH=CBHI S 正方形,所以KGBJ S 矩形CBHI S =正方形.而AFGB AFKJ S S =正方形矩形KGBJ ACBE S S +=矩形正方形CBHI S +正方形.即有AB 2=AC 2+CB 2.5. 勾股数组:a=u 2-v 2,b=2uv,c=u 2+v 2如果a 、6、c 可以如此表达,那么a 、b 、c 称之为勾股数组,有a 2+b 2=c 2.如:u=2,v=l 时a=3,b=4,c=5;u=7,v=6时a=13,b=84,c=85.当然将已知的勾股数组内每个数都同时扩大若干倍得到的新的一组数还是勾股数组.典型问题2.智能机器猫从平面上的O 点出发.按下列规律行走:由O 向东走12厘米到A 1,由A 1向北走24厘米到A 2,由A 2向西走36厘米到A 3,由A 3向南走48厘米到A 4,由A 4向东走60厘米到A 5,…,问:智能机器猫到达A 6点与O 点的距离是多少厘米?【分析与解】 如右图所示,当智能机器猫到达A 6点时,相对 O 点,向东走了12-36+60=36厘米,向北走了24-48+72=48厘米. 有26OA =362+482,即OA 2=60.所以,A 6点到O 点的距离为60厘米.4.如图32-3所示,直角三角形PQR 的两个直角边分别为5厘米,9厘米问下图中3个正方形面积之和比4个三角形面积之和大多少?【分析与解】 如右图,延长AR,DQ,过E,F 分别作AR,DQ 的平行线,在正方形EFRQ 内交成四个全等的直角三角形和一个小正方形GHMN ,四个全等的直角三角形面积之和与四个白色的三角形面积之和相等.小正方形HGNM 的边长为9-5=4厘米,所以面积为16平方厘米,而另 外两个正方形ABPR 、CDQR 他的面积分别为25,81.所以原图中3个正方 形面积之和比4个三角形面积之和大25+8l+16=122平方厘米.6.若把边长为1的正方形ABCD 的四个角剪掉,得一四边形A 1B l C l D l ,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的59,请说明理由.(写出证明及计算过程)【分析与解】如左图所示,我们知道利用弦图,可是弦图怎么利用?设构造出的弦图中最小正方形的面积为x最大正方形面积为1,那么有剩下的正方形面积为12(x+1)=59,所以x=19.那么,最小正方形的边长为13.由于是四角对称的剪去,所以有AD l=DC l=CB l=BA1=13,AA l=BB l=CC l=DD l=23证明及计算过程略.8.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为多少?【分析与解】注意到,5个长、宽均不相等的长方形拼成一个正方形,只有一种拼法.(如右图所示,由弦图联想到).A、B、C、D中必有一个长方形的一边长为10,不妨设为A,那么显然不能组成边长为10的正方形;如果能够组成边长为11的正方形,那么有11=10+1=9+2=8+3=7+4=6+5,那么大正方形的四边必须是为11,则剩下的两个数,它们的和为11,为中问阴影部分的长、宽和;评注:如果能够组成边长为12的正方形,那么有12=10+2=9+3=8+4=7+5,剩下1、6试填不满足.对于边长为13的正方形,注意到13=10+3=9+4=8+5=7+6,剩下1、2,有见下图情形,满足.10.园林小路,曲径通幽.如图32-7所示,小路由白色正方形石板和青、红两色的三角形石板铺成.问:内圈三角形石板的总面积大,还是外圈三角形的总面积大?请说明理由.【分析与解】如图①,我们任意抽出两块相邻的白色正方形石板,及它们所夹成的青、红两色的三角形石板,如图②所示.图中有∠CDB+∠ADG=1800.如果③,将△CDE 逆时针旋转900,得△C DG '.有A 、D 、C '在同一条直线上,且△C DG '与△ADG 等底同高,所以有C DG ADG CDE S S S '==V V V .也就是说,任意两块相邻的白色正方形石板,它们所夹成的青色三角形与红色三角形面积相等.注意到在原图中,除了外圈青色的两块三角形外,外圈三角形、内圈三角形一一对应.所以原图中,外圈三角形的面积大于内圈三角形的面积,如图①所示.。
比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。
运用这种方法解决一些实际问题可以化难为易,化繁为简.二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ):():()。
【思路导航】甲、乙两数的比2:3乙、丙两数的比4:5甲、乙、丙三数的比8:12:15答:甲、乙、丙三数的比是8:12:15。
练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是( ):():()。
2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。
3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。
【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5.这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。
①一、二两组人数的比2:3 二、三两组人数的比4:5一、二、三组人数的比8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。
练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1.每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。
第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2.已知第一组的人数比二、三组人数的总和少15人。
六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。
已知数学组与科技组共有69人。
数学组比作文组多多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。
几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPFCGPHIFP DGP EHP S SSSS S S ∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712. 而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78. 所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k ,宽为8k ,则①号正方形的边长为5k ,又是整数,所以k 为整数,有长方形的面积为962k ,不大于100.所以k 只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为: 22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB,所以△A OB 为等腰三角形,AO=OC,所以△A OC为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB 、△DBC 共底DB ,等高,所以这两个三角形的面积相等,显然,△DBC 的面积11010502⨯⨯=(平方厘米).阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25).(1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14),(1,2,5,12,14.5),(1,2,5,12,29),(1,2,2.25,2.5,4.5),(1,2,5,6,12). 1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=, AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2.有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=(平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-= (平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷= ⎪⎝⎭, 原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
第一章分数的简便计算第三节拆项法1.仔细观察题目的特点,找出解题的方法。
2.想办法将分数变化形式。
讨论:①.分数的分母依次是等差数列的和,可以用求和的公式进行整理。
②.将分数的分母变成等差数列求和的形式,然后根据1除以一个数的特点改写成倒数的形式,最后将分数的分母变换成两个连续自然数相乘的形式,这样就可以利用分数拆分的方法进行简便计算了。
每个分数的分母都是若干个连续自然数的和,可以将分母用等差数列求和的形式表示出来,再根据1除以一个数就是这个数的倒数的特点进行简便计算。
[技法点睛] 本题是直接利用拆项的方法,将每个分数拆成相应的减法形式。
[技法点睛] 本题分母中的两个因数相差3,故是分数的拆分和乘法分配率的综合应用。
[技法点睛] 本题中每个分数的分母是三个连续自然数的积,直接利用拆分的规律进行计算。
[完全解题] 这道题中各分数的分子都是1,分母依次是等差数列,可将其变形为[技法点睛] 本题中每个分数的分母都是若干个连续自然数的和,可以将分母用等差数列求和的形式表示出来,再根据1除以一个数就是这个数的倒数的特点进行简便计算。
例5 (2002·第十二届《祖冲之杯》小学数学竞赛)计算[完全解题] 观察每个分数的分母,可以发现,它们都是两个相邻自然数的积。
所以可以利用分数拆分的方法进行计算。
[技法点睛] 本题巧用分数拆分的方法,分数的分母是两个连续自然数的积,分子正好是这两个自然数的和,所以可拆成这两个自然数作分母的分数单位的和。
例6 (2003·浙江省小学数学活动课冬令营)计算:[技法点睛] 根据题目的特点巧妙地将一些分数拆成两个分数的和或者两个分数的差,然后再根据加减法的性质进行简便计算。
例7 (2002·我爱数学少年夏令营)计算:[完全解题] 先将题目中分母相同的分数结合在一起相加,再利用乘法的分配律进行简便计算。
例8 (2001·我爱数学少年夏令营)计算:。
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
第1讲 计算综合(一)【内容概述】繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题。
1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”。
找到最长的分数线,将其上视为分子,其下视为分母。
2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数,所以需将带分数化为假分数。
3.某些时候将分数线视为除号,可使繁分数的运算更加直观。
4.对于定义新运算,我们只需按题中的定义进行运算即可。
【典型问题】【1】计算:872165433311361214187⨯÷-+⨯ 【分析与解】872165433311361214187⨯÷-+⨯=8721231136147⨯-+=823341223⨯=128174 【2】计算:2013111111-+-【分析与解】2013111111-+-=20122013111+-=1-40252012=40252013【3】已知41x 12111+++=118,则x 等于多少? 【分析与解】方法一:41x 12111+++=14x 42111+++=68x 14x 11+++=712x 68x ++=118,交叉相乘有88x+66=96x+56,x=1.25。
方法二:有1+41x 121++=811=1+83,所以2+41x 1+=38=2+32;所以x+41=23,那么x=1.25。
【4】求4、43、4443、44443、4444443、4444443、44444443、444444443、4444444443这10个数的和。
【分析与解】方法一:4+43+443+4443+44443+444443+4444443+44444443+444444443+4444444443=4+(44-1)+(444-1)+(4444-1)+(44444-1)+(444444-1)+(4444444-1)+(44444444-1)+(444444444-1)+(4444444444-1)=4+44+444+4444+44444+444444+4444444+44444444+444444444+4444444444-9 =94×(9+99+999++9999+99999+999999+9999999+99999999+999999999+9999999999)-9 =94×[(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)+(1000000-1)+(10000000-1)+(100000000-1)+(1000000000-1)+(10000000000-1)]-9=94×11111111100-9=4938271591。
方法二:先计算这10个数的个位数字和为3×9+4=31;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36+3=39;再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32+3=35;再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28+3=31;再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24+3=27;再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20+2=22;再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16+2=18;再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12+1=13;再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为8+1=9;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4。
所以,这10个数的和为4938271591。
5.如图,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】因为每个端点均有三条线段通过,所以这6条线段的长度之和为:3×(31+41+0.6+0.875)=1+0.75+1.8+2.625=6.175=4076【6】我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5。
符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9。
请计算:△2.25)104235(○0.3)31(○0.4)384155()3323(0.625△+⨯ 【分析与解】△2.25)104235(○0.3)31(○0.4)384155()3323(0.625△+⨯= 2.25313841550.625+⨯=85×384155÷1272=25625 【7】规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,…如果(16)1-(17)1=(17)1×□,那么□应填的数是多少? 【分析与解】□=((16)1-(17)1)÷(17)1=(16)(17)-1=171615181716⨯⨯⨯⨯-1=51。
【8】从和式21+41+61+81+101+121中必须去掉哪两个分数,才能使得余下的分数之和等于1?【分析与解】因为61+121=41,所以21、41、61、121的和为l ,因此应去掉81与101。
【9】如图排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929。
那么在所有这种数中。
最大的一个是多少?【分析与解】有整数部分尽可能大,十分位尽可能大,则有92918……较大,于是最大的为9.29189.2915.。
【10】请你举一个例子,说明“两个真分数的和可以是一个真分数,而且这三个分数的分母谁也不是谁的约数”。
【分析与解】有61+101=154,101+151=61,351+141=101。
评注:本题实质可以说是寻找孪生质数,为什么这么说呢? 注意到b a 1⨯+bc 1⨯=c b a c a ⨯⨯+,当a+c=b 时,有b a 1⨯+b c 1⨯=c b a c a ⨯⨯+=ca 1⨯。
当a 、b 、c 两两互质时,显然满足题意。
显然当a 、b 、c 为质数时一定满足,那么两个质数的和等于另一个质数,必定有一个质数为2,不妨设a 为2,那么有2+c=b ,显然b 、c 为一对孪生质数。
即可得出一般公式:2)(c 21+⨯+2)(c c 1+⨯=c21⨯,c 与c+2均为质数即可。
【11】计算:(1-221⨯)×(1-331⨯)×…×(1-10101⨯)【分析与解】(1-221⨯)×(1-331⨯)×…×(1-10101⨯)=221)(21)(2⨯+⨯-×331)(31)(3⨯+⨯-×…×10101)(101)(10⨯+⨯- =1010998877665544332211910897867564534231⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=102111⨯⨯=2011。
【12】已知a=6915681467136612651170156914681367126611⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯×100。
问a 的整数部分是多少?【分析与解】a=6915681467136612651170156914681367126611⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯×100=691568146713661265111)(69151)(68141)(67131)(66121)(6511⨯+⨯+⨯+⨯+⨯+⨯++⨯++⨯++⨯++⨯×100=(1+691568146713661265111514131211⨯+⨯+⨯+⨯+⨯++++)×100=100+691568146713661265111514131211⨯+⨯+⨯+⨯+⨯++++×100。
因为691568146713661265111514131211⨯+⨯+⨯+⨯+⨯++++×100<6515)141312(111514131211⨯++++++++×100=65100,所以a <100+65100=6535101。
同时691568146713661265111514131211⨯+⨯+⨯+⨯+⨯++++×100>6915)141312(111514131211⨯++++++++×100=69100,所以a >100+69100=6931101。
综上有6931101<a <6535101,所以a 的整数部分为101。
【13】问21×43×65×…×9695×9897×10099与101相比,哪个更大,为什么? 【分析与解】方法一:令21×43×65×…×9695×9897×10099=A ,32×54×76×…×9796×9998×101100=B ,有A ×B=21×43×65×…×9695×9897×10099×32×54×76×…×9796×9998×101100=1011。
而B 中分数对应的都比A 中的分数大,则它们的乘积也是B >A , 有A ×A <A ×B=1011<1001=101×101,所以有A ×A <101×101,那么A <101。
即21×43×65×…×9695×9897×10099与101相比,101更大。
方法二:设A=21×43×65×…×9695×9897×10099,则A 2=21×43×65×…×9695×9897×10099×21×43×65×…×9695×9897×10099=10010098989696 (66442299)9997979595···553311⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯,显然有: A 2×100=10010098989696···664422999997979595···553311⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯×100=10010098989696 (664422100)999997979595···55331⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯,2231⨯⨯、4453⨯⨯、6675⨯⨯、…、96969795⨯⨯、98989997⨯⨯、10010010099⨯⨯都是小于1的,所以有A 2×100<1,于是A 2<1001,即A <101。