小学六年级数学奥数讲座共30讲含答案-(6)
- 格式:doc
- 大小:604.50 KB
- 文档页数:7
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学数学奥数基础教程(六年级)本教程共30讲第6讲巧用单位“1”在工程问题中,我们往往设工作总量为单位“1”。
在许多分数应用题中,都会遇到单位“1”的问题,根据题目条件正确使用单位“1”,能使解答的思路更清晰,方法更简捷。
分析:因为第一天、第二天都是与全书比较,所以应以全书的页数为单位答:这本故事书共有240页。
分析与解:本题条件中单位“1”的量在变化,依次是“全书的页数”、“第一天看后余下的页数”、“第二天看后余下的页数”,出现了3个不同的单位“1”。
按照常规思路,需要统一单位“1”,转化分率。
但在本题中,不统一单位“1”反而更方便。
我们先把全书看成“1”,看成“1”,就可以求出第三天看后余下的部分占全书的共有多少本图书?分析与解:故事书增加了,图书的总数随之增加。
题中出现两个分率,这给计算带来很多不便,需要统一单位“1”。
统一单位“1”的一个窍门就是抓“不变量”为单位“1”。
本题中故事书、图书总数都发生了变化,而其它书的本数没有变,可以以图书室原来共有图书分析与解:与例3类似,甲、乙组人数都发生了变化,不变量是甲、乙组的总人数,所以以甲、乙组的总人数为单位“1”。
例5公路上同向行驶着三辆汽车,客车在前,货车在中,小轿车在后。
在某一时刻,货车与客车、小轿车的距离相等;走了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,再过多少分钟,货车追上客车?分析与解:根据“在某一时刻,货车与客车、小轿车的距离相等”,设这段距离为单位“1”。
由“走了10分钟,小轿车追上了货车”,可知小轿可知小轿车(10+5)分钟比客车多行了两个这样的距离,每分钟多行这段距离的两班各有多少人?乙班有84-48=36(人)。
练习7树上原有多少个桃?剩下的部分收完后刚好又装满6筐。
共收西红柿多少千克?7.六年级两个班共有学生94人,其中女生有39人,已知一班的女生占本答案与提示练习7 1.35个。
2.60个。
3.64吨。
第一讲循环小数与分数第二讲和差倍分问题第三讲行程问题第五讲质数与合数第六讲工程问题第七讲牛吃草问题第八讲包含与排除第九讲整数的拆分第十讲逻辑推理第十一讲通分与裂项第十二讲几何综合第十三讲植树问题第十五讲余数问题第十六讲直线面积第十七讲圆与扇形第十八讲数列与数表综合第十九讲数字迷综合第二十讲计数综合第二十一讲行程与工程第二十二讲复杂工程问题第二十三讲运用比例求解行程问题第二十四讲应用题综合第二十五讲数论综合2第二十六讲进位制问题第二十七讲取整问题第二十八讲数论综合3第二十九讲数论综合4第三十讲几何综合2第三十一讲图形变换第三十二讲勾股定理第三十三讲计数综合第三十四讲最值问题第三十五讲构造与论证1第三十六讲构造与论证2第一讲循环小数与分数循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.1.真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?【分析与解】17=0.142857 ,27=0.285714 ,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142. 因此,真分数7a化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以7a =0..857142 ,即a =6.评注:7a的特殊性,循环节中数字不变,且顺序不变,只是开始循环的这个数有所变化.2.某学生将1.23乘以一个数a 时,把1.23 误看成1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【分析与解】 由题意得:1.23 a -1.23a =0.3,即:0.003 a =0.3,所以有:3390010a =.解得a = 90,所以1.23a =1.23 × 90=123290-×90=11190× 90=111.3.计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【分析与解】 方法一:0.1+0.125+0.3+0.16≈-0.1111+0.1250+0.3333+0.1666=0.7359≈0.736方法二:0.1+0.125+0.3+0.16113159899011118853720.7361=+++=+== ≈0.7364.计算:0.010.120.230.340.780.89+++++ 【分析与解】 方法一:0.010.120.230.340.780.89+++++ =1121232343787898909090909090-----+++++ =11121317181909090909090+++++ =21690=2.4方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+(0.010.020.030.040.080.09+++++ ) =2.1+0.01×(1+2+3+4+8+9) =2.1+190×27 =2.1+0.3 =2.4方法三:如下式, 0.011111… 0.122222... 0.233333... 0.344444...(1+2+3+4+8+9=27) 0.788888...+0.899999... 2.399997...注意到,百万分位的7是因为没有进位造成,而实际情况应该是2.399999…=2.39 =2.4.评注:0.9=99=1 ,0.09 =919010=.5.将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【分析与解】0.×0.179672=27179672117967248560.00485699999999937999999999999⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.6.将下列分数约成最简分数:166********66666666664【分析与解】 找规律:161644=,16616644=,1666166644= ,166661666644=,…所以1666666666666666666664=14评注:类似问题还有38538853888538888538888888885234 (29729972999729999729999999997)+⨯+⨯+⨯++.7.将下列算式的计算结果写成带分数:0.523659119⨯⨯【分析与解】0.523659119⨯⨯=11859119⨯=1(1)119-×59=59-59119=58601198.计算:744808333÷2193425909÷11855635255【分析与解】 744808333÷2193425909÷11855635255=62811259093525583332193453811⨯⨯ =373997131993564111136412119973331993⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=7523⨯⨯=5569.计算:1111111 81282545081016203240648128 ++++++【分析与解】原式1111111 81288128406420321016508254 =++++++2111118128406420321016508254 =+++++ 1111114064406420321016508254 =+++++ 11111203220321016508254=++++111110161016508254=+++111508508254=++11254254=+1127=10.计算:153219(4.85 3.6 6.153) 5.5 1.75(1) 4185321⎡⎤⨯÷-+⨯+-⨯+⎢⎥⎣⎦【分析与解】原式=1757193.6(4.851 6.15)5.5443421⨯⨯-++-⨯-⨯=135193.610 5.5412+⨯⨯+-=9+5.5-4.5 =1011.计算: 41.2×8.1+11×194+537×0.19【分析与解】原式=412×0.81+11×9.25+0.19×(412+125) =412×(0.81+0.19)+11×9.25+0.19×125 =412+11×8+11×1.25+19×1.25=412+88+1.25×30=500+37.5=537.512.计算:2255 (97)() 7979+÷+【分析与解】原式=656555 ()() 7979+÷+=[]555513()()137979⨯+÷+=13.计算:12324648127142113526104122072135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯【分析与解】 原式=33333333123(1247)1232135(1247)1355⨯⨯⨯+++⨯⨯==⨯⨯⨯+++⨯⨯14.(1)已知等式0.126×79+1235×□-6310÷25=10.08,那么口所代表的数是多少? (2)设上题答案为a .在算式(1993.81+a )×○的○内,填入一个适当的一位自然数,使乘积的个位数字达到最小值.问○内所填的数字是多少? 【分析与解】 (1)设口所代表的数是x ,0.126×79+1235x -6310÷25=10.08,解得:x =0.03,即口所代表的数是0.03.(2)设○内所填的数字是y ,(1993.81+O.03)×y =1993.84×y ,有当y 为8时1993.84×y =1993.84×8=15050.94,所以○内所填的数字是8.15.求下述算式计算结果的整数部分:111111()38523571113+++++⨯ 【分析与解】原式=111111(38538538538538538523571113⨯+⨯+⨯+⨯+⨯+⨯≈192.5+128.3+77+55+35+29.6=517.4 所以原式的整数部分是517.第二讲 和差倍分问题各种具有和差倍分关系的综合应用题,重点是包含分数的问题.基本的解题方法是将已知条件用恰当形式写出或变形,并结合起来进行比较而求出相关的量,其中要注意单位“1”的恰当选取.1.有甲、乙两个数,如果把甲数的小数点向左移两位,就是乙数的18,那么甲数是乙数的多少倍?【分析与解】甲数的小数点向左移动两位,则甲数缩小到原来的1100,设这时的甲数为“1”,则乙数为1×8=8,那么原来的甲数=l×100=100,则甲数是乙数的100÷8=12.5倍.2.有三堆棋子,每堆棋子数一样多,并且都只有黑、白两色棋子.已知第一堆里的黑子和第二堆里的白子一样多,第三堆里的黑子占全部黑子的25.如果把这三堆棋子集中在一起,那么白子占全部棋子的几分之几?【分析与解】如下表所示:设全部黑子为“5”份,则第三堆里的黑子为“2”份,那么剩下的黑子占5-2=“3”份,而第一堆里的黑子和第二堆里的白子一样多,将第一堆黑子和第二堆白子调换,则第二堆全部为黑子.所以第二堆棋子总数为“3”份,三堆棋子总数为3×3=“9”份,其中黑子占“5”份,则白子占剩下的9-5=“4”份,那么白子占全部棋子的4÷9=49.3.甲、乙两厂共同完成一批机床的生产任务,已知甲厂比乙厂少生产8台机床,并且甲厂的生产量是乙厂的1213,那么甲、乙两厂一共生产了机床多少台?【分析与解】因为甲厂生产的是乙厂的1213,也就是甲厂为12份,乙厂为13份,那么甲厂比乙厂少1份=8台.总共=8×(12+13)=200台.4.足球赛门票15元一张,降价后观众增加了一半,收入增加了五分之一,那么一张门票降价多少元?【分析与解】设原来人数为“1”,则现在有1+0.5=1.5.原来收入为l×15=15,降价后收人为15×(1+15)=18元,那么降价后门票为18÷1.5=12元,则一张门票降价15-12=3元.5.李刚给军属王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块.这时,已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【分析与解】已经运来的是没有运来的57,则运来的是5份,没有运来的是7份,也就是运来的占总数的512.则共有50÷(512-38)=1200块,还剩下1200×712=700块.6.有两条纸带,一条长21厘米,一条长13厘米,把两条纸带都剪下同样长的一段以后,发现短纸带剩下的长度是长纸带剩下的长度的813.问剪下的一段长多少厘米?【分析与解】方法一:开始时,两条纸带的长度差为21-13=8厘米.因为两条纸带都剪去同样长度,所以两条纸带前后的长度差不变.设剪后短纸带长度为“8”份,长纸带即为“13”份,那么它们的差为13-8=5份,则每份为8÷5=1.6(厘米).所以,剪后短纸带长为1.6×8=12.8(厘米),于是剪去13-12.8=O.2(厘米).方法二:设剪下x厘米,则1382113xx-=-,交叉相乘得:13×(13-x)=8×(21-x),解得x=0.2,即剪下的一段长0.2厘米.7.为挖通300米长的隧道,甲、乙两个施工队分别从隧道两端同时相对施工.第一天甲、乙两队各掘进了10米,从第二天起,甲队每天的工作效率总是前一天的2倍,乙队每天的工作效率总是前一天的l 12倍.那么,两队挖通这条隧道需要多少天?【分析与解】如下表所示:天数工作量1 2 3 4 5甲10 20 40 80 160乙10 15 22.5 33.75 50.625 当天工作量20 35 62.5 113.75 210.625已完成工作量20 55 117.5 231.25 441.375 说明在第五天没有全天干活,则第四天干完以后剩下:300-231.25=68.75米,那么共用时间为4+68.75÷210.625=4110 337天.8.有一块菜地和一块麦地.菜地的一半和麦地的三分之一放在一起是13公顷.麦地的一半和菜地的三分之一放在一起是12公顷.那么菜地是多少公顷?【分析与解】如下表所示:菜地12麦地13⇒13公顷菜地3 麦地2 ⇒78公顷菜地2 麦地3 ⇒72公顷菜地13麦地12⇒12公顷即5倍菜地公顷数+5倍麦地公顷数=78+72=150,所以菜地与麦地共有150÷5=30(公顷).而菜地减去麦地,为78-72=6(公顷),所以菜地有(30+6)÷2=18(公顷).9.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽种了杨树总数的3 5和30棵柳树以后,又临时运来15棵槐树,这时剩下的3种树的棵数恰好相等.问原计划要栽植这三种树各多少棵?【分析与解】将杨树分为5份,以这样的一份为一个单位,则:杨树=5份;柳树=2份+30棵;槐树=2份-15棵,则一份为(1500-30+15)÷(2+2+5)=165棵,有:杨树=5×165=825棵;柳树=165×2+30=360棵;槐树=165×2-15=315棵.10.师徒二人共同加工170个零件,师傅加工零件个数的13比徒弟加工零件个数的14还多10个.那么,徒弟一共加工了多少个零件?【分析与解】我们用“师”表示师傅加工的零件个数,“徒”表示徒弟加工的零件个数,有:1 3“师”-14“徒”=10,4“师”- 3“徒”=120,而4“师”+4“徒”=170×4=680.那么有7“徒”=680-120=560,“徒”=80,徒弟一共加工了80个零件.11. 一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工地的工作量的11 2倍.上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有712的人去甲工地,其他人到乙工地.到傍晚时,甲工地的工作已做完,乙工地的工作还需4名工人再做1天.那么这批工人共有多少名?【分析与解】设甲工地的工作量为“1.5”,则乙工地的工作量为“1”.甲乙上午33134=+11134=+下午7121-712=512于是甲工地一整天平均用了这批工人的372()24123+÷=,乙工地一整天平均用了这批工人的1-21 33 =.这批工人的23完成了“1.5”的工作量,那么13的这批工人完成1.5÷2=“0.75”的工作量,于是乙工地还剩下1-0.75=“0.25”的工作量,这“0.25”的工作量需要4人工作1天.而甲、乙工地的工作量为1.5+1=2.5,那么需2.5÷0.25× 4=40人工作1天.所以原来这批工人共有40-4=36人.12.有一个分数,如果分子加1,这个分数就等于12;如果分母加1,这个分数就等于13.问原来的分数是多少?【分析与解】如果分子加1,则分数为12,设这时的分数为:2xx,则原来的分数为12xx-,分母加1后为:11213xx-=+,交叉相乘得:3(x-1)=2x+1,解得x=4,则原分数为38.13.图2-1是某市的园林规划图,其中草地占正方形的34,竹林占圆形的67,正方形和圆形的公共部分是水池.已知竹林的面积比草地的面积大450平方米.问水池的面积是多少平方米?【分析与解】因为水池是正方形的14,是圆的17,则正方形是水池的4倍,圆是水池的7倍,相差7-4=3倍,差450平方米,则水池=450÷3=150平方米.14.唐僧师徒四人吃了许多馒头,唐僧和猪八戒共吃了总数的12,唐僧和沙僧共吃了总数的13,唐僧和孙悟空共吃了总数的14.那么唐僧吃了总数的几分之几?【分析与解】唐+猪=12、唐+沙=13、唐+孙=14.(两边同时加减)唐+猪+唐+沙+唐+孙=2唐+(唐+猪+沙+孙)=2唐+1=12+13+14=1112.则:2唐=112,唐=124.唐僧吃了总数的124.15.小李和小张同时开始制作同一种零件,每人每分钟能制作1个零件,但小李每制作3个零件要休息1分钟,小张每制作4个零件要休息1.5分钟.现在他们要共同完成制作300个零件的任务,需要多少分钟?【分析与解】方法一:先估算出大致所需时间,然后再进行调整.因为小李、小张的工作效率大致相等,那么完成时小李完成300÷2=150个零件左右;小李完成150个零件需要150÷3×4=200分钟;在200分钟左右,198分钟是5.5的整数倍,此时乙生产198÷5.5×4=144个零件,并且刚休息完,所以在2分钟后,即200分钟时完成144+2=146个零件;那么在200分钟时,小李、小张共生产150+146=296个零件,还剩下4个零件未完成,所以再需2分钟,小李生产2个零件,小张生产2个零件,正好完成.所以共需202分钟才能完成.方法二:把休息时间包括进去,小李每4分钟做3个,小张每5.5分钟做4个.则在44分钟内小李做了:44÷4×3=33个,小张做了:44÷5.5×4=32个,他们一共做了:33+32=65个.300÷65=4……40,也就是他们共同做了4个44分钟即:44×4=176分钟后,还剩下40个零件没有做完.而22=4+4+4+4+4+2=5.5×4,所以22分钟内小李做了:3+3+3+3+3+2=17个,小张做了:4×2=16个,那么还剩下:40-17-16=7个,4分钟内小李做3个,小张做4个,共做4+3=7个,即这40个零件还需要26分钟.所以共用时间:44×4+26=202分钟.第三讲行程问题(1)涉及分数的行程问题.顺水速度、逆水速度与流速的关系,以及与此相关的问题.环形道路上的行程问题.解题时要注意发挥图示的辅助作用,有时宜恰当选择运动过程中的关键点分段加以考虑.1.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【分析与解】设甲地到乙地的路程为单位“1”,那么按时的往返一次需时间260,现在从甲到乙花费了时间1÷55=155千米,所以从乙地返回到甲地时所需的时间只能是211 605566-=.即如果他想按时返回甲地,他应以每小时66千米的速度往回开.2.甲、乙两地相距100千米,小张先骑摩托车从甲地出发,1小时后小李驾驶汽车从甲地出发,两人同时到达乙地.摩托车开始速度是每小时50千米,中途减速后为每小时40千米.汽车速度是每小时80千米,汽车曾在途中停驶1O 分钟.那么小张驾驶的摩托车减速是在他出发后的多少小时?【分析与解】 汽车从甲地到乙地的行驶时问为100÷80=1.25小时=1小时15分钟,加上中途停驶的10分钟,共用时1小时25分钟.而小张先小李1小时出发,但却同时到达,所以小张从甲到乙共用了2小时25分钟,即2最小时.以下给出两种解法:方法一:设小张驾驶的摩托车减速是在他出发后x 小时,有50×x +40×5210012x ⎛⎫-= ⎪⎝⎭,解得13x =. 所以小张驾驶的摩托车减速是在他出发后13小时. 方法二:如果全程以每小时50千米的速度行驶,需100÷50=2小时的时间,全程以每小时40千米的速度行驶,需100÷40=2.5小时.依据鸡兔同笼的思想知,小张以每小时50千米的速度行驶了52.521122.526-=-的路程,即行驶了10015010063⨯=千米的路程,距出发5015033÷=小时.3. 一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.问:在无风的时候,他跑100米要用多少秒?【分析与解】 我们知道顺风速度=无风速度+风速,逆风速度=无风速度-风速. 有顺风时速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒. 则无风速度=2顺风速度+逆风速度=982+7=米/秒 所以无风的时候跑100米,需100÷8=12.5秒.124.一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时.那么A,B 两镇间的距离是多少千米?【分析与解】 如下画出示意图,有A →B 段顺水的速度为11+1.5=12.5千米/小时, 有B →C 段顺水的速度为3.5+1.5=5千米/小时. 而从A →C 全程的行驶时间为8-1=7小时. 设AB 长x 千米,有50712.55x x -+=,解得x =25. 所以A,B 两镇间的距离是25千米.5.一条大河有A,B 两个港口,水由A 流向B,水流速度是每小时4千米.甲、乙两船同时由A 向B 行驶,各自不停地在A,B 之间往返航行,甲船在静水中的速度是每小时28千米,乙船在静水中的速度是每小时20千米.已知两船第二次迎面相遇的地点与甲船第二次追上乙船(不算甲、乙在A 处同时开始出发的那一次)的地点相距40千米,求A,B 两个港口之间的距离.【分析与解】 设AB 两地的路程为单位“1”,则:甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次同向相遇时,甲、乙两人的路程差为2n ;甲、乙两人在A 、B 往返航行,均从A 点同时同向出发,则第n 次相向相遇时,甲、乙两人的路程和为2n ;甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次同向相遇时,甲、乙两人的路程差为(2n -1);甲、乙两人在A 、B 往返航行,分别从A 、B 两点相向出发,则第n 次相向相遇时,甲、乙两人的路程和为(2n -1).有甲船的顺水速度为32千米/小时,逆水速度为24千米/小时, 乙船的顺水速度为24千米/小时,逆水速度为16千米/小时. 两船第二次迎面相遇时,它们的路程和为“4”;甲船第二次追上乙船时,它们的路程差为“4”.(一)第二次迎面相遇时,一定是甲走了2~3个AB 长度,乙走了2~1个AB 长度,设甲走了2+x 个AB 的长度,则乙走了2-x 个AB 的长度,有11322432x ++=112416x -+,解得13x =,即第二次迎面相遇的地点距A 点13AB 的距离.(二)①第二次甲追上乙时,有甲行走2y z +(y 为整数,z ≤1)个AB 的长度,则乙行走了24y z -+个AB 的长度,有322432y y z ++=22241624y y z --++,化简得320y z +=,显然无法满足y 为整数,z ≤1;②第二次甲追上乙时,有甲行走21y z ++(y 为整数,z ≤1)个AB 的长度,则乙行走了23y z -+个AB 的长度,有1322424y y z +++=12241616y y z--++,化简有3213y z +=,有0.5z =,4y =. 即第二次甲追上乙时的地点距B 点12AB 的距离,那么距A 也是12AB 的距离.所以,题中两次相遇点的距离为(111236⎛⎫-= ⎪⎝⎭AB ,为40千米,所以AB 全长为240千米.6.甲、乙两船分别在一条河的A ,B 两地同时相向而行,甲顺流而下,乙逆流而上.相遇时,甲乙两船行了相等的航程,相遇后继续前进,甲到达B 地、乙到达A 地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1000米.如果从第一次相遇到第二次相遇的时间相隔为1小时20分,那么河水的流速为每小时多少千米? 【分析与解】 因为甲、乙第一次相遇时行驶的路程相等,所以有甲、乙同时刻各自到达B 、A 两地.接着两船再分别从B 、A 两地往AB 中间行驶.所以在第二次相遇前始终是一船逆流、一船顺流,那么它们的速度和始终等于它们在静水中的速度和.有:甲静水速度+水速=乙静水速度-水速.还有从开始到甲第一次到达B 地,乙第一次到达A 地之前,两船在河流中的速度相等.所以甲船比乙船少行驶的1000米是在甲、乙各自返航时产生的.甲乙返航时,有甲在河流中行驶的速度为:甲静水速度-水速,乙在河流中的速度为:乙静水速度+水速.它们的速度差为4倍水速.从第一次相遇到第二次相遇,两船共行驶了2AB 的路程,而从返航到第二次相遇两船共行驶了AB 的路程,需时间80÷2=40分钟. 有4倍水速=401000150060⎛⎫÷=⎪⎝⎭,有水速=375米/小时=0.375千米/小时. 即河水的流速为每小时0.375千米.7.甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行.现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟? 【分析与解】 甲行走45分钟,再行走70-45=25分钟即可走完一圈.而甲行走45分钟,乙行走45分钟也能走完一圈.所以甲行走25分钟的路程相当于乙行走45分钟的路程. 甲行走一圈需70分钟,所以乙需70÷25×45=126分钟.即乙走一圈的时间是126分钟.8.如图3-1,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【分析与解】 注意观察图形,当甲、乙第一次相遇时,甲乙共走完12圈的路程,当甲、乙第二次相遇时,甲乙共走完1+12=32圈的路程. 所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米. 有甲、乙第二次相遇时,共行走(1圈-60)+300,为32圈,所以此圆形场地的周长为480米.9.甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23.甲跑第二圈时速度比第一圈提高了13;乙跑第二圈时速度提高了15.已知沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190米,那么这条椭圆形跑道长多少米? 【分析与解】设甲跑第一圈的速度为3,那么乙跑第一圈的速度为2,甲跑第二圈的速度为4,乙跑第二圈的速度为125. 如下图,第一次相遇地点逆时针方向距出发点35的跑道长度. 有甲回到出发点时,乙才跑了23的跑道长度.在乙接下来跑了13跑道的距离时,甲以“4”的速度跑了122433÷⨯=圈.所以还剩下13的跑道长度,甲以4的速度,乙以125的速度相对而跑,所以乙跑了112124355⎡⎤⎛⎫⨯÷+ ⎪⎢⎥⎝⎭⎣⎦18=圈.也就是第二次相遇点逆时针方向距出发点18圈.即第一次相遇点与第二次相遇点相差31195840-=圈, 所以,这条椭圆形跑道的长度为1919040040÷=米.10.如图3-2,在400米的环形跑道上,A,B 两点相距100米.甲、乙两人分别从A ,B 两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么甲追上乙需要时间是多少秒?【分析与解】 如果甲、乙均不休息,那么甲追上乙的时间为100÷(5-4)=100秒. 此时甲跑了100×5=500米,乙跑了100×4=400米.而实际上甲跑500米,所需的时间为100+4×10=140秒,所以140~150秒时甲都在逆时针距A 点500处.而乙跑400米所需的时间为100+3×10=130秒,所以130~140秒时乙走在逆时针距B点400处.显然从开始计算140秒时,甲、乙在同一地点,即甲追上乙需要时间是140秒.11.周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米? 【分析与解】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程. 由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12. 即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.12.如图3-3,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?【分析与解】 开始时,甲在顺时针方向距乙8+13+8=29米.因为一边最长为 13、所以最少要追至只相差13,即至少要追上29-13=16米. 甲追上乙16米所需时间为16÷(3-2)=16秒,此时甲行了3×16=48米,乙行了2×16=32米.甲、乙的位置如右图所示:显然甲还是看不见乙,但是因为甲的速度比乙快,所以甲能在乙离开上面 的那条边之前到达上面的边,从而看见乙.而甲要到达上面的边,需再跑2米,所需时间为2÷3=23秒. 所以经过16+23=1623秒后甲第一次看见乙.13.如图3-4,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【分析与解】 如下图,甲、乙只可能在大跑道上相遇.并且只能在AB 顺时针的半跑道上.易知小跑道AB 逆时针路程为100,顺时针路程为200,大跑道上AB 的顺、逆时针路程均是200米.我们将甲、乙的行程状况分析清楚.当甲第一次到达B 时,乙还没有到达B 点,所以第一次相遇一定在逆时针的BA 某处.而当乙第一次到达B 点时,所需时间为200÷4=50秒,此时甲跑了50×6=300米,在B 点300-200=100米处.乙跑出小跑道到达A 需100÷4=25秒,则甲又跑了25×6=150米,在A 点左边(100+150)-200=50米处.所以当甲到达B 处时,乙还未到B 处,那么甲必定能在B 点右边某处与乙第二次相遇. 从乙再次到达A 处开始计算,还需(400-50)÷(6+4)=35秒,甲、乙第二次相遇,此时甲共跑了50+25+35=110秒.所以,从开始到甲、乙第二次相遇甲共跑了110×6=660米.14.如图3-5,正方形ABCD 是一条环形公路.已知汽车在AB 上时速是90千米,在BC 上的时速是120千米,在CD 上的时速是60千米,在DA 上的时速是80千米.从CD 上一点P,同时反向各发出一辆汽车,它们将在AB 中点相遇.如果从PC 的中点M,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇.问A 至N 的距离除以N 至B 的距离所得到的商是多少?【分析与解】 如下图,设甲始终顺时针运动,乙始终逆时针运动,并设正方形ABCD 的边长为单位“1”.有甲从P 到达AB 中点O 所需时间为608090PD DA AO ++10.5608090PD =++. 乙从P 到达AB 中点O 所需时间为6012090PC BC BO ++10.56012090PD =++. 有甲、乙同时从P 点出发,则在AB 的中点O 相遇,所以有:16080PD +=160120PC +且有PD=DC-PC=1-PC,代入有116080PC -+160120PC =+,解得PC=58. 所以PM=MC=516,DP=38.现在甲、乙同时从PC 的中点出发,相遇在N 点,设AN 的距离为x .有甲从M 到达N 点所需时间为608090MD DA AN ++351816608090x+=++; 乙从M 到达N 点所需时间为6012090MC CB BN ++511166012090x-=++. 有351816608090x +++511166012090x -=++,解得132x =.即AN=132. 所以AN ÷BN 1313232=÷131=15.如图3-6,8时10分,有甲、乙两人以相同的速度分别从相距60米的A ,B 两地顺时针方向沿长方形ABCD 的边走向D 点.甲8时20分到D 点后,丙、丁两人立即以相同速度从D 点出发.丙由D 向A 走去,8时24分与乙在E 点相遇;丁由D 向C 走去,8时30分在F 点被乙追上.问三角形BEF 的面积为多少平方米?【分析与解】 如下图,标出部分时刻甲、乙、丙、丁的位置.先分析甲的情况,甲10分钟,行走了AD 的路程;再看乙的情况,乙的速度等于甲的速度,乙14分钟行走了60+AE 的路程,乙20分钟走了60+AD+DF 的路程.所以乙10分钟走了(60+AD+DF)-(AD)=60+DF 的路程.有601014AD AE +=6010DF +=,有()()607560AD DFAE ED AE =+⎧⎪⎨-=+⎪⎩然后分析丙的情况,丙4分钟,行了走ED 的路程,再看丁的情况,丁的速度等于丙的速度,丁10分钟行走了DF 的距离.。
小学数学人教新版六年级上册实用资料繁分数的运算繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1.繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为分母.2.一般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将带分数化为假分数.3.某些时候将分数线视为除号,可使繁分数的运算更加直观.4.对于定义新运算,我们只需按题中的定义进行运算即可.5.本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级[第1讲循环小数与分数].1.计算:71147 18262 13581333416⨯+⨯-÷【分析与解】原式=7123723174612241488128131233+⨯=⨯=-2.计算:【分析与解】注意,作为被除数的这个繁分数的分子、分母均含有5199.于是,我们想到改变运算顺序,如果分子与分母在5199后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995×0.5.具体过程如下:原式=5919(3 5.22)19930.41.6 910() 52719950.51995 19(6 5.22)950+-⨯÷+⨯-+=5191.3219930.440.40.5 9() 519950.419950.5 191.329-⨯⨯⨯÷+⨯⨯-=199320.41()19950.5+÷⨯=0.410.5÷=1143.计算:1111111987 -+-【分析与解】原式=11198711986-+=198613973-=198739734.计算:已知=181111+12+1x+4=,则x等于多少?【分析与解】方法一:1118x68114x112x711 1+11148x62+214x1x+4+====+++++++交叉相乘有88x+66=96x+56,x=1.25.方法二:有1113 11188 21x4+==+++,所以18222133x4+==++;所以13x42+=,那么x=1.25.5.求944,43,443,...,44 (43)123个这10个数的和.【分析与解】方法一:944+43+443...44 (43)++123个={1044(441)(4441)...(44...41)+-+-++-个={104444444...44 (49)++++-个=1094(999999...999...9)99⨯++++-123个=1004[(101)(1001)(10001)...(1000...01)]99⨯-+-+-++--14243个=914111.1009=49382715919⨯-14243个.方法二:先计算这10个数的个位数字和为39+4=31⨯;再计算这10个数的十位数字和为4×9=36,加上个位的进位的3,为36339+=;再计算这10个数的百位数字和为4×8=32,加上十位的进位的3,为32335+=;再计算这10个数的千位数字和为4×7=28,加上百位的进位的3,为28331+=;再计算这10个数的万位数字和为4×6=24,加上千位的进位的3,为24327+=;再计算这10个数的十万位数字和为4×5=20,加上万位的进位的2,为20222+=;再计算这10个数的百万位数字和为4×4=16,加上十万位的进位的2,为16218+=;再计算这10个数的千万位数字和为4×3=12,加上百万位的进位的1,为12113+=;再计算这10个数的亿位数字和为4×2=8,加上千万位的进位的1,为819+=;最后计算这10个数的十亿位数字和为4×1=4,加上亿位上没有进位,即为4. 所以,这10个数的和为4938271591.6.如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为: 1173(0.60.875)1+0.75+1.8+2.625=6.175=63440⨯+++=7.我们规定,符号“○”表示选择两数中较大数的运算,例如:3.5○2.9=2.9○3.5=3.5.符号“△”表示选择两数中较小数的运算,例如:3.5△2.9=2.9△3.5=2.9.请计算:23155(0.625)(0.4)333841235(0.3)( 2.25)3104⨯+V d d V 【分析与解】原式1550.6255155725384218384122562.253⨯=⨯÷=+8.规定(3)=2×3×4,(4)=3×4×5,(5)=4×5×6,(10)=9×10×11,….如果111(16)(17)(17)-=⨯,那么方框内应填的数是多少?【分析与解】111(17)()1(16)(17)(17)(16)=-÷=-=161718111516175⨯⨯-=⨯⨯.9.从和式11111124681012+++++中必须去掉哪两个分数,才能使得余下的分数之和等于1?【分析与解】 因为1116124+=,所以12,14,16,112的和为l ,因此应去掉18与110.10.如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循环小数,例如1.892915929.那么在所有这种数中。
小学奥数基础教程(六年级)目录第一讲比较分数的大小 ........................................................................................................................... - 3 -练习1 ........................................................................................................................................................ - 4 -第二讲巧求分数 ....................................................................................................................................... - 5 -练习2 ........................................................................................................................................................ - 7 -第三讲分数运算的技巧 ......................................................................................................................... - 8 -练习3 ...................................................................................................................................................... - 10 -第四讲循环小数与分数 ....................................................................................................................... - 12 -练习4 ...................................................................................................................................................... - 14 -第五讲工程问题(一) ......................................................................................................................... - 15 -练习5 ...................................................................................................................................................... - 16 -第六讲工程问题(二) ......................................................................................................................... - 17 -练习6 ...................................................................................................................................................... - 19 -第七讲巧用单位“1” ............................................................................................................................. - 21 -练习7 ...................................................................................................................................................... - 22 -第八讲比和比例 ..................................................................................................................................... - 24 -练习8 ...................................................................................................................................................... - 25 -第九讲百分数 ......................................................................................................................................... - 26 -练习9 ...................................................................................................................................................... - 28 -第十讲商业中的数学 ............................................................................................................................. - 29 -练习10 .................................................................................................................................................... - 30 -第11讲圆与扇形 ................................................................................................................................... - 31 -练习11 .................................................................................................................................................... - 34 -第12讲圆柱与圆锥 ............................................................................................................................... - 35 -练习12 .................................................................................................................................................... - 37 -第13讲立体图形(一) ....................................................................................................................... - 38 -练习13 .................................................................................................................................................... - 40 -第14讲立体图形(二) ....................................................................................................................... - 42 -练习14 .................................................................................................................................................... - 43 -第15讲棋盘的覆盖 ............................................................................................................................... - 45 -练习15 ........................................................ - 47 -第16讲找规律 ....................................................................................................................................... - 48 -练习16 .................................................................................................................................................... - 50 -第17讲操作问题 ................................................................................................................................. - 51 -练习17 .................................................................................................................................................... - 52 -第18讲取整计算 ................................................................................................................................. - 54 -练习18 .................................................................................................................................................... - 55 -第19讲近似值与估算 ......................................................................................................................... - 56 -练习19 .................................................................................................................................................... - 58 -第20讲数值代入法 ............................................................................................................................. - 59 -练习20 .................................................................................................................................................... - 60 -第21讲枚举法 ..................................................................................................................................... - 61 -练习21 .................................................................................................................................................... - 63 -练习21 .................................................................................................................................................... - 64 -第22讲列表法 ....................................................................................................................................... - 65 -练习22 .................................................................................................................................................... - 67 -第23讲图解法 ....................................................................................................................................... - 69 -练习23 .................................................................................................................................................... - 71 -第24讲时钟问题 ................................................................................................................................... - 73 -练习24 .................................................................................................................................................... - 74 -第25讲时间问题 ................................................................................................................................. - 76 -练习25 .................................................................................................................................................... - 77 -第26讲牛吃草问题 ............................................................................................................................... - 78 -练习26 .................................................................................................................................................... - 80 -第27讲运筹学初步(一) ................................................................................................................. - 81 -第28讲运筹学初步(二) ................................................................................................................. - 87 -练习28 .................................................................................................................................................... - 91 -第29讲运筹学初步(三) ................................................................................................................. - 92 -练习29 .................................................................................................................................................... - 95 -第30讲趣题巧解 ................................................................................................................................. - 96 -练习30 .................................................................................................................................................... - 98 -第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。
请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。
【题目】一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。
【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
⼩学数学6年级培优奥数讲义第30讲解不定⽅程(学⽣版)第30讲解不定⽅程学习⽬标①熟练掌握不定⽅程的解题技巧;②能够根据题意找到等量关系设未知数解⽅程;③学会解不定⽅程的经典例题。
知识梳理历史概述不定⽅程是数论中最古⽼的分⽀之⼀.古希腊的丢番图早在公元3世纪就开始研究不定⽅程,因此常称不定⽅程为丢番图⽅程.中国是研究不定⽅程最早的国家,公元初的五家共井问题就是⼀个不定⽅程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定⽅程理论有了系统研究.宋代数学家秦九韶的⼤衍求⼀术将不定⽅程与同余理论联系起来.考点说明在各类竞赛考试中,不定⽅程经常以应⽤题的形式出现,除此以外,不定⽅程还经常作为解题的重要⽅法贯穿在⾏程问题、数论问题等压轴⼤题之中.在以后初⾼中数学的进⼀步学习中,不定⽅程也同样有着重要的地位,所以本讲的着重⽬的是让学⽣学会利⽤不定⽅程这个⼯具,并能够在以后的学习中使⽤这个⼯具解题。
运⽤不定⽅程解应⽤题步骤1、根据题⽬叙述找到等量关系列出⽅程2、根据解不定⽅程⽅法解⽅程3、找到符合条件的解典例分析考点⼀:不定⽅程与数论例1、把2001拆成两个正整数的和,⼀个是11的倍数(要尽量⼩),⼀个是13的倍数(要尽量⼤),求这两个数.考点⼆:不定⽅程与应⽤题例1、有两种不同规格的油桶若⼲个,⼤的能装8千克油,⼩的能装5千克油,44千克油恰好装满这些油桶.问:⼤、⼩油桶各⼏个?例2、某次聚餐,每⼀位男宾付130元,每⼀位⼥宾付100元,每带⼀个孩⼦付60元,现在有13的成⼈各带⼀个孩⼦,总共收了2160元,问:这个活动共有多少⼈参加(成⼈和孩⼦)?例3、甲、⼄两⼈⽣产⼀种产品,这种产品由⼀个A配件与⼀个B配件组成.甲每天⽣产300个A配件,或⽣产150个B配件;⼄每天⽣产120个A配件,或⽣产48个B配件.为了在10天内⽣产出更多的产品,⼆⼈决定合作⽣产,这样他们最多能⽣产出多少套产品?例4、有⼀项⼯程,甲单独做需要36天完成,⼄单独做需要30天完成,丙单独做需要48天完成,现在由甲、⼄、丙三⼈同时做,在⼯作期间,丙休息了整数天,⽽甲和⼄⼀直⼯作⾄完成,最后完成这项⼯程也⽤了整数天,那么丙休息了天.例5、实验⼩学的五年级学⽣租车去野外开展“⾛向⼤⾃然,热爱⼤⾃然”活动,所有的学⽣和⽼师共306⼈恰好坐满了5辆⼤巴车和3辆中巴车,已知每辆中巴车的载客⼈数在20⼈到25⼈之间,求每辆⼤巴车的载客⼈数.例6、公鸡1只值钱5,母鸡⼀只值钱3,⼩鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、⼩鸡各买⼏只?考点三:不定⽅程与⽣活中的应⽤题例1、某地⽤电收费的标准是:若每⽉⽤电不超过50度,则每度收5⾓;若超过50度,则超出部分按每度8⾓收费.某⽉甲⽤户⽐⼄⽤户多交3元3⾓电费,这个⽉甲、⼄各⽤了多少度电?例2、马⼩富在甲公司打⼯,⼏个⽉后⼜在⼄公司兼职,甲公司每⽉付给他薪⾦470元,⼄公司每⽉付给他薪⾦350元.年终,马⼩富从两家公司共获薪⾦7620元.他在甲公司打⼯个⽉,在⼄公司兼职个⽉.例3、⼩明、⼩红和⼩军三⼈参加⼀次数学竞赛,⼀共有100道题,每个⼈各解出其中的60道题,有些题三⼈都解出来了,我们称之为“容易题”;有些题只有两⼈解出来,我们称之为“中等题”;有些题只有⼀⼈解出来,我们称之为“难题”.已知每个题都⾄少被他们中的⼀⼈解出,则难题⽐容易题多道.例4、某男孩在2003年2⽉16⽇说:“我活过的⽉数以及我活过的年数之差,到今天为⽌正好就是111.”请问:他是在哪⼀天出⽣的?课堂狙击1、甲、⼄⼆⼈搬砖,甲搬的砖数是18的倍数,⼄搬的砖数是23的倍数,两⼈共搬了300块砖.问:甲、⼄⼆⼈谁搬的砖多?多⼏块?2、单位的职⼯到郊外植树,其中有男职⼯,也有⼥职⼯,并且有13的职⼯各带⼀个孩⼦参加.男职⼯每⼈种13棵树,⼥职⼯每⼈种10棵树,每个孩⼦都种6棵树,他们⼀共种了216棵树,那么其中有多少名男职⼯?3、14个⼤、中、⼩号钢珠共重100克,⼤号钢珠每个重12克,中号钢珠每个重8克,⼩号钢珠每个重5克.问:⼤、中、⼩号钢珠各有多少个?实战演练4、某服装⼚有甲、⼄两个⽣产车间,甲车间每天能⽣产上⾐16件或裤⼦20件;⼄车间每天能⽣产上⾐18件或裤⼦24件.现在要上⾐和裤⼦配套,两车间合作21天,最多能⽣产多少套⾐服?5、每辆⼤汽车能容纳54⼈,每辆⼩汽车能容纳36⼈.现有378⼈,要使每个⼈都上车且每辆车都装满,需要⼤、⼩汽车各⼏辆?6、某区对⽤电的收费标准规定如下:每⽉每户⽤电不超过10度的部分,按每度0.45元收费;超过10度⽽不超过20度的部分,按每度0.80元收费;超过20度的部分按每度1.50元收费.某⽉甲⽤户⽐⼄⽤户多交电费7.10元,⼄⽤户⽐丙⽤户多交3.75元,那么甲、⼄、丙三⽤户共交电费多少元?(⽤电都按整度数收费)7、甲、⼄、丙、丁、戊五⼈接受了满分为10分(成绩都是整数)的测验.已知:甲得了4分,⼄得了最⾼分,丙的成绩与甲、丁的平均分相等,丁的成绩刚好等于五⼈的平均分,戊⽐丙多2分.求⼄、丙、丁、戊的成绩.课后反击1、某⼈打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各⼏发?2、⼩花狗和波斯猫是⼀对好朋友,它们在早晚见⾯时总要叫上⼏声表⽰问候.若是早晨见⾯,⼩花狗叫两声,波斯猫叫⼀声;若是晚上见⾯,⼩花狗叫两声,波斯猫叫三声.细⼼的⼩娟对它们的叫声统计了15天,发现它们并不是每天早晚都见⾯.在这15天内它们共叫了61声.问:波斯猫⾄少叫了多少声?3、⼩伟听说⼩峰养了⼀些兔和鸡,就问⼩峰:“你养了⼏只兔和鸡?”⼩峰说:“我养的兔⽐鸡多,鸡兔共24条腿.”那么⼩峰养了多少兔和鸡?4、有两⼩堆砖头,如果从第⼀堆中取出100块放到第⼆堆中去,那么第⼆堆将⽐第⼀堆多⼀倍.如果相反,从第⼆堆中取出若⼲块放到第⼀堆中去,那么第⼀堆将是第⼆堆的6倍.问:第⼀堆中的砖头最少有多少块?5、某次数学竞赛准备了35⽀铅笔作为奖品发给⼀、⼆、三等奖的学⽣,原计划⼀等奖每⼈发给6⽀,⼆等奖每⼈发给3⽀,三等奖每⼈发给2⽀,后来改为⼀等奖每⼈发13⽀,⼆等奖每⼈发4⽀,三等奖每⼈发1⽀.那么获⼆等奖的有⼈.6、蓝天⼩学举⾏“迎春”环保知识⼤赛,⼀共有100名男、⼥选⼿参加初赛,经过初赛、复赛,最后确定了参加决赛的⼈选.已知参加决赛的男选⼿的⼈数,占初赛的男选⼿⼈数的20%;参加决赛的⼥选⼿的⼈数,占初赛的⼥选⼿⼈数的12.5%,⽽且⽐参加初赛的男选⼿的⼈数多.参加决赛的男、⼥选⼿各有多少⼈?7、甲、⼄两⼈各有⼀袋糖,每袋糖都不到20粒.如果甲给⼄⼀定数量的糖后,甲的糖就是⼄的2倍;如果⼄给甲同样数量的糖后,甲的糖就是⼄的3倍.甲、⼄两⼈共有多少粒糖?1、(资优博雅杯)⽤⼗进制表⽰的某些⾃然数,恰等于它的各位数字之和的16倍,则满⾜条件的所有⾃然数之和为___________________.2、(我爱数学夏令营)将⼀群⼈分为甲⼄丙三组,每⼈都必在且仅在⼀组.已知甲⼄丙的平均年龄分为37,23,41.甲⼄两组⼈合起来的平均年龄为29;⼄丙两组⼈合起来的平均年龄为33.则这⼀群⼈的平均年龄为 .3、(迎春杯复赛)在新年联欢会上,某班组织了⼀场飞镖⽐赛.如右图,飞镖的靶⼦分为三块区域,分别对应17分、11分和4分.每⼈可以扔若⼲次飞镖,脱靶不得分,投中靶⼦就可以得到相应的分数.若恰好投在两块(或三块)区域的交界线上,则得两块(或三块)区域中分数最⾼区域的分数.如果⽐赛规定恰好投中120分才能获奖,要想获奖⾄少需要投中次飞镖.考点⼀:不定⽅程与数论重点回顾直击赛场考点⼆:不定⽅程与应⽤题考点三:不定⽅程与⽣活中的应⽤题不定⽅程的试值技巧1、奇偶性2、整除的特点(能被2、3、5等数字整除的特性)3、余数性质的应⽤(和、差、积的性质及同余的性质) ?本节课我学到我需要努⼒的地⽅是名师点拨学霸经验。
繁分数的运算繁分数的运算,涉及分数与小数的定义新运算问题,综合性较强的计算问题.1. 繁分数的运算必须注意多级分数的处理,如下所示:甚至可以简单地说:“先算短分数线的,后算长分数线的”.找到最长的分数线,将其上视为分子,其下视为 分母.2. -般情况下进行分数的乘、除运算使用真分数或假分数,而不使用带分数.所以需将帯分数化为假分数.3. 某些时候将分数线视为除号,可使繁分数的运算更加直观.4. 对于定义新运算,我们只需按题屮的定义进行运算即可.5. 本讲要求大家对分数运算有很好的掌握,可参阅《思维导引详解》五年级 [第1讲 循环小数与分数].第一届“华罗庚金杯”少年数学邀请赛•决赛一试第1题2. 计算:【分析与解】 注意,作为被除数的这个繁分数的分子、分母均含有19-.于是,我们想到改变运算顺序,如果分9子与分母在19丄后的两个数字的运算结果一致,那么作为被除数的这个繁分数的值为1;如果不一致,也不会增加 9 我们的计算量.所以我们决定改变作为被除数的繁分数的运算顺序.而作为除数的繁分数,我们注意两个加数的分母相似,于是统一通分为1995X0.5. 具体过程如下:1・计算:1x44 18 2 6【分析与解】原式二 7 1 - + -4 613--12 32323~8=417 128【典型问题】第五届“华罗庚金杯”少年数学邀请赛•复赛第1题5 9 _19^(+3 帯-5・22) 1993x04 1 6原式二£—粵---------- -( +竺)19 沪寻+ 5.22) 1995x0.5 199519--1 321V9 z 1993x0.4 4x0.4x0.5x二—三---- ( --------- + ---------- )19§一132 1995x0.4 1995x0.59- '1 1993 +2 0.4、| 0.4 」二1十( ---- X—) = 14-——=1-1995 0-5 0.5 4觀趣级数,兆京市第三届“迎春杯”数学竞赛•决赛第一題第1题3. ------------------------ 计算:1 :i+r1 ------1987■八~( 1 | 1986 1987 【分析与解】原式二1 =1------------------- 二]| 1987 3973 39731986"J - - •・,>,•… - 、广./ •”(g)(®级数:車*1999年仝国小学数学奥林匹克•决赛B卷第2題1 Q4•计算:已知二------ --- ,则x等于多少?l+t112+-TX+4【分析与解】方法一:——L一=X 4交叉相乘有 88x+66=96x+56, x=l. 25. 方法二有1 + —=- = 1 + -,2 + 占8 8X + 4 1+2+4X +1所以2 + —x+-41I 4x + l8x + 61 3;所以x+厂厂那么X-1.25.5.求4,43,443,…,44...43这10 个数的和.【分析与解】方法一:4+43+443 十...+ 44 (43)x ---------- V --------- '9个4二 4 + (44-1) + (444-1) + ・..+ (^£-1)10个44= 4 + 44 + 444 + ... + 44_4-9=-x(9 + 99 + 999 + ... + 999...9)-9 1()个 4 9 ' 10彳「9‘4=_X [(IO _I )+(IOO _I )+(IOOO _I )+…+Q22^g_i )]_9 9 io¥o 4二—xl 11.100 —9 二4938271591. Q v ---- v -- '9个1方法二:先计算这10个数的个位数字和为3x9+4=30;再计算这10个数的亿位数字和为4X2=8,加上千万位的进位的1,为8 + 1二回; 最后计算这10个数的十亿位数字和为4X1二4,加上亿位上没有进位,即为回. 所以,这10个数的和为4938271591.翅钱级数:車 lg95年全国小学数学奥林匹克•决赛A 卷第2题6. 如图1-1,每一线段的端点上两数之和算作线段的长度,那么图中6条线段的长度之和是多少?图1-1再计算这10个数的十位数字和为4X9=36, 加上个位的进位的3, 再计算这10个数的百位数字和为4X8=32, 加上十位的进位的3,再计算这10个数的千位数字和为4X7=28, 加上百位的进位的3, 为 28 + 3二3也; 再计算这10个数的万位数字和为4X6二24, 加上千位的进位的3, 为 24+3 = 20; 再计算这10个数的十万位数字和为4X5二20, 加上万位的进位的2,为20 + 2 = 2回; 再计算这10个数的百万位数字和为4X4=16, 加上十万位的进位的2,为16 + 2 = 1園; 再计算这10个数的千万位数字和为4X3=12, 加上百万位的进位的1,为12 + 1 = 1国;【分析与解】 因为每个端点均有三条线段通过,所以这6条线段的长度之和为:3 x (丄 + 丄 + 0.6 + 0.875) = 1 +0.75+1.8+2.625=6」75=6—3 440【分析与解】原式1996年全国小学数学奥林匹克•初赛B 卷第5题8规定⑶=2X3X4,⑷",⑸十5X6, (K )W ••••如果嵩一盅二帚口,那么方框内应填的数是多少?(17) ]_16xl7xl8「I 而_ "15x16x17- ~5北京市第二届“迎春杯”数学竞赛•决赛第二题第2题9. 从和式丄+丄+丄+丄+丄+丄中必须去掉哪两个分数,才能使得余下的分数之和等于1?2 4 6 8 10 12【分析与解】 因为丄+丄=丄,所以丄,丄,丄,丄的和为1,因此应去掉丄与丄.6 12 42 4 6 12 8 10(g)酸级数:卓"-1989年全国小学数学奧林匹克•决赛第4题10. 如图1-2排列在一个圆圈上10个数按顺时针次序可以组成许多个整数部分是一位的循坏小数,例如 1.892915929.那么在所有这种数屮。
小学数学奥数基础教程(六年级)
本教程共30讲第6讲
巧用单位“1”
在工程问题中,我们往往设工作总量为单位“1”。
在许多分数应用题中,都会遇到单位“1”的问题,根据题目条件正确使用单位“1”,能使解答的思路更清晰,方法更简捷。
分析:因为第一天、第二天都是与全书比较,所以应以全书的页数为单位
答:这本故事书共有240页。
分析与解:本题条件中单位“1”的量在变化,依次是“全书的页数”、“第一天看后余下的页数”、“第二天看后余下的页数”,出现了3个不同的单位“1”。
按照常规思路,需要统一单位“1”,转化分率。
但在本题中,不统一单位“1”反而更方便。
我们先把全书看成“1”,
看成“1”,就可以求出第三天看后余下的部分占全书的
共有多少本图书?
分析与解:故事书增加了,图书的总数随之增加。
题中出现两个分率,
这给计算带来很多不便,需要统一单位“1”。
统一单位“1”的一个窍门就是抓“不变量”为单位“1”。
本题中故事书、图书总数都发生了变化,而其它书的本数没有变,可以以
图书室原来共有图书
分析与解:与例3类似,甲、乙组人数都发生了变化,不变量是甲、乙组的总人数,所以以甲、乙组的总人数为单位“1”。
例5公路上同向行驶着三辆汽车,客车在前,货车在中,小轿车在后。
在某一时刻,货车与客车、小轿车的距离相等;走了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车,再过多少分钟,货车追上客车?
分析与解:根据“在某一时刻,货车与客车、小轿车的距离相等”,设这段距离为单位“1”。
由“走了10分钟,小轿车追上了货车”,可知小轿
可知小轿车(10+5)分钟比客车多行了两个这样的距离,每分钟多行这段距离的
两班各有多少人?
乙班有84-48=36(人)。
练习7
树上原有多少个桃?
剩下的部分收完后刚好又装满6筐。
共收西红柿多少千克?
7.六年级两个班共有学生94人,其中女生有39人,已知一班的女生占本
答案与提示练习7 1.35个。
2.60个。
3.64吨。
4.384千克。
6.男生15人,女生21人。
7.一班45人,二班49人。