小学数学交叉问题集合法奥数讲座
- 格式:doc
- 大小:36.50 KB
- 文档页数:3
交叉问题集合法在典型应用题中,由于两个或三个数量所涉及到的对象有交叉关系,这种关系可以用下面的示意图表示出来:其中,符号A∩B表示同时属于A、B的部分;A∩C表示同时属于A、C的部分;B∩C表示同时属于B、C的部分;A∩B∩C表示同时属于A、B、C的部分。
我们就把这类问题称为“交叉”问题。
请看下面的两个例子。
(1)某班参加文娱活动的有35人,参加体育活动的有38人,既参加文娱活动又参加体育活动的有25人。
问参加这两类活动的总人数是多少?显然,本题中的数量关系可以用图(①)来示意。
即A表示参加文娱活动的(记|A|=35);B表示参加体育活动的(记|B|=38);A∩B就表示两类活动同时参加的(记|A∩B|=25)。
那么,要求参加这两类活动的总人数,在示意图中是A、B两圆总共覆盖了的部分,我们用符号A∪B表示。
想一想,你能根据示意图求出|A∪B|=?(2)某班参加文娱活动的有38人,参加体育活动的有35人,参加绘画活动的有30人,参加文娱和体育活动的有32人,参加文娱和绘画活动的有28人,参加体育和绘画活动的有25人,参加文娱、体育和绘画活动的有20人。
问这个班参加三类活动的总人数是多少?显然,本题中的数量关系可用图(②)来示意。
即A表示参加文娱活动的(记|A|=38),B表示参加体育活动的(记|B|=35),C表示参加绘画活动的(记|C|=30),A∩B表示参加文娱和体育活动的(记|A∩B|=32),A∩C表示参加文娱和绘画活动的(记|A∩C|=28),B∩C表示参加体育和绘画活动的(记|B∩C|=25),A∩B∩C表示参加文娱、体育和绘画三类活动的(记|A∩B∩C|=20)。
那么,要求参加这三类活动的总人数,在示意图中就是A、B、C三个圆总共覆盖了的部分。
我们用符号A∪B∪C表示。
想一想,你能根据示意图求出|A∪B∪C|=?如果分别用A∪B和A∪B∪C表示图(①)中两个圆和图(②)中三个圆所覆盖了的部分。
- 1 -小学四年级奥数辅导讲座第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学人教新版六年级上册实用资料逻辑推理内容概述体育比赛形式的逻辑推理问题,其中存在的呼应——“一队的胜、负、平分对应着另一队的负、平、胜”对解题有重要作用,有时宜将比赛情况用点以及连这些点的线来表示.需要从整体考虑,涉及数量比较、整数分解等具有一定综性的逻辑推理问题.典型问题1.共有4人进行跳远、百米、铅球、跳高4项比赛,规定每个单项中,第一名记5分,第二名记3分,第三名记2分,第四名记1分.已知在每一单项比赛中都没有并列名次,并且总分第一名共获17分,其中跳高得分低于其他项得分;总分第三名共获11分,其中跳高得分高于其他项得分.问总分第二名在铅球项目中的得分是多少?【分析与解】每个单项的4人共得分5+3+2+1=11分,所以4个单项的总分为11×4=44分,而第一,三名得分为17、11分,所以第二、四名得分之和为44(1711)16-+=分其中第四名得分最少为4分,此时第二名得分最高,为16-4=12分;又因为第三名为11分,那么第二名最低为12分;那么第二名只能为12分,此时第四名4分.于是,第一、二、三、四名的得分依次为17、12、1l、4分,而17只能是5+5+5+2,4只能是1+1+1+1.不难得到下表:由表知总分第二名在铅球项目中的得分是3分.2.4支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.比赛结果,各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?【分析与解】四个队共赛了24436 2C⨯==场,6场总分m在12(=6×2)与18(=6×3)之间.由于m是4个连续自然数的和,所以m=2+3+4=5=14或m=3+4+5=18.如果m=18,那么每场都产生3分,没有平局,但5=3+1+1表明两场踢平,矛盾.所以m=14,14=3×2+2×4表明6场中只有2场分出胜负.此时第一、二、三、四名得分依次为5、4、3、2.则第三名与所有人打平,那么第二名没有了平局,只能是第一名与第四名打平,这样第一名还有1局胜,第二名还有1局负,所以第一名胜第二名.即输给第一名的队得4分.如下图所示,在两队之间连一条线表示两队踢平,画一条,A B →,表示A 胜,B 各队用它们的得分来表示.评注:常见的体育比赛模式N 个队进行淘汰赛,至少要打1N -场比赛:每场比赛淘汰一名选手;N 个队进行循环赛,一共要打2(1)2N N N C -=场比赛:每个队要打1N -场比赛. 循环赛中常见的积分方式:①两分制:胜一场得2分,平一场得1分,负一场得0分;核心关系:总积分=2×比赛场次;②三分制:胜一场得3分,平一场得1分,负一场得O 分;核心关系:总计分=3×比赛场次-1×赛平场次.3. 6支足球队进行单循环比赛,即每两队之间都比赛一场.每场比赛胜者得3分,负者得0分,平局各得1分.现在比赛已进行了4轮,即每队都已与4个队比赛过,各队已赛4场的得分之和互不相同.已知总得分居第三位的队共得7分,并且有4场球踢成平局,那么总得分居第五位的队最多可得多少分?最少可得多少分?【分析与解】 每轮赛3场,最多产生339⨯=分,四轮最多4936⨯=分.现在有4场踢成平局,每平一场少1分,所以总分为364132-⨯=.前三名得分的和至少为78924.++=所以后三名的得分的和至多为32248.-=第5名如果得4分,则后三名的得分的和至少为459,+=这不可能,所以第5名最多得3分,图(a )为取3分时的一种可能的赛况图.显然第5名最少得1分,图(b)为取1分时的一种可能的赛况图.评注:以下由第5名得分情况给出详细赛况:4.某商品的编号是一个三位数.现有5个三位数:874,765,123,364,925,其中每一个数与商品编号,恰好在同一位上有一个相同的数字.那么这个三位数是多少?【分析与解】方法一:每一个与商品编号,恰好在同一位上有一个相同的数字.五个数,就要有五次相同,列出这五个数:874,765, 123,364,925百位上五个数各不相同,十位上有两个6和两个2,个位上有两个4和两个5.因此,商品编号的个位数字一定和给定5个数中的两个个位数字相同,商品编号的十位数字一定和给定5个数中的两个十位数字相同,商品编号的百位数字只能跟5个数中的一个百位数字相同.若商品编号的个位数字是5,我们就把第二个和第五个数拿走,剩下的三个数的十位数字各不相同,无法满足题目的要求(事实上,十位数字只能取7,而十位上只有一个7).若商品编号的个位数字是4,拿走第一和第四个数后,十位上仍有两个2,可取十位数字为2,再拿走第三和第五个数,剩第二个数,它的百位是7,所以商品的编号为724.如果一个数与商品编号在某一位有相同数字,那么这个数与商品编号不会再有另外相同数字.因此解的过程中用“拿走”这一说法是恰当的.方法二:商品编号的个位数字只可能是3、4、5.如果是3,那么874,765,364,925这4个数中至多有三个数与商品编号有相同数字(百位有一个相同,十位有两个相同),还有一个数与商品编号无相同数字,矛盾.如果是5,那么765,925的个位数字是5,从而商品号码的十位数字不是6、2,因此必须是7.这时123、364中至少有一个与商品号码无相同数字,矛盾.所以,该商品号码的个位数字只能是4,而且这个号码应为724.即这个三位数为724.5.某楼住着4个女孩和2个男孩,他们的年龄各不相同,最大的10岁,最小的4岁,最大的女孩比最小的男孩大4岁,最大的男孩比最小的女孩大4岁.求最大的男孩的岁数.【分析与解】本题中最大的孩子,可能是男孩,可能是女孩.-=岁,则4当最大的孩子为女孩时,即最大的女孩为10岁,那么最小的男孩为1046岁定是最小的女孩,那么最大的男孩是4+4:8岁,满足题意;当最大的孩子为男孩时,即最大的男孩为10岁,那么最小的女孩为10—4=6岁.则4岁一定时最小的男孩,那么最大的女孩为4+4=8岁,也就是说4个年龄不同的女孩的年龄在6—8之间,显然得不到满足.于是,最大的男孩为8岁..6.某次考试满分是100分,A,B,C,D,E这5个人参加了这次考试.A说:“我得了94分.”B说:“我在5个人中得分最高.”C说:“我的得分是A和D的平均分,且为整数.”D说:“我的得分恰好是5个人的平均分.”E说:“我比C多得了2分,并且在5个人中居第二.”问这5个人各得了多少分?【分析与解】 B、E分别为第一、二名,C介于A、D之间,则当A为第三时,C为第四,D为第五,得5人平均分的人为最后一名,显然不满足.于是D、C、A只能依次为第三、四、五名,有B、E、D、C、A依次为第一、二、三、四、五名,A为94分,C为D、A得平均分,且为整数,所以D的得分为偶数,只可能为98或96(如果为100,则B、E无法取值),D、C、A得分依次为98、96、94或96、95、94,有E 比C高2分,则E、D、C、A得分依次为98、98、96、94或97、96、95、94.对应5个人的平均分为98或96,而B的得分对应为104或98,显然B得不到104分.所以B、E、D、C、A的得分只能依次是98、97、96、95、94.7.在一次射击练习中,甲、乙、丙3位战士各打了4发子弹,全部中靶.其命中情况如下:①每人4发子弹所命中的环数各不相同;②每人4发子弹所命中的总环数均为17环;③乙有2发命中的环数分别与甲其中的2发一样,乙另2发命中的环数与丙其中的2发一样:④甲与丙只有1发环数相同;⑤每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?【分析与解】条件较多,一次直接求出满足所有条件的情况有些困难,争把条件分类,再逐个满足之.第一步:使用枚举法找出符合每发最多不超过7环、四发子弹命中的环型不相同,和为17环的所有情况;第二步:在这些情况中去掉不符合条件③、④的,剩下的就是符合全部条利的情况,即为答案.满足条件①、②、⑤的只有如下四种情况:甲乙.763117()17 .754117()AB+++=⎫⎬+++=⎭杯都有和;杯丙.753217()45 .654217()CD+++=⎫⎬+++=⎭杯都有和杯从上述四个式子中看出式A与式B有数字1、7相同;式B与式D有数字4和5相同.式B 既与式A有两个数字相同,又与式D有两个数字相同,式B就是乙.式A与式D对应为甲和丙.式A与式D相同的数字是6,所以甲和丙相同的环数是6.。
五年级奥数集训专题讲座(一) ----有趣的平均数问题主讲:谭发佳我们研究平均数问题,首先要掌握以下基本数量关系:①总数量÷总份数=平均数②平均数×总份数=总数量③总数量÷平均数=总份数。
在总数量不变情况下‚移多补少‛,得到平均数是解决这类题的重要思想和解题思路,找准总数量与对应的总份数是难点。
1.修路队修两条公路,第一条路长900米,用10天修完,第二条路的长比第一条的2倍多100米,用的时间是第一条的1.8倍,这个修路队,修完这两条公路平均每天修多少米?分析:要想求出结果,就要先求出两条路的总长(总数量),再求出修完这条公路共需要的天数(总份数)和平均数。
解:(900+900×2+100)÷(10+10×1.8)=2800÷28=100(米)答:修完这两条公路平均每天修100米。
例2.一个水果店三种水果的单价平均是1.6元,已知香蕉比苹果贵0.2元,比柚子便宜0.5元,请你算一算每种水果的单价多少元。
分析:这是一道平均数问题逆向思考题,根据已知条件给出平均价钱是1.6元,这样就可以求出三种水果单价和的钱数,即1.6×=4.8(元),在此基础上再根据三种水果单价的数量之间的关系,运用假设思想求出问题的答案,可以用下面的线段图表示上述关系。
解:(1.6×3+0.2-0.5)÷3=4.5÷3=15(元)1.5-0.2=1.3(元)1.5+0.5=2(元)答:香蕉单价是1.5元,苹果单价是1.3元,柚子的单价是2元。
想一想,如果假设和苹果单价一样多,该怎样列式?例3.五名裁判给一名运动员评分,去掉一个最高分和一个最低分,平均得分9.58分;如果只去掉一个最高分,均分为9.46分;如果只去掉一个最低分,均分为9.66分。
求这名运动员的最高得分和最低得分分别是多少?分析:该题实质上是已知部分数的平均数,求个别数.依题意:去掉最高分和最低分后,该运动员的总得分为:9.58×3(分);去掉最高分后,该运动员的总得分为:9.46×4(分);去掉最低分后,该运动员的总得分为:9.66×4(分);因此,该运动员的最高分为:9.66×4-9.58×3=9.1(分)例4.一辆汽车以每小时100千米的速度从甲地开往乙地,到达乙地后,又以每小时60千米的速度从乙地返回甲地,求这辆汽车往返一次的平均速度.分析:往返一次的平均速度=往返一次的总路程÷往返一次的总时间.这一数量关系是正确解答这道题的关键.由于往返一次的总路程题目没有告诉我们,我们不妨假设甲地到乙地的路程为S千米.所以: S×2÷( S÷100+S÷60) (请根据提示试着思考并解答)我也能行1.甲、乙两数的平均数是1.58,再加上丙则平均数是3.52,丙数是多少?2.在爬山活动中,李林同学上山的速度为每小时0.24千米,6小时到达山顶,然后又以每小时0.4千米的速度沿原路下到山底,请算一算他上、下山的平均速度是多少3.甲乙两数和是194,如果再加上丙数,这时平均数比甲乙两数平均数多2,丙数应是多少?4.玲玲和明明的平均年龄是12岁,明明和林林的平均年龄是14岁,玲玲和林林的平均年龄是15岁,三人中年龄最大的是谁?最小的是谁?5.甲、乙两数的平均数是3.21,丙数是2.64,若再加进丁,则四个数的平均数是3.6,丁是多少?6.五个裁判给一个选手打分,如果去掉最低分,平均分是96.5分,如果去掉最高分,则该选手平均分是91.5分,请你算一算最高分与最低分相差几分?7.小丁上学期数学测验前4次的平均成绩是88分,第五次测验后,平均成绩提高到90分,第五次他考了多少分?8.有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28、36、42、46,那么原来四个数的平均数是多少?四面年级奥数集训专题讲座(二)———盈亏问题主讲:谭发佳盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会不足(亏),求物品的数量和分配对象的数量。
小学数学人教新版六年级上册实用资料几何综合(一)几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】如下图所示,在正六边形ABCDEF中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC中,DC=3BD,DE=EA.若三角形ABC的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯= 而E 为AD 中点,所以13.28DEC ADC S S ∆∆==连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5.同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD 、AP ,396.42DPG DFP APD PG PG S S S FP FP ∆∆∆===⨯=有925122015872.22ABC AIPD BEPF CGPH IFP DGP EHP S S S S S S S ∆∆∆∆=+++++=+++++=Y Y Y8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】 有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712.而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78.所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k,宽为8k,则①号正方形的边长为5k,又是整数,所以k为整数,有长方形的面积为962k,不大于100.所以k只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为:22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A,B作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?( 取3.14)【分析与解】有AO=OB ,所以△A OB 为等腰三角形,AO=OC ,所以△A OC 为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-几何综合(二)内容概述勾股定理,多边形的内角和,两直线平行的判别准则,由平行线形成的相似三角形中对应线段和面积所满足的比例关系.与上述知识相关的几何计算问题.各种具有相当难度的几何综合题.典型问题2.如图30-2,已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析与解】 方法一:因为CEFG 的边长题中未给出,显然阴影部分的面积与其有关.设正方形CEFG 的边长为x ,有:=1010=100,ABCD S ⨯正方形2=x ,S 正方形CEFG 21110x-x =DG GF=(10-x)x=,222DGF S ∆⨯又1=1010=50,2ABD S ∆⨯⨯2110x+x =(10+x)x=.22BEF S ∆ 阴影部分的面积为:DGF ABD BEF ABCD CEFG S S S S S ∆∆∆++--正方形正方形2221010100505022x x x x x -+=++--=(平方厘米).方法二:连接FC ,有FC 平行与DB ,则四边形BCFD 为梯形.有△DFB、△DBC共底DB,等高,所以这两个三角形的面积相等,显然,△DBC的面积1⨯⨯=(平方厘米).1010502阴影部分△DFB的面积为50平方厘米.4.如图30-4,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I等于多少度?【分析与解】为了方便所述,如下图所示,标上数字,有∠I=1800-(∠1+∠2),而∠1=1800-∠3,∠2=1800-∠4,有∠I=∠3+∠4-1800同理,∠H=∠4+∠5-1800,∠G=∠5+∠6-1800,∠F=∠6+∠7-1800,∠E=∠7+∠8-1800, ∠D=∠8+∠9-1800,∠C=∠9+∠10-1800,∠B=∠10+∠11-1800,∠A=∠11+∠3-1800则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×(∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11)-9×1800而∠3+∠4+∠5+∠6+∠7+∠8+∠9+∠10+∠11正是9边形的内角和为(9-2)×1800=12600.所以∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=2×12600-9×1800=90006.长边和短边的比例是2:1的长方形称为基本长方形.考虑用短边互不相同的基本长方形拼图,要求任意两个基本长方形之间既没有重叠,也没有空隙.现在要用短边互不相同且最小短边长为1的5个基本长方形拼接成一个更大的长方形.例如,短边长分别是1,2,5,6,12的基本长方形能拼接成大长方形,具体案如图30-6所示.请给出这5个基本长方形所有可能的选择方式.设a1=1<a2<a3<a4<a5分别为5条短边的长度,则我们将这种选择方式记为(a1,a2,a3,a4,a5),这里无需考虑5个基本长方形的拼图方案是否惟一.【分析与解】我们以几个不同的基本长方形作为分类依据,并按边长递增的方式一一列出.第一类情况:以为特征的有7组:第二类情况:以为特征的有6组:第三类情况有如下三组:共有16组解,它们是:(1,2,2.5,5,7.25),(1,2,2.5,5,14.5).(1,2,2.25,2.5,3.625),(1,2,2.25,2.5,7.25). (1,2,5,5.5,6),(1,2,5,6,11),(1,2,2.5,4.5,7),(1,2,2.5,4.5,14), (1,2,5,12,14.5),(1,2,5,12,29), (1,2,2.25,2.5,4.5),(1,2,5,6,12).1020251,,2,,,999⎛⎫ ⎪⎝⎭(1,2,2.4,4.8,5), 131025147813101,,,,,1,,,,636333313⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.8.如图30-8,ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为边AB,BC 的中点.则图形中阴影部分的面积为多少平方厘米?【分析与解】 如下图所示,连接EC ,并在某些点处标上字母,因为AE 平行于DC ,所以四边形AECD 为梯形,有AE:DC=1:2,所以:1:4AEG DCG S S ∆∆=,AGD ECG AEG DCG S S S S ∆∆∆∆⨯=⨯,且有AGD ECG S S ∆∆=,所以:1:2AEG ADG S S ∆∆=,而这两个三角形高相同,面积比为底的比,即EG :GD=1:2,同理FH :HD=1:2. 有AED AEG AGD S S S ∆∆∆=+,而111822AED ABCD S S ∆=⨯⨯=Y (平方厘米) 有EG:GD=:AEG AGB S S ∆∆,所以1612AEG AED S S ∆∆=⨯=+(平方厘米) 21212AGD AED S S ∆∆=⨯=+(平方厘米) 同理可得6HFC S ∆=(平方厘米), 12DCH S ∆=(平方厘米),44624DCG AEG S S ∆∆==⨯=(平方厘米)又GHD DCG DCH S S S ∆∆∆=-=24-12=12(平方厘米)所以原题平行四边形中空白部分的面积为6+6+12=24(平方厘米),所以剩下的阴影部分面积为72-24=48(平方厘米).10.图30-10是一个正方形,其中所标数值的单位是厘米.问:阴影部分的面积是多少平方厘米?【分析与解】 如下图所示,为了方便所叙,将某些点标上字母,并连接BG .设△AEG 的面积为x ,显然△EBG 、△BFG 、△FCG 的面积均为x ,则△ABF 的面积为3x ,120101002ABF S ∆=⨯⨯=即1003x =,那么正方形内空白部分的面积为40043x =. 所以原题中阴影部分面积为400800202033⨯-=(平方厘米).12.如图30-12,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径长都是1.求阴影部分的面积.【分析与解】 如下图所示,左图中的3个阴影部分面积相等,右图中的3个阴影部分的面积也相等.我们把左下图中的每一部分阴影称为A ,右下图中的每一部分阴影称为B .大半圆的面积为13332A B ++小圆的面积219322ππ=⨯⨯=而小圆的面积为π,则9133223A B πππ⎛⎫+=-÷=⎪⎝⎭,原题图中的阴影部分面积为小半圆面积与阴影A 、B 的面积和,即为5236πππ+=14.如图30-14,将长方形ABCD 绕顶点C 顺时针旋转90度,若AB=4,BC=3,AC=5,求AD 边扫过部分的面积.(π取3.14)【分析与解】 如下图所示,如下图所示,端点A 扫过的轨迹为AA A ''',端点D 扫过轨迹为DD D ''',而AD 之间的点,扫过的轨迹在以A 、D 轨迹,AD ,A D ''所形成的封闭图形内,且这个封闭图形的每一点都有线段AD 上某点扫过,所以AD 边扫过的图形为阴影部分.显然有阴影部分面积为A D C ACA ACD S S S S ''''∆∆+--直角扇形直角扇形CD D ,而直角三角形A D C ''、ACD 面积相等.所以=A D C ACA ACD ACA S S S S S S ''''''∆∆+---直角扇形直角扇形CD D 扇形扇形CD D222290909=(54)7.065()36036044AC CD ππππ-=-==平方厘米即AD 边扫过部分的面积为7.065平方厘米.。
十字交叉法巧解小学数学题奥数教练慧思老师:十字交叉法是理科中一个应用比较广泛的重要的方法,数学、化学、物理等学科都会用到十字交叉法,但很多人又只是听说过,却不能熟练运用,很好的运用十字交叉法,有助于快速准确的解决数学问题。
那么,我们小学数学如何运用到十字交叉法呢?下面我们一起来看一下慧思老师在小学数学中如何运用十字交叉法巧解数学问题。
题型一:比较分数的大小我们知道在分数的比较中,同分母分数,分子大的分数值大;同分子分数,分母小的分数值大;异分母分数则要把分母化为同分母分数才能进行比较。
在教学中,我发现让学生记住这几条并不难,可是却非常容易混淆,或者是根本就不会运用。
但是如果运用十字交叉相乘法,学生不但都能很快的得出答案,而且不管什么分数间进行比较都能够通用。
例1:比较大小。
3/8()4/9解析:方法一:常规解法方法二:十字交叉相乘法注:所得的积必须写在分数线上方(即作为新分子)。
从上例很明显可以看出,十字交叉法比较两分数的大小的实质上就是通分。
不过,却省去了学生对分数进行通分的过程和时间,从而一步到位,更简单更直接,只要会乘法的学生,在比较分数之间的大小时基本上都不费吹灰之力了。
题型二:解比例很多老师和学生都知道,解比例的依据是比例的基本性质,即在比例中,两个内项的积等于两个外项的积。
可当比例变化为a/b=c/d(a≠0,c≠0)这种形式时,有些学生便找不着内外项了,或者有某些学生还要把上式化为a:b=c:d(a ≠0,c≠0)的形式,这就走了弯路,浪费了时间不说而且变换后也很容易出错。
解:3x=5×9x=45÷3x=15可见,利用此方法既直观又便于记忆,而且在较复杂的比例中,更能体现出些法的简便性与适用性,由于篇幅有限,在此就不一一介绍了。
答:从学校到小明家的路程有1800米。
题型四:浓度问题如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A和B按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法.判断式: A×a+B×b=(A+B)×c=C×c用十字交叉法表示:(一)基本知识点:1、溶液=溶质+溶剂;2、浓度=溶质/溶液;3、溶质=溶液*浓度;4、溶液=溶质/浓度;(二)例题与解析1. 甲容器中有浓度为4%的盐水250克,乙容器中有某种浓度的盐水若干克。
有些数学题目的问题所求,是由几个条件共同决定的,这时我们可以对每一条进行分别考虑,然后再求满足所有条件的情况。
在考虑问题时,我们把满足每一个条件的情况称为一个集合,用一个圈表示。
那么这些圈的交叉重叠部分就是同时满足这几个条件公共部分,称为交集。
用这种思考方法解题叫做交集法。
另一方面,在运用交集法解题的过程中,常要考虑由于重复、相互包含而引起的多加的数学问题,即包含与排除的问题,也就是常说的“容反”原理。
同时,用交集法解题,要善于使用形象的图示帮助理解题意,搞清数量关系和逻辑关系。
[例1】有50个学生,他们穿的裤子是白色的或黑色的,上衣是蓝色或红色的。
若有14人穿的是蓝色上衣白裤子,31人穿黑裤子,18人穿红上衣,那么穿红上衣黑裤子的学生有分析与解答50个学生中,有14人穿的是蓝色上衣白裤子,则剩下的50-14=36 (人)穿的是红上衣白裤和蓝上衣黑裤子,红上衣黑裤子,又知31人穿黑裤子,则剩下36-31=5(人)穿红上衣白裤子,又知穿红上衣有18人,故18-5=13(人)穿红上衣黑裤子。
[例2】 100名学生,有音乐爱好者53人,体育爱好者72人,那么音乐、体育都爱好的学生至少有几人?至多有几人?思路剖析这100名学生可以分成4部分:①爱好音乐而不爱好体育的同学;②爱好体育而不爱好音乐的同学;③既爱好体育又爱好音乐的同学;④既不爱好音乐又不爱好体育的同学。
如图l所示。
①+③表示爱好音乐的同学53人,②+③表示爱好体育的同学72人。
由于①+②+③+④=100,即有(①+③)+(②+③)-③+④=100,53+72-③+④=100,故有③=25+④。
由③=25+④知,当既不爱好音乐又不爱好体育的人数为0时,既爱好音乐又爱好体育的人数最少为25人。
因为音乐爱好者53人,体育爱好者72人,53<72,所以音乐、体育都爱好的学生至多有53人。
解答53+72-100=25(人)……音乐、体育都爱好的学生最少人数因53<72,所以音乐、体育都爱好的学生至多有53人。
第13讲植树问题内容概述几何图形的设计与构造,本讲讲解一些有关的植树问题.典型问题1.今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:2.今有9盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:3.今有10盆花要在平地上摆成10行,每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行·【分析与解】如下图所示:4.今有20盆花要在平地上摆成18行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:5.今有20盆花要在平地上摆成20行,每行都通过4盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示:第14讲数字谜综合内容概述各种具有相当难度、求解需要综合应用多方面知识的竖式、横式、数字及数阵图等类型的数字谜问题.典型问题1.ABCD表示一个四位数,EFG表示一个三位数,A,B,C,D,E,F,G代表1至9中的不同的数字.已知ABCD+EFG=1993,问:乘积ABCD×EFG的最大值与最小值相差多少?【分析与解】因为两个数的和一定时,两个数越紧接,乘积越大;两个数的差越大,乘积越小.A显然只能为1,则BCD+EFG=993,当ABCD与EFG的积最大时,ABCD、EFG最接近,则BCD尽可能小,EFG尽可能大,有BCD最小为234,对应EFG为759,所以有1234×759是满足条件的最大乘积;当ABCD与EFG的积最小时,ABCD、EFG差最大,则BCD尽可能大,EFG尽可能小,有EFG最小为234,对应BCD为759,所以有1759×234是满足条件的最小乘积;它们的差为1234×759—1759×234=(1000+234)×759一(1000+759)×234=1000×(759—234)=525000.2.有9个分数的和为1,它们的分子都是1.其中的5个是13,17,19,111,133另外4个数的分母个位数字都是5.请写出这4个分数.【分析与解】 l一(13+17+19+111+133)=210133711⨯⨯⨯⨯=1010335711⨯⨯⨯⨯⨯需要将1010拆成4个数的和,这4个数都不是5的倍数,而且都是3×3×7×1l的约数.因此,它们可能是3,7,9,11,21,33,77,63,99,231,693.经试验得693+231+77+9=1010.所以,其余的4个分数是:15,115,145,1385.3.请在上面算式的每个方格内填入一个数字,使其成为正确的等式.【分析与解】1988=2×2×7×7l=4×497,112+14=13,在等式两边同时乘上1497,就得15964+1 1988=11491.显然满足题意.又135+114=110,两边同乘以1142,就得14970+11988=11420.显然也满足.13053+11988=11204,18094+11988=11596均满足.4.小明按照下列算式:乙组的数口甲组的数○1=对甲、乙两组数逐个进行计算,其中方框是乘号或除号,圆圈是加号或减号他将计算结果填入表14—1的表中.有人发现表中14个数中有两个数是错的请你改正.问改正后的两个数的和是多少?【分析与解】 甲组的前三个数0.625,23,914都是小于1的数,21732与这三个数运算后,得5.05,45164,4516;不论减1还是加l 后,这三个数都比21732大,而这是21732与小于1的数运算的结果,因此可以猜想方框内是除号.现在验算一下:21732÷0.625=8132×85=8120=4.05; 21732÷23=8132×32=31564; 21732÷914=8132×149=6316=31516;21732÷3=2732.从上面四个算式来看,圆圈内填加号,这样有三个结果是对的,而4516是错的. 按照算式乙组的数÷甲组的数+1…………………………* 2÷3+1=123,显然不为1.5,上面已认定3是正确的,因此,只有把2改为1.5,才有1.5÷3+1=112,而1.5÷0.625+l=3.4,1.5÷23+1=3.25. 由此可见,确定的算式*是正确的.表中有两个错误,4516应改为41516,2应改为1.5, 41516+112=5+15816=6716. 改正后的两个数的和是6716.5.图14—3中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个项点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法:如果不能,请说明理由.(2)能否使8个三角形顶点上数字之和各不相同?如果能,请给出填数方法;如果不能,请说明理由.【分析与解】 (1)无论怎样填法,都不可以使八个三角形顶点上数字之和相等.事实上,假设存在某种填法使得八个三角形顶点上数字之和都相等,不妨设每个三角形顶点上数字之和为k.在计算八个三角形顶点上数字之和时,大正方形四个顶点上每个数字恰好使用过一次;中正方形四个顶点上每个数字各使用过三次;小正方形四个顶点上每个数字各使用过二次.因此,这八个三角形顶点上数字之和的总和为:8k=(1+2+3+4)+3×(1+2+3+4)+2×(1+2+3+4),即8k=60,k不为整数,矛盾,所以假设是错误的. (2)易知:不可能做到三角形的三个顶点上数字完全相同,所以三角形顶点上数字之和最小为 1 +1+2=4,最大为3+4+4=11.而4~11共8个数,于是有可能使得8个三角形顶点上数字之和各不相同,可如下构造,且填法不惟一.图(a)和图(b)是两种填法.6.图14—5中有11条直线.请将1至11这11个数分别填在11个圆圈里,使每一条直线上所有数的和相等.求这个相等的和以及标有*的圆圈中所填的数.【分析与解】表述1:设每行的和为S,在左下图中,除了a出现2次,其他数字均只出现了1次,并且每个数字都出现了,于是有4S=(1+2+3+…+11)+a=66+a;在右上图中除了a出现5次,其他数字均只出现了1次,并且每个数字都出现了,于是有5S=(1+2+3+…11)+4a=66+4a.综合以上两式466(1) 5664(2) S aS a=+⎧⎨=+⎩,①×5-②×4得66-11a=0,所以a=6,则S=18.考虑到含有*的五条线,有4*+(1+2+3+4+…+11)-t=5S=90.即4*-t=24,由t是1~11间的数且t≠*,可知*=7,而每行相等的和S为18.表述2:如下图所示,在每个圆圈内标上字母,带有*的圆圈标为x,首先考虑以下四条直线:(h、f、a),(i、g、a),(x、d、b),(j、e、c),除了标有a的圆圈外,其余每个圆圈都出现了一次,而标有a的圆圈出现了两次,设每条直线上数字之和为S,则有:(1+11)×11÷2+a=4S,即66+a=4S.再考虑以下五条直线:(h、f、a),(i、g、a),(j、x、a),(e、d、a),(c、b、a),同理我们可得到66+4a=5S.综合两个等式6646645a Sa S+=⎧⎨+=⎩,可得a为6,每条直线上和S为18.最后考虑含x的五条直线:(x、h),(x、g、f),(j、x、a),(x、d、b),(i、x、c).其中除了x 出现了5次,e没有出现,其他数字均只出现了一次,于是可以得到:66+4x-e=5S=90,即4x-e=24,由e是1—11间的数且e≠x可知x=7.即每行相等的和S为18,*所填的数为7.7.一个六位数,把个位数字移到最前面便得到一个新的六位数,再将这个六位数的个位数字移到最前面又得到一个新的六位数,如此共进行5次所得的新数连同原来的六位数共6个数称为一组循环数.已知一个六位数所生成的一组循环数恰巧分别为此数的l倍,2倍,3倍,4倍,5倍,6倍,求这个六位数.【分析与解】方法一:17=..0.142857,27=..0.285714,37=..0.428571,47=..0.571428,57=.. 0.714285,67=..0.857142。
小学数学奥数1-- 6年级培优讲座、习题集、与答案完整版计数问题排列组合讲义1、“IMO”是国际数学奥林匹克的缩写,把这 3 个字母用 3 种不同颜色来写,现有 5 种不同颜色的笔,问共有多少钟不同的写法?分析:从 5 个元素中取 3 个的排列:P(5、3)=5×4×3=602、从数字 0、1、2、3、4、5 中任意挑选 5 个组成能被 5 除尽且各位数字互异的五位数,那么共可以组成多少个不同的五位数?分析:个位数字是 0:P(5、4)=120;个位数字是 5:P(5、4)-P(4、3)=120-24=96,(扣除 0 在首位的排列)合计 120+96 =216另:此题乘法原理、加法原理结合用也是很好的方法。
3、用 2、4、5、7 这 4 个不同数字可以组成 24 个互不相同的四位数,将它们从小到大排列,那么 7254 是第多少个数?分析:由已知得每个数字开头的各有24÷4=6个,从小到大排列 7 开头的从第6×3+1=19 个开始,易知第 19 个是7245,第 20 个7 254。
4、有些四位数由 4 个不为零且互不相同的数字组成,并且这 4 个数字的和等于 12,将所有这样的四位数从小到大依次排列,第 24 个这样的四位数是多少?分析:首位是 1:剩下 3 个数的和是 11 有以下几种情况:⑴2+3+6=11,共有 P(3、3)=6 个;⑵2+4+5=11,共有 P(3、3)=6 个;首位是 2:剩下 3 个数的和是 10 有以下几种情况:⑴1+3+6=10,共有 P(3、3)=6 个;⑵1+4+5=10,共有 P(3、3)=6 个;以上正好 24 个,最大的易知是 2631。
5、用 0、1、2、3、4 这 5 个数字,组成各位数字互不相同的四位数,例如 1023、2341 等,求全体这样的四位数之和。
分析:这样的四位数共有 P(4、1)×P(4、3)=96 个1、2、3、4 在首位各有96÷4=24 次,和为(1+2+3+4)×1000×24=240000;1、2、3、4 在百位各有24÷4×3=18 次,和为(1+2+3+4)×100×18=18000;1、2、3、4 在十位各有24÷4×3=18 次,和为(1+2+3+4)×10×18=1800;1、2、3、4 在个位各有24÷4×3=18 次,和为(1+2+3+4)×1×18=180;总和为 240000+18000+1800+180=2599806、计算机上编程序打印出前 10000 个正整数:1、2、3、……、10000 时,不幸打印机有毛病,每次打印数字 3 时,它都打印出 x,问其中被错误打印的共有多少个数?分析:共有 10000 个数,其中不含数字 3 的有:五位数 1 个,四位数共8×9×9×9=5832 个,三位数共8×9×9=648 个,二位数共8×9=72个,一位数共8 个,不含数字3 的共有1+5832+648+72+8=6561 所求为10000-6561=3439 个7、在 1000 到 9999 之间,千位数字与十位数字之差(大减小)为 2,并且 4 个数字各不相同的四位数有多少个?分析:1□3□结构:8×7=56,3□1□同样 56 个,计 112 个;2□4□结构:8×7=56,4□2□同样 56 个,计 112 个;3□5□结构:8×7=56,5□3□同样 56 个,计 112 个;4□6□结构:8×7=56,6□4□同样 56 个,计 112 个;5□7□结构:8×7=56,7□5□同样 56 个,计 112 个;6□8□结构:8×7=56,8□6□同样 56 个,计 112 个;7□9□结构:8×7=56,9□7□同样 56 个,计 112 个;2□0□结构:8×7=56,以上共112×7×56=840个8、如果从 3 本不同的语文书、4 本不同的数学书、5 本不同的外语书中选取 2 本不同学科的书阅读,那么共有多少种不同的选择?分析:因为强调 2 本书来自不同的学科,所以共有三种情况:来自语文、数学:3×4=12;来自语文、外语:3×5=15;来自数学、外语:4×5=20;所以共有 12+15+20=479、某条铁路线上,包括起点和终点在内原来共有 7 个车站,现在新增了 3 个车站,铁路上两站之间往返的车票不一样,那么,这样需要增加多少种不同的车票?分析:方法一:一张车票包括起点和终点,原来有 P(7、2)=42 张,(相当于从 7 个元素中取 2 个的排列),现在有 P(10、2)=90,所以增加 90-42=48 张不同车票。
小学数学专题讲座一、开场语尊敬的各位听众,大家好!今天,我们聚集在这里,共同探讨小学语文教学的诸多方面。
我非常荣幸能在这里与大家分享我的一些想法和经验。
二、主题介绍小学语文教学,无疑是教育领域中至关重要的一环。
它承载着为学生打下语言基础,培养阅读理解能力,激发写作兴趣的重要任务。
在这个阶段,孩子们不仅需要掌握基本的语言技能,更需要通过不断的探索和实践,培养出独立思考、创新思维的能力。
三、教学内容和方法在教学内容上,除了基础的字词教学,我们还应该学生的阅读和写作能力。
阅读是获取知识的重要途径,而写作则是表达自我、沟通交流的重要手段。
在教学过程中,我们应该注重培养学生的阅读兴趣,引导他们通过阅读来开阔视野,提高理解能力。
同时,写作训练也不可忽视,我们可以从简单的日记开始,逐步提高学生的写作技巧。
教学方法上,我们应尽可能地多样化。
对于小学生来说,兴趣是学习的最好动力。
因此,我们可以采用故事、游戏、音乐等多种形式来激发学生的学习热情。
我们还应注重实践教学,让学生在实际操作中掌握知识,提高技能。
四、学生个体差异每个学生都是独一无二的个体,他们在学习上有着不同的特点和需求。
因此,我们应该学生的个体差异,因材施教。
对于那些在学习上遇到困难的学生,我们应给予更多的关心和帮助;对于那些学有余力的学生,我们则应提供更多的挑战和机会。
五、结语小学语文教学是一项充满挑战和机遇的任务。
作为教师,我们应该始终保持热情和耐心,用科学的方法引导孩子们在知识的海洋中探索和成长。
我们还应学生的心理健康和情感需求,帮助他们建立正确的价值观和世界观。
我相信,只要我们用心去教,用心去听,我们就能为孩子们创造一个愉快且富有成效的学习环境。
再次感谢大家的参与!标题:小学数学专题讲座——小学数学计算能力的培养“精编版”一、引言在当今社会,数学计算能力的重要性不言而喻。
无论是在日常生活,还是在工作学习中,计算能力都是每个人必备的基本技能。
尤其在小学数学教育中,计算能力的培养是重中之重。
交叉问题集合法
在典型应用题中,由于两个或三个数量所涉及到的对象有交叉关系,这种关系可以用下面的示意图表示出来:
其中,符号
A∩B表示同时属于A、B的部分;
A∩C表示同时属于A、C的部分;
B∩C表示同时属于B、C的部分;
A∩B∩C表示同时属于A、B、C的部分。
我们就把这类问题称为“交叉”问题。
请看下面的两个例子。
(1)某班参加文娱活动的有35人,参加体育活动的有38人,既参加文娱活动又参加体育活动的有25人。
问参加这两类活动的总人数是多少
显然,本题中的数量关系可以用图(①)来示意。
即
A表示参加文娱活动的(记|A|=35);
B表示参加体育活动的(记|B|=38);
A∩B就表示两类活动同时参加的(记|A∩B|=25)。
那么,要求参加这两类活动的总人数,在示意图中是A、B两圆总共覆盖了的部分,我们用符号A∪B表示。
想一想,你能根据示意图求出|A∪B|=
(2)某班参加文娱活动的有38人,参加体育活动的有35人,参加绘画活动的有30人,参加文娱和体育活动的有32人,参加文娱和绘画活动的有28人,参加体育和绘画活动的有25人,参加文娱、体育和绘画活动的有20人。
问这个班参加三类活动的总人数是多少
显然,本题中的数量关系可用图(②)来示意。
即
A表示参加文娱活动的(记|A|=38),
B表示参加体育活动的(记|B|=35),
C表示参加绘画活动的(记|C|=30),
A∩B表示参加文娱和体育活动的(记|A∩B|=32),
A∩C表示参加文娱和绘画活动的(记|A∩C|=28),
B∩C表示参加体育和绘画活动的(记|B∩C|=25),
A∩B∩C表示参加文娱、体育和绘画三类活动的(记|A∩B∩C|=20)。
那么,要求参加这三类活动的总人数,在示意图中就是A、B、C三个圆总共覆盖了的部分。
我们用符号A∪B∪C表示。
想一想,你能根据示意图求出|A∪B∪C|=如果分别用A∪B和A∪B∪C表示图(①)中两个圆和图(②)中三个圆所覆盖了的部分。
那么,你能分别写出图(①)中
|A∪B|与|A|、|B|、|A∩B|及图(②)中
|A∪B∪C|与|A|、|B|、|C|、|A∩B|、|A∩C|、|B∩C|、|A∩B∩C|之间的关系式吗
【规律】
图(①)中:
|A∪B|=|A|+|B|-|A∩B|。
图(②)中:
|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|。
【练习】
1.团结小学三(2)班共有学生45人,都至少参加了一项课外活动。
参加文娱活动的有28人,参加绘画活动的有34人。
问同时参加两项活动的有多少人
2.某天四(2)班完成语文作业的有37人,完成数学作业的有42人,两科作业都完成的有31人。
问本班今天共有多少人做了作业
3.某班共有学生48人,都至少完成了一科作业。
完成语文作业的有37人,完成数学作业的有42人,完成自然作业的有28人,完成语文和数学两科作业的有31人,完成语文和自然两科作业的有25人,完成数学和自然两科作业的有24人。
问三科作业都完成的有多少人
4.求不超过100的自然数中,既是3的倍数又是5的倍数的数有多少个
5.求100以内,是2的倍数、是3的倍数及是5的倍数共有多少个
6.在不超过50的自然数中,不能被2整除和不能被3整除的数共有多少个
7.求右图中阴影部分的面积(单位:平方厘米)。