烧结返矿粒度范围的研究与应用
- 格式:ppt
- 大小:2.11 MB
- 文档页数:59
精益管理在提高烧结矿产质量中的应用研究作者:郑文祥来源:《科学与信息化》2020年第10期摘要在当下,社会竞争越来越激烈,与此同时钢材价格波动频繁使得很多国内的钢铁行业都在艰难的维持着运作,也有不少的企业甚至在亏损的情况下运作。
为了打破这一局面,使它往可持续的方向发展,国内钢铁企业都在积极的思考。
关键词烧结矿;质量;精益管理如何运用好精益管理为企业最大程度的优化成本投入,转化出更大的效益,提升自身的企业竞争力。
那么到底什么是精益管理呢?烧结矿产质量是衡量一个企业经济效益好坏的重要因素,在平时的生产操作过程中起到了非常重要的作用。
那么该如何在提高烧结矿产质量中展现出精益管理的作用呢?本文我们将对这两点做一个简单的分析与研究。
1 精益管理的定义精益管理简单来讲就是要培养一种运用“精益思维”来管理企业的各活动的管理思维。
“精益思维”的定义就是用最小的资源投入,将资源浪费降到最低,从而获得最大的效益。
对于企业来讲,最小的资源投入即在人力支出,设备支出,资金支出和材料支出等方面,将不该有的消耗降到最低程度,同等资源下尽可能的创造出更多的价值,同时不影响顾客的满意度。
2 精益管理的重要性精益思维所体现的精益管理,在越来越多企业的实践下,已经被认为是在不影响质量的情况下,降低成本,带来效益的有效的举措。
在提高烧结矿产质量中,如果运用精益管理方法,在同一种烧结工艺状态下,通过稳定烧结原料的性质,对影响烧结矿产质量的因素进行优化,就可以很好的解决长久以来因为烧结新矿石而不断摸索和反复实验的问题,从而达到用最小的损耗来实现矿产质量最优化的指标。
所以在提高烧结矿产质量中,将精益管理同实际的生产操作结合起来,对提高烧结矿产质量,带来经济效益奠定了坚实的基础。
3 精益管理的应用3.1 稳定烧结矿化学成分随着进口铁矿石的可选择性越来越多,各大企业的原料不再单一,这样多种原料混合会使原料的性能因为互相混合而不稳定。
混合料成分的稳定,就可以运用精益管理结合多次取样分析混匀粉的化学成分明细,然后通过结合烧结矿产质量变化的特点,来稳定烧结原料的性质,将原料成分的波动控制在一个合理的范围内,可以有利的促进高炉的顺利运转,从而大大提高烧结矿质量。
铁矿石碎矿粒度对烧结养分性能影响的研究随着全球经济的不断发展,矿山资源的开采和利用也日益受到关注。
铁矿石作为重要的工业原料之一,被广泛运用于水泥、钢铁等行业中。
在铁矿石的加工过程中,碎矿是必不可少的环节,其粒度也对烧结养分性能有重要影响。
本文将探讨铁矿石碎矿粒度对烧结养分性能的影响,并借助相关研究解释其原因。
铁矿石烧结过程中,养分性能表现为烧结矿的质量和机械强度等指标。
烧结矿的质量受到铁矿石粉末矿物成分、颗粒大小和形态、烧结温度、煤粉性质等因素的影响。
其中,铁矿石粉末的粒度是影响烧结养分性能的关键因素之一。
研究表明,铁矿石碎矿粒度对烧结养分性能有重要影响。
在一定范围内,铁矿石粉末的粒度越细,烧结矿的质量和机械强度越高。
这是由于粉末颗粒大小的变化会导致颗粒间的空隙率、表面积和孔隙度发生变化,从而影响到烧结过程中矿石的结合和转化。
粉末颗粒大小越小,其表面积越大,颗粒之间的空隙率也越小,因此,烧结矿的质量和机械强度也就越高。
除了粉末颗粒大小的影响外,铁矿石碎矿粒度对烧结养分性能的影响还与铁矿石的矿物成分和结构有关。
铁矿石的矿物组成复杂,不同矿物对烧结过程中的结合、转化和热分解有不同的影响。
在粒径相同的情况下,矿物成分不同的铁矿石其热分解温度和转化速率也会有较大的差异,进而影响到烧结矿的质量和机械强度。
因此,铁矿石碎矿粒度的作用是与其矿物成分和结构相互交织并共同作用的。
另外,铁矿石的碎矿粒度对于烧结过程中的烧损率也有很大的影响。
烧损率是指烧结过程中铁矿石的挥发分和焦炭的消耗率,其大小直接影响到冶金品质和成本。
一般来说,碎矿粒度较细的铁矿石在烧结过程中,因其表面积大,热传递效率高,所需焦炭量相对较少,从而减小烧损率。
另外,铁矿石粒度过细会导致料层透气性不足,从而增加焦炭的消耗和烧损率。
因此,铁矿石碎矿粒度的选择必须兼顾铁矿石烧结特性和冶金经济成本。
综合来看,铁矿石碎矿粒度直接影响烧结养分性能。
在烧结工程实践中,在保证烧结质量稳定和产品质量的前提下,应该根据铁矿石的矿物成分、结构特点和冶金成本等因素,综合考虑碎矿粒度的选择。
烧结杯试验烧结杯试验烧结杯试验(sinter pot test)使用杯状小型试验设备,模拟生产条件进行铁矿石烧结的试验。
试验包括原料的制备、烧结、成品处理和检验以及技术指标计算等几个步骤。
世界上大部分高炉炼铁使用烧结矿作为炉料,但是烧结矿质量的改进,烧结机产量的提高,无一不是在烧结杯试验的基础上获得的。
通过烧结杯试验,可进行烧结矿的固结机理和数学模型的研究,来改进工艺提高烧结矿的产量和质量,也可通过烧结杯试验进行新原料、新工艺的研究。
烧结杯试验具有对生产的较好的模拟性,也可为设计部门提供可靠的依据。
原料的制备主要包括原料的中和、混匀和制粒3部分。
(1)中和。
为保证试验用原料的化学成分及粒度组成基本相近,试验前各种原料必须单独进行中和处理。
澳大利亚BHr,公司中心研究所的中和器是一个圆形偏心漏斗,下有一个可旋转的圆筒,筒内有10个容积相同的扇形容器,原料从漏斗进到旋转的扇形容器中时便进行了中和。
大多数试验室采用人工中和。
(2)混匀。
多数采用机械混合,以圆筒}昆合机较为普遍。
德国鲁奇(Lurgi)公司采用的圆盘混料机,盘底水平放置,中间有3个叶片,可在三个不同半径上与圆盘作反向运动,结构简单,加水方便,混匀效果好。
(3)制粒。
一般采用圆筒混合机起制粒作用。
制粒后经冰冻法或液氮法测定混合料的粒度组成。
烧结设备主要由烧结杯、给料器、点火器、抽风除尘系统几部分组成。
(1)烧结杯。
烧结试验的主体设备,多为耐热钢制成筒体,有方形及圆形两种,底部有箅条,杯的高度固定或可调,杯体内壁略有斜度,以便顺利卸出烧结饼。
为了隔热,杯外壁附有绝热材料。
澳大利亚向国际标准化组织(ISO)推荐的烧结杯的炉箅面积为0.15m2,即φ400mm的圆杯或400mm×400mm的方杯,料层高度为500mm。
此外,世界各国还有为不同研究目的而设计的各种特殊结构的烧结杯。
(2)给料器。
作用是将混合料装入烧结杯中。
大烧结杯采用机械装料,小烧结杯则用人工装料。
烧结混合料粒度标准
烧结混合料粒度标准是指在烧结生产过程中,为了保证烧结矿块的质量,对原
料矿石的粒度进行规定的标准。
粒度标准旨在确保原料矿石的成分和性质满足烧结生产的要求,进而保证烧结矿块的质量和生产效益。
对于烧结混合料的粒度标准来说,一般有两个方面的要求:一是对于原料矿石
的最大粒径进行限制;二是对于原料矿石的分级要求。
首先,烧结混合料需要限制原料矿石的最大粒径。
原料矿石的最大粒径过大会
导致烧结过程中的物理反应和化学反应不充分,影响矿石的烧结性能和产品的质量。
因此,烧结混合料的粒度标准通常会规定原料矿石的最大允许粒径,以确保矿石的烧结效果。
其次,烧结混合料的粒度标准还包括对原料矿石的分级要求。
原料矿石的分级
是指将原料矿石按照一定的粒度范围进行划分,以保证矿石的成分和性质在一定范围内稳定。
分级要求通常通过筛分实验来确定,烧结混合料的粒度标准会规定不同粒度级别的矿石所占的比例范围,以确保混合料中的矿石能够达到稳定的成分和性质,从而提高烧结生产的效果。
总之,烧结混合料粒度标准是为了保证烧结生产的质量和效益,对于原料矿石
的粒度进行规定的标准。
标准主要包括对原料矿石的最大粒径进行限制以及对原料矿石的分级要求。
这些标准的制定有助于确保矿石的烧结效果和产品的质量,提高烧结生产过程中的效率和经济效益。
烧结矿Feo的研究1随着混合料配碳量的增加, 烧结矿中的FeO 含量升高。
这是因为配碳量增加后, 由于碳的不完全燃烧, 生成的CO 含量增加, 导致烧结过程中还原反应加剧, 使Fe2O3 不稳定而分解为Fe3O4 和FeO。
2焦粉粒度也是影响FeO 的一个重要因素。
试验表明, 烧结生产适宜的焦粉粒度应为015~3 mm。
如果粒度太细, 一方面会使料层的透气性恶化, 烧结速度降低, 另一方面,细颗粒燃料燃烧速度过快, 烧结矿液相发展不充分, 使强度变差。
反之, 若粒度太粗, 布料时大颗粒偏析集中在料层下部, 造成燃烧时间长, 燃烧带变厚, 还原反应加剧, 烧结FeO含量增加。
3磁铁矿的主要成分是Fe3O4 , 赤铁矿的主是要成分是Fe2O3 , 在烧结反应过程中, 前者比后者更易形成含FeO的矿相。
因而, 随着磁铁矿配比的提高,烧结矿的FeO 含量亦提高。
高碱度烧结矿主要矿物相是赤铁矿和铁酸钙4随着烧结矿碱度的提高, 生石灰用量增加, 能增强混合料制粒效果, 改善烧结料层的透气性, 料层氧位提高,促进铁酸钙、硅酸钙的形成, 抑制磁铁矿和橄榄石的发展, 从而使烧结矿FeO 含量降低。
5 在900 ℃以上的高温下, Fe3O4 可以被还原, 特别是SiO2 存在时, 更会加快它的还原,生成低熔点的化合物铁橄榄石(2FeO·SiO2) :2Fe3O4 + 3SiO2 + 2CO = 3 (2FeO·SiO2) + 2CO2因而, 随着SiO2 含量的提高, 烧结矿的FeO 升高。
6烧结矿MgO 含量提高时, FeO 含量亦提高。
主要是因为FeO - MgO 是一个连续固溶体, 可以相互固溶而没有任何限制。
它可抑制Fe3O4 在冷却过程中再氧化成Fe2O3 ,对Fe3O4有稳定作用。
其次, MgO 形成难熔化合物, 燃烧带温度升高, 烧结矿的FeO 含量上升。
7烧结返矿粒度较粗, 气孔多, 加入混合料中可以改善烧结料层的透气性, 提高烧结生产率; 又因含有已烧结的低熔点物质, 有助于烧结过程液相的形成, 从而提高烧结矿强度。
烧结内部返矿率技术分析(烧结厂)摘要烧结返矿率的波动会给烧结过程带来不利影响,返矿率过高会增加烧结成本。
烧结料的组分及其化学成分是影响返矿率的本质原因。
关键词返矿碱度熔剂1 问题背景由于我厂内部返矿近段时间有所增加,如8月份平均每班返矿率为31.5%,10月份为33.3%,我们对影响返矿率的因素进行了调查分析,排除了料层厚度、燃料配比、水分波动、烧结过程控制等外部因素的影响,最后发现碱度和混匀矿的化学成分与以往相比变化较大。
2 基本理论2.1 碱度影响烧结矿化学成分烧结是多个固液相反应的复杂过程,但最终的产物只与碱度有关。
目前各烧结厂生产的基本上都是高碱度(1.2~3.0)烧结矿,而高碱度烧结矿,矿物组成较简单,主要成分是铁酸钙(CaO-Fe2O3),其次是磁铁矿。
铁酸钙是一种强度高,还原性好的粘结相,因此如果能创造条件,增加烧结矿中铁酸钙的组分含量,对提高烧结矿的强度和还原性有很大帮助。
如果碱度偏低,则强度较差的硅铁橄榄石和玻璃质增多,影响烧结矿质量,使返矿增多。
2.2 熔剂的活性和粒度影响烧结矿质量铁酸钙的形成有一个前提条件:那就是要有足够多的CaO与Fe2O3充分接触。
我们通过在混合料中添加熔剂来生产高碱度烧结矿,以提供大量的CaO。
熔剂的活性和粒度很重要。
生石灰的反应活性远远大于其他熔剂,用生石灰取代其他熔剂能增强反应效果。
但如果生石灰的粒度较大或分布不均,CaO与Fe2O3接触不够充分,CaO就能与烧结料中的SiO2生成正硅酸钙,正硅酸钙在冷却时能发生β-型到γ-型的晶型转变,该转变使其体积增大10%,从而发生膨胀,致使烧结矿在冷却时自行粉碎。
返矿的增加,本质是因为烧结过程中液相的质量和数量不够,使得最终的烧结矿强度下降而造成的。
3 现状分析3.1 碱度影响由于高炉炉料结构调整,我厂生产的烧结矿碱度从以往的2.0左右调整到目前的1.65左右。
从以上基本理论可知,碱度下降,对烧结矿的强度产生一定的影响,使返矿率有所增加。