常系数齐次线性微分方程组.
- 格式:ppt
- 大小:694.50 KB
- 文档页数:29
第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。
常系数齐次线性微分方程常系数齐次线性微分方程是研究微分方程的一个重要类别。
它是指形如dy/dx=f(x)或者F(x,y,yy...,y^(n))=0,其中f(x)和F(x,y,yy...,y^(n))是x的多项式函数,或者更一般地说,是某个定义域内的可积函数。
研究常系数齐次线性微分方程的方法有很多,包括拉格朗日求解法、拉普拉斯变换、幂级数解法等.首先,我们来讨论拉格朗日求解法。
拉格朗日求解法是针对常系数齐次线性微分方程的一种可行的解法,它将常系数齐次线性微分方程转换为一个特殊方程组,每个方程组的近似解就是线性微分方程的普遍解,也就是解析解。
解析解可以提供常系数线性微分方程的有界性、有效性及其它特性的结论。
其次,我们来讨论拉普拉斯变换。
拉普拉斯变换是一种有助于求解常系数齐次线性微分方程的方法,可以将常系数齐次线性微分方程转换为一个独立于空间变量x的时间变量t的线性系统。
拉普拉斯变换可以大大简化此类方程的求解,而且还可以利用其它线性系统的技术来求解相关方程,例如,矩阵求解法及线性系统的坐标变换。
最后,我们来讨论幂级数解法。
幂级数解法是求解常系数齐次线性微分方程的另一种可行的方法,它将方程的解表示为一个无穷级数式,形如y= a_0+a_1x^1+a_2x^2+a_3x^3+…+a_nx^n。
一般来说,幂级数解法主要利用线性求解法来求解微分方程,其关键步骤是求解微分方程的两边均为幂级数的特殊情况,即称之为“特殊幂级数”。
以上是常系数齐次线性微分方程的相关知识介绍,从以上的分析可以看出,常系数齐次线性微分方程是一个相当复杂的问题,涉及到很多的理论和数学技术,解决它的方法有很多种,需要结合具体的问题进行深入的研究。
总结起来,常系数齐次线性微分方程是一个重要的研究对象,其研究方法有很多,主要包括拉格朗日求解法、拉普拉斯变换和幂级数解法等。
不论是从理论上还是从实际应用角度来考虑,都必须深入了解这个重要的问题,以此为基础在推进相关研究的发展,从而使得更多的研究者能够从中受益。
常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。
例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。
矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。
更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。
例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。
然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。
矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。
常系数齐次线性微分方程组基解矩阵的求解常系数齐次线性微分方程组(ODEs)具有广泛的应用,它描述了一个系统的变化,其基本格式为:ay + by + cy = 0其中,a,b,c是定值。
求解ODEs的方法有固定点定理、积分因子和特征值定理等,其中,基解矩阵是一种基本概念,它们可以帮助我们更容易地求解ODEs。
基解矩阵是一个特定矩阵,它由解ODEs的特征解组成。
特征解是ODEs的根,它们代表着ODEs的解/极限解等。
特征解可以写成: xi(t) = e^rt其中,r是ODEs的特征值,它对应着特征方程的根。
基本基解矩阵由基解向量组成,它们可以写成:X = [x1, x2, x3, ..., xn]其中,x1,x2, ...,xn是ODEs的解向量,它们对应着ODEs的基解。
为了求解ODEs,我们还需要确定一个初值。
这个初值可以写成: X(0) = [x1(0), x2(0), ..., xn(0)]其中,x1(0),x2(0), ...,xn(0)是ODEs的初值向量,它们代表着ODEs的初值状态。
求解ODEs的基解矩阵的基本原理是:利用基解向量组成的基解矩阵,可以将ODEs的求解变为一个线性代数问题,而这个线性代数问题可以用行列式解决。
假设我们要求解ODEs:ay + by + cy = 0称ε为ODEs的特征根,则可写出:ε1= r1,2 = r2,3 = r3其中,r1,r2,r3是ODEs的根,它们组成了特征多项式的特征根。
此时,基解矩阵可以写成:X = [e^r1*t, e^r2*t, e^r3*t]此时,ODEs的初值可以写成:X(0) = [x1(0), x2(0), x3(0)]现在,将基解矩阵和初值向量带入ODEs:ay + by + cy = 0我们可以得出:xe^(r1*t) + ye^(r2*t) + ze^(r3*t) = x1(0)其中,x、y、z是ODEs的未知参数,它们可以用行列式求解。