高中数学:空间几何体的结构知识点分析 新人教A版必修2
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
必修2知识点归纳第一章 空间几何体1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:一种是由简单几何体拼接而成,例如课本图1.1-11中(1)(2)物体表示的几何体; 一种是由简单几何体截去或挖去一部分而成,例如课本图1.1-11中(3)(4)物体表示的几何体。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
(1)定义:正视图:光线从几何体的前面向后面正投影得到的投影图; 侧视图:光线从几何体的左面向右面正投影得到的投影图; 俯视图:光线从几何体的上面向下面正投影得到的投影图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''xOy∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;一般地,原图的面积是其直观图面积的22倍,即22S S 原图直观=4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R lr S ⋅⋅+⋅⋅=ππ侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体;()13V h S S S S =+⋅+下下台体上上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
高中数学必修2空间几何体知识点总结1.1柱、锥、台、球的结构特征(1) 棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱 ABCDE —AB 'CDE '或用对角线的端点字母,女口 五棱柱AD '几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形; 侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2) 棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面 所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥P -A 'B 'C 'D 'E '几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似 比等于顶点到截面距离与高的比的平方。
(3) 棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台P -A 'B 'C 'D 'E '几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原 棱锥的顶点(4) 圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面 所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直; ④侧面展开图是一个矩形。
(5) 圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇 形。
(6) 圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的下底面部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
第1讲空间几何体的结构、三视图和直观图【要点梳理】1.柱、锥、台、球的结构特征(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。
棱锥与圆锥统称为锥体。
(3)台棱台:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面、侧棱、顶点。
圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴。
圆台和棱台统称为台体。
(4)球以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
高中数学《必修第二册》基本立体图形知识点汇总知识清单一.空间几何体1.空间几何体的定义只考虑物体的形状与大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.多面体一般地,由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点.3.旋转体一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.二.常见几何体及其结构特征1.棱柱(1)棱柱的定义一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(2)棱柱的结构特征在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形;其余各面叫做棱柱的侧面,它们都是平行四边形;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.(3)棱柱的分类与命名①以底面多边形的边数分类棱柱底面是几边形就称这棱柱是几棱柱.底面是三角形,四边形,五边形的棱柱分别叫三棱柱,四棱柱,五棱柱②以侧棱和底面的关系分类侧棱垂直于底面的棱柱叫做直棱柱;侧棱不垂直于底面的棱柱叫斜棱柱;底面是正多边形的直棱柱叫正棱柱;底面是平行四边形的四棱柱也叫做平行六面体.2.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(2)棱锥的结构特征在棱锥中,多边形面叫做棱锥的底面;有公共顶点的各个三角形叫做棱锥的侧面;相邻侧面的公共边叫做棱锥的侧棱;各侧面的公共顶点叫做棱锥的顶点.(3)棱锥的分类与命名①按底面的多边形的边数分类,底面是几边形就称这棱锥是几棱锥,底面是三角形,四边形,五边形的棱锥分别叫三棱锥,四棱锥,五棱锥,其中三棱锥又叫四面体.②底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.正棱锥各侧棱都相等;各侧面都是全等的等腰三角形.3.棱台(1)棱台的定义用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的那部分多面体叫做棱台.(2)棱台的结构特征①原棱锥的底面与截面分别叫做棱台的下底面与上底面,类似于棱柱,棱台也有侧面,侧棱,顶点.②棱台两底面是平行的相似多边形,棱台的侧面是梯形,且侧棱的延长线相交于一点.(3)棱台的分类与命名①由三棱锥、四棱锥、五棱锥截得的棱台分别叫做三棱台、四棱台、五棱台②正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形.4.圆柱(1)圆柱的定义以矩形的一边所在直线为轴旋转,其余三边旋转一周形成的面所围成的旋转体叫圆柱.(2)圆柱的结构特征①旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,平行于轴的边都叫做圆柱侧面的母线.②圆柱的侧面展开是矩形,过任意两条母线的截面是矩形.5.圆锥以直角三角形的一条直角边为旋转轴,其余两边旋转一周形成的面所围成的旋转体叫圆锥.(2)圆锥的结构特征①旋转轴叫做圆锥的轴;垂直于轴的边旋转而成的圆面叫做圆锥的底面;直角三角形斜边旋转而成的曲面叫做圆锥的侧面;无论斜边旋转到什么位置,斜边都叫做圆锥侧面的母线.②圆锥的侧面展开图是扇形,过任意两条母线的截面是等腰三角形.6.圆台(1)圆台的定义用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.(2)圆台的结构特征①圆台与圆锥、圆锥一样,也有轴、底面、侧面、母线;②圆台的侧面展开图是扇环,过任意两条母线的截面是等腰梯形.7.球(1)球的定义以半圆的直径所在直线为旋转轴,旋转一周形成的曲面叫做球面,球面所围成的旋转体叫球体,简称球.(2)球的结构特征①半圆的圆心叫做球心;连接球心和球面上任意一点叫做球的半径;连接球面上两点并且经过球心的线段叫做球的直径;②球心到截面的距离,球的半径及截面的半径的关系:.8.简单组合体棱柱、棱锥、棱台、圆柱、圆锥、圆台和球是常见的简单几何体.由简单几何体组合而成的几何体称为简单组合体.简单组合体一般是由简单几何体拼接而成或者是由简单几何体截去或挖去一部分而成.《基本立体图形》综合练习题型一 棱柱、棱锥、棱台的结构特征1.下列关于棱柱的说法中,正确的是( )A.棱柱的所有面都是四边形B.一个棱柱中只有两个面互相平行C.一个棱柱至少有6个顶点、9条棱 D.棱柱的侧棱长不都相等2.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形3.若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥4.下列命题中正确的个数是( )①由五个面围成的多面体只能是三棱柱;②用一个平面去截棱锥便可得到棱台;③仅有一组对面平行的五面体是棱台;④有一个面是多边形,其余各面是三角形的几何体是棱锥.A.0个B.1个C.2个D.3个题型二 圆柱、圆锥、圆台、球的结构特征5.下列命题正确的个数是( )①过球面上任意两点只能作球的一个大圆; ②球的任意两个大圆的交点的连线是球的直径;③用不过球心的平面截球,球心和截面圆心的连线垂直于截面;④球面也可看作空间中到一个定点的距离等于定长的点的集合;⑤以半圆的直径所在的直线为旋转轴,半圆旋转一周所形成的曲面叫作球面.A.4B.3C.2D.16.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱柱即是两个底面全等且其余各面都是矩形的多面体D.任何一个棱台都可以补一个棱锥使它们组成一个新的棱锥7.下列命题正确命题的个数是( )①有一条侧棱与底面两边垂直的棱柱是直棱柱; ②底面为正多边形的棱柱为正棱柱;③顶点在底面上的射影到底面各顶点的距离相等的棱锥是正棱锥;④A、B为球面上相异的两点,则通过A、B的大圆有且只有一个.A.0个B.1个C.2个D.3个8.(多选)下列关于圆柱的说法中,正确的是( )A.分别以矩形(非正方形)的长和宽所在的直线为旋转轴,其余各边旋转一周形成的面所围成的两个圆柱是两个不同的圆柱B.用平行于圆柱底面的平面截圆柱,截面是与底面全等的圆面C.用一个不平行于圆柱底面的平面截圆柱,截面是一个圆面D.以矩形的一组对边中点的连线所在的直线为旋转轴,其余各边旋转180°而形成的面所围成的几何体是圆柱题型三 简单组合体的结构特征9.如图所示的平面中阴影部分绕旋转轴(虚线)旋转一周,形成的几何体为( )A.一个球 B.一个球挖去一个圆柱C.一个圆柱D.一个球挖去一个长方体10.图中的几何体是由哪个平面图形绕虚线旋转得到的( )A.B.C.D.11.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆锥C.两个圆台、一个圆柱D.一个圆柱、两个圆锥12.如图所示是一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个垂直于圆柱底面的平面去截这个组合体,则截面图形可能是 (填序号).参考答案题型一 棱柱、棱锥、棱台的结构特征1-4 C,D,D,A题型二 圆柱、圆锥、圆台、球的结构特征5-8 A,D,A,ABD题型三 简单组合体的结构特征9-12 B,A,D,1、5。
§1.1空间几何体的结构
一.高考要求
认识柱、锥、台、球及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
二.规律总结
1. 在四棱柱中,有以下关系:
2.如果一个长方体的长、宽、高分别为c b a 、、,对角线长为l ,则有
2
222c b a l ++=
3.利用轴截面是处理旋转体的有效方法,尤其处理球的截面问题时,要注意公式: 222r R d -=其中d 是球心到截面的距离,、rR 分别为球,截面圆的半径.
三.走近高考
1.(2020北京)两个完全相同的长方体的长、宽、高分别为cm cm cm 345、、,把它们重叠在一起组成一个新长方体,在这些新长方体中,( ) A.77 cm B.27 cm C 55cm D. 210 cm
2.(2020全国)下面是关于四棱柱的四个命题( )
①若有两个侧面垂直于底面,则该四棱柱是直四棱柱
②若四个过相对侧棱的截面则该四棱柱是直四棱柱都垂直于底面,
③若四个侧面两两全等,则该四棱柱是直四棱柱
④若四棱柱的两条对角线两两相等,则该四棱柱是直四棱柱
其中,真命题的编号为
3.(2020江西)如图,在直三棱柱
,,,中,011119022=∠===-ABC BB BC AB C B A ABC 111B C AA F E 、分别为、的中点,沿棱柱的表面从F E 到两点的最短路径的长度为
4.(2020安徽)多面体上,位于同一条棱两端的顶点称为相邻.如图,
正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶
点A相邻的三个顶点到α的距离分别为1,2和4,P是其余四个顶点中的一个,则P到平面α的距离可能是
①3②4 ③ 5 ④ 6 ⑤7.
以上结论正确的为(写出所有正确结论的编号)
参考答案:1. C 2.
22
3
3. ②④
4.①③④⑤。