《第十三章 轴对称》全章导学案(2020人教版)
- 格式:docx
- 大小:1.53 MB
- 文档页数:27
第十三章轴对称复习导学案学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。
2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。
重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用导学过程:欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。
折痕所在的这条直线叫做______。
图形上能够重合的点叫。
分别在上面图形中画出它们的对称轴。
2.轴对称:欣赏下面几幅图片,并完成问题。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。
两个图形中的对应点叫。
如图,写出一对对称点是。
3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。
可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。
4.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。
5.角的平分线的性质角的平分线的性质上的点到的距离相等。
6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。
等边三角形的各角都是,有条对称轴。
一、独立完成发现问题(自主学习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。
而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。
联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。
如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。
§13.1 轴对称(1)教案目标:1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.3.了解线段垂直平分线的概念.教案重、难点:轴对称的概念和性质教案过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?观察下面每对图形(如图),你能类比前面的内容概括出它们的2问题共同特征吗?共同特征:每一对图形沿着虚1 / 19线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.两者的区别:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.CABABCMN ABC ′′,′关于直线,对称,点问题3 如图,△′和△′′ MN AABBCCABC有什么关系?′,′与直线分别是点,的对称点,线段,′,教师:你能说明其中的道理吗?MN CABABC 对称,那么,直′和△′关于直线上面的问题说明“如果△′BBMN AAAAMN BBCC′和线还平分线段垂直线段′,′,并且直线′和′,CC′”.如果将其中的“三角形”改为“四边形”“五边形”…其他条件不变,上述结论还成立吗?CBMN ACABC AB′,′问题3 如图,△和△,′′′′关于直线对称,点 CCBBMN AABAC有什么关系?′与直线′,′,的对称点,线段分别是点,,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.教师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点2 / 19所连线段.问题4 下图是一个轴对称图形,你能发现什么结论?能说明理由吗?lBBl AA平分结论:直线′,垂直线段′,直线BBAAAABBl ′的垂直′,′(或直线′,是线段线段平分线).教师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.三、巩固提高:2 1、教科书60页练习四、课堂小结: 1)本节课学习了哪些主要内容?( 2)轴对称图形和两个图形成轴对称的区别与联系是什么?()成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎3(么探究这些性质的?五、课后作业: 5题4、3、、213.1教科书习题第1、课后反思:)13.1 轴对称(2 教案目标:1.理解线段垂直平分线的性质和判定..能运用线段垂直平分线的性质和判定解决实际问题.2.会用尺规经过已知直线外一点作这条直线的垂3 线,了解作图的道理.教案重、难点:线段垂直平分线的性质.3 / 19教案过程:一、问题导入:探索并证明线段垂直平分线的性质l ABPPPl 上的点,请猜想点,…是,3如图,直线2垂直平分线段,,1PPPA B 的距离之间的数量关系.与点,…到点1,2, 3教师:你能用不同的方法验证这一结论吗?二、课本精讲:l AB 两个端点的距离相上任取一点,那么这一点与线段请在图中的直线等吗?线段垂直平分线上的点与这条线段两个端点的距离相等.证明:“线段垂直平分线上的点到线段两端点的距离相等.”lABCAC CBP l 上.,点,垂足为, =已知:如图,直线在⊥PBPA =.求证:用符号语言表示为:AB l CA CB=⊥,,∵PBPA =∴线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.AB PBP PA 的垂直平分线上,那么点是否在线段教师:反过来,如果= 呢?AB P 在线段的垂直平分线上.点PBPA .已知:如图,=AB P 求证:点的垂直平分线上.在线段用数学符号表示为:PBPA =,∵AB P ∴点的垂直平分线上.在与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.AB 能找到多少个两端点的距离相等的点吗?教师:你能再找一些到线段AB 到线段两端点距离相等的点?这些点能组成什么几何图形?4 / 19AB l AB 的距离都相等;反过来,与上的点与在线段,的垂直平分线AB ll AB 的距,可以看成与两点的距离相等的点都在直线、上,所以直线离相等的所有点的集合.教师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:2. 、页练习1教科书62 四、课堂小结: 1)本节课学习了哪些内容?( 2)线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?( 3)如何判断一条直线是否是线段的垂直平分线?(五、课后作业:题6、9教科书习题13.1第课后反思:3)轴对称(13.1教案目标: 1.能用尺规作线段的垂直平分线..进一步了解作图的一般步骤和作图语言,了解作图的依据.2 .运用尺规作图的方法解决简单的作图问题.3 作线段的垂直平分线.教案重点:教案难点:作线段的垂直平分线.教案过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、课本精讲:5 / 19作线段的垂直平分线我们已能用尺规完成:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.教师:那么利用尺规还能解决什么作图问题呢?A B 关于某条直线成轴对称,如图,点和点1 例你能作出这条直线吗?AB 教师:怎样作线段的垂直平分线呢?作法:如图.ABAB 的为半,为圆心,以大于)分别以点(1D C,两点;径作弧,两弧相交于CD2)作直线.(CD 就是所求作的直线.教师:这种作法的依据是什么?教师:这种作图方法还有哪些作用?确定线段的中点.教师:如果两个图形成轴对称,怎样作出图形的对称轴?如果两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线.因此,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴. . 如图中的五角星,请作出它的一条对称轴你能作出这个五角星的其他对称轴吗?它共有几条对称轴?三、巩固提高:3 2、、页练习教科书641 四、课堂小结: 1()本节课学习了哪些内容?6 / 19 (2)作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?(3)如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题13.1第10、12题.课后反思:13.2 画轴对称图形(1)教案目标:1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.教案重点:画轴对称图形.教案难点:画轴对称图形.教案过程:一、问题导入:在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?一个平面图形和与它由一个平面图形得到与它关于一条直线对称的图形.成轴对称的另一个图形之间有什么关系?l 对称的图形,这个图形与原由一个平面图形可以得到与它关于一条直线图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直l 的对称点;连接任意一对对应点的线段被对称轴垂直平分.线于这条直线对教师:如果有一个图形和一条直线,如何作出这个图形关7 / 19称的图形呢?ABC lABC,画出与△和直线例1 如图,已知△l 对称的图形.关于直线l A 的垂线,垂画法:(1)如图,过点画直线A OAAOOA 关,点足为点,在垂线上截取′就是点′=l 的对称点;于直线l C B的对称点,)同理,分别画点(2关于直线CB′,′;CBAABABCC)连接′′,得到的△′,′′′′,′′即为所求.(3l ABC 教师:如何验证画出的图形与△对称?关于直线已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.三、巩固提高:2 、68页练习1教科书四、课堂小结:)本节课学习了哪些内容?(1 )一个平面图形和与它成轴对称的另一个图形之间有什么关系?(2 3)画轴对称图形的一般方法是什么?依据是什么?(五、课后作业:题.第教科书习题13.21课后反思:2)13.2 画轴对称图形(教案目标:y x 轴对称的点的坐标的.理解在平面直角坐标系中,已知点关于1轴或变化规律.8 / 192.掌握在平面直角坐标系中作出一个图形的轴对称图形的方法.x 轴或在平面直角坐标系中关于教案重、难点:x y 轴轴对称的点的变化规律和作出与一个图形关于y 或轴对称的图形.教案过程:一、问题导入:如图,如果以天安门为原点,分别以长安街和中y x 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直轴线为轴和门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律y x 轴对称的点的对于平面直角坐标系中任意一点,你能找出其关于轴或坐标吗?它们之间有什么规律?x 轴对称的点,把它们的在平面直角坐标系中,画出下列已知点及其关于坐标填入表格中.x 轴对称的每对对教师:观察下图中关于称点的坐标有怎样的变化规律?x 轴对称的每对对称点的横坐标相关于等,纵坐标互为相反数.y 轴对称的每对对称点的教师:观察关于坐标有怎样的变化规律?y 轴对称的每对对称点的横坐标互为关于相反数,纵坐标相等.教师:请你再找几个点,分别画出它们的对称点,检验一下你发现的规律.x yx轴对称的点的坐标为)关于点(,(_______,);9 / 19xyy 轴对称的点的坐标为(___,____)关于).点(,ABCD AB(-2,-5,1例如图,四边形的四个顶点的坐标分别为),(CDABCD x y 轴对),分别画出与四边形轴和5),关于(-5,41),(-2,称的图形.x y 轴对称的图形的方法和步骤教师:归纳画一个图形关于. 轴或先求出已知图形中一些特殊点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.步骤简述为:(1)求特殊点的坐标;(2)描点;(3)连线.三、巩固提高:教科书70页练习1、2、3四、课堂小结:(1)本节课学习了哪些内容?x y 轴的对称点的坐标有什轴或(2)在平面直角坐标系中,已知点关于x y 轴对称?轴或么变化规律,如何判断两个点是否关于x y 轴对称的图形的方法和步骤.)说一说画一个图形关于轴或(3五、课后作业:教科书习题13.2第2、4、5题.课后反思:13.3 等腰三角形(1)教案目标:1.探索并证明等腰三角形的两个性质.2.能利用性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.教案重、难点:探索并证明等腰三角形性质.10 / 19教案过程:一、问题导入:如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它ABC 有什么特点?展开,得到的△教师:仔细观察自己剪出的等腰三角形纸片,你能发现这个等腰三角形有什么特征吗?教师:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?二、课本精讲:教师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?等腰三角形的特征:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.教师:利用实验操作的方法,我们发现并概括出等腰三角形的性质1和性质2.对于性质1,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启发?ABC AB ACB = 中,∠=.求证:∠已知:如图,△C. 1你还有其他方法证明性质吗?11 / 19可以作底边的高线或顶角的角平分线.教师:性质2可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.教师:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.三、巩固提高:教科书77页练习1、2四、课堂小结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?五、课后作业:教科书习题13.3第1、2、4、6题.课后反思:13.3 等腰三角形(2)教案目标:1.探索等腰三角形判定定理.2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.了解等腰三角形的尺规作图.教案重、难点:理解和运用等腰三角形的判定定理教案过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?12 / 19性质定理的条件是:一个三角形中有两条边相等.结论:这两条边所对的角相等.二、课本精讲:思考性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等.问题一个三角形满足什么条件是等腰三角形?思考1 如果一个三角形有两个角相等,那么这两个角所对的边有什么关系?这两个角所对的边相等.思考2 这个命题的题设和结论又分别是什么呢?如何证明这个命题?题设:一个三角形有两个角相等.结论:这两个角所对的边相等.问题类比等腰三角形性质定理的证明方法,你能选择一种来证明这个命题吗?AB CABC B 求证:中,∠. =已知:如图,在△∠ AC.= 教师:你还有其他证明方法吗?BC 上的中线吗?思考能作底边等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).符号语言:CABC B 中,∠,=∠在△∵ACAB =∴.思考与等腰三角形性质进行比较看有什么区别?求证:如果三角形一个外角的平分线平行于三角例1.形的一边,那么这个三角形是等腰三角形BCADCAE ABC ∠已知:∠是△的外角,∠1 =2∥,.13 / 19AB AC.=求证:a h ,求作这个等腰,底边上的高的长为例2 已知等腰三角形底边长为三角形.作法:aAB )作线段;=(1DMNAB AB 相交于点(2)作线段;的垂直平分线,与hDC MNC 3)在=上取一点;,使(ABC BCAC. 4)连接,则△,就是所求作的等腰三角形(三、巩固提高:4 3、1、2、页练习教科书79四、课堂小结: 1)本节课学习了哪些内容?( 2)等腰三角形的判定方法有哪几种?()结合本节课的学习,谈谈等腰三角形性质和判定的区别和联系.(3五、课后作业:题.、5教科书习题13.3第2课后反思:3)13.3 等腰三角形(教案目标:.探索等边三角形的性质和判定.1.能运用等边三角形的性质和判定进行计算和证2明.探索等边三角形的性质与判定.教案重、难点:教案过程:一、问题导入:问题满足什么条件的三角形是等边三角形?14 / 19三条边都相等的三角形是等边三角形.二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;. 区别:等边三角形有三条相等的边,而等腰三角形只有两条等腰三角形有哪些特殊的性质呢?问题从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一.将等腰三角形的性质用于等边三角形,你能得到什么结论?思考结合等腰三角形的性质,你能填出等边三角形对应的结论吗?轴对称图形角边图形是(三线合一)两边相等两底角相等等腰三角形一条对称轴(等边对等角)(定义)三边相等等边三角形(定义)对“等边三角形的三个内角都相等,并且每一个角都等于60°”这一结论进行证明.ABC A B C=60°.∠ =已知:△是等边三角形求证:∠∠=ABC 是等边三角形,证明:∵△BC ACBC AB.,∴ ==A BAC .∠∠,∠ =∴∠=A BC . =∠∴∠=∠A BC=180°,+∠∵∠+∠A =60°.∴∠15 / 19A BC =60°.∠ =∴∠∠=等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.符号语言:ABC 是等边三角形,∵△A BC =60° =∴∠∠=∠思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1 一个三角形的三个内角满足什么条件是等边三角形?思考2 一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60°的等腰三角形.请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形.符号语言:ABC 中,在△A B C , =∵∠∠=∠ABC 是等边三角形.∴△等边三角形的判定定理2:有一个角为60°的等腰三角形是等边三角形.符号语言:ABC 中,在△BC AC A =60°,∵ =,∠ABC 是等边三角形.∴△判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理.16 / 19等边三角形的判定定理1:三个角都相等的三角形是等边三角形.等边三角形的判定定理2:有一个角为60°的等腰三角形.BCABC DE, 是等边三角形,∥例1 如图,△ADE EDABAC 是等边三分别交,,.求证:△于点.角形三、巩固提高:2 、80页练习1教科书四、课堂小结:)本节课学习了等边三角形的性质和判定;(1共有几种判定等 2)等边三角形与等腰三角形相比有哪些特殊的性质?(边三角形的方法?)结合本节课的学习,谈谈研究三角形的方法.(3五、课后作业: 14题.13.3第12、教科书习题课后反思:)13.3 等腰三角形(4 教案目标:°角的直角三角形的性质.1.探索含30°角的直角三角形的性质,并会应用它进行有关的证明和计302.理解含算.. 30°角的直角三角形的性质教案重、难点:探索并理解含教案过程:一、问题导入:A ABC 请你在括号内补)(°问题已知△中,∠=60, .17 / 19ABC 能成为等边三角充一个条件,使△形.二、课本精讲:思考1 等边三角形是轴对称图形,若沿着其中一条对称轴折叠,能产生什么特殊图形?思考2 这个特殊的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含30°角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由.BC ABC 与斜30°角的直角△的直角边问题你能借助这个图形,找到含AB 边之间有什么数量关系吗?°,那么它所对的直角边等30猜想在直角三角形中,如果一个锐角等于.于斜边的一半请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,问题.用符号语言表述出来这个命题是真命题吗?请进行证明.思考A ABC C °,∠=90已知:如图,在Rt△中,∠ABBC = 求证:.. =30°°,那在直角三角形中,如果一个锐角等于30.么它所对的直角边等于斜边的一半符号语言:18 / 19ABC 中, Rt△∵在C A =30°,°,∠∠ =90BC AB .= ∴D 是斜如图是屋架设计图的一部分,点例AB ACDE ABBC,梁、的中点,立柱垂直于横梁DE BCA 、=7.4 cm,∠=30°,立柱要多长?三、巩固提高: 81页练习教科书四、课堂小结:)本节课学习了哪些内容?1(哪些问题?需要注 30°角的直角三角形的性质时,能解决2()在应用含意哪些问题?五、课后作业: 15题.第教科书习题13.3 课后反思:19 / 19。
人教版八年级数学上册第十三章《轴对称》学习任务单及作业设计【学习目标】1.了解轴对称图形与两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系。
2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.【课前学习任务】准备一张纸、思考如何剪出红双喜.【课上学习任务】学习任务1:学习轴对称图形的概念.例:我们学过了很多几何图形?哪些几何图形是轴对称图形呢?(1)线段 (2)角 (3)直角三角形(4)任意三角形(5)等腰三角形(6)等边三角形(7)平行四边形(8)矩形(9)菱形(10)正方形(11)正五边形(12)正六边形(13)圆(14)椭圆练习1.下列所示的哪些图形是轴对称图形?是轴对称图形的请指出它的对称轴.2.如图,在正方形方格中,阴影部分是涂黑 7 个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.学习任务2:学习两个图形直线(成轴)对称及相关概念.练习:下列各组图形中,成轴对称的两个图形是( )学习任务3:学习两个图形成轴对称的相关性质.性质 1:两个图形如果关于某直线成轴对称,那么这两个图形全等.性质 2:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.当点 A,点 P 与点 A'共线时,AP= A'P,∠APQ=∠A'PQ=90°,即 AA'⊥l. 对应点的连线被对称轴垂直且平分.2.在下图,这一组图中找出它们所蕴含的内在规律,然后在横线的空白处设计一个恰当的图形.【作业设计】1.下列各图形是轴对称图形吗?如果是,画出它们的一条对称轴.2.图中有阴影三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【参考答案】1.提示:除了第二个图形以外都是轴对称图形.2.图中有阴影的三角形与三角形 1、3 成轴对称,整个图形是轴对称图形,它共有2条对称轴.。
13.2 画轴对称图形(1)了解轴对称变换的意义,能够按要求作出简单平面图形经过一次轴对称变换后的图形.重、难点:借助轴对称的意义,画出一个图形关于某一条直线对称的图形.一、自学指导自学:自学课本P67-68页“归纳、思考与例1”,会作已知图形关于某条直线对称的图形,能利用轴对称的一些性质设计图案,完成下列填空.(5分钟)如图,观察下面作线段AB关于直线l对称图形的过程并填空:总结归纳:几何图形都可以看作由点组成,对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P68页练习题1,2.2.如图,以虚线为对称轴,画出图形的另一半,并说明完成后图形可能代表什么含义.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 如图,已知△ABC,直线MN,求作△A′B′C′,使△A′B′C′与△ABC关于直线MN对称.解:如图,①过点A作AD⊥MN于D,延长AD至点A′,使A′D=AD,得点A关于直线MN的对称点A′;②同样作出点B,C关于直线MN的对称点B′,C′;③连接A′B′,B′C′,A′C′,则△A′B′C′就是所求作的三角形.点拨精讲:首先作出点A,B,C关于直线MN的对称点A′,B′,C′,使直线MN为线段AA′,BB′,CC′的垂直平分线,然后连接A′B′,B′C′,A′C′,得△A′B′C′.探究2 如图在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这样的三角形共有2个.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.如图,把一个正方形纸片按以下方向对折后,沿虚线剪下,再展开,则所得的图形是(D)2.下列说法正确的是(C)A.任何一个图形都有对称轴B.两个全等三角形一定关于某直线对称C.若△ABC与△ADE成轴对称,则△ABC≌△ADED.点A,点B在直线l两旁,且AB与直线l交于点O,若AO=BO,则点A与点B关于直线l对称3.如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于60°.4.如图,是画出的风筝的一半,请将另一半补充完整.(3分钟)连接任意一对对应点的线段被对称轴垂直平分是作轴对称图形的重要依据,作轴对称图形的方法:①找——在原图形上找特殊点(如线段的端点);②作——作各个特殊点关于对称轴的对称点;③连——依次连接各对称点.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)1、在最软入的时候,你会想起谁。
CBAD2019-2020学年八年级数学上册 第13章第1节轴对称(第2课时)导学案 新人教版【学习目标】1.了解轴对称(图形)的性质,会准确画出轴对称(图形)的对称轴; 2.理解线段垂直平分线的性质;3.通过轴对称性质的学习加强学生对事物的内在联系,增强学生创造 美好生活的信心.【学习重点】理解线段垂直平分线的性质. 【学习难点】线段垂直平分线的性质应用.【学前准备】认真阅读课本P59—P60,完成练习1.如图1,△ABC 和△A 1B 1C 1关于y 轴对称. (1)点A 的对应点是 ,y 轴经过线段AA 1的中点吗? y 轴垂直线段AA 1吗? 其它对应点有同样的结论吗?(2)线段垂直平分线的定义: 经过 并且 的直线,叫做这条线段的垂直平分线.2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线. 如图1,y 轴垂直平分 ;y 轴垂直平分 ;y 轴垂直平分 ; 3.如下图,直线l 垂直平分线段AB ,在直线l 上任取..一点P ,连结PA 、PB ,通过测量、折叠等方法判断PA 、PB 的关系是 .等.符号语言的表述:如图:∵AD⊥ , BD= (或AD 是线段BC 的垂直平分线) ∴ = ( )A 1B 1C 1 图1B AD5.如图,线段AB 的垂直平分线l 交AB 于点C ,点P 在l 上,PA=5,AC=4,求△PAB 的周长.6.探究:如图,AD⊥BC,BD=DC ,点C 在AE 的垂直平分线上,AB 、AC 、CE 的长度有什么关系?AB+BD 与DE 有什么关系?【课堂检测】1.如图,△ABC 中,AD 垂直平分BC ,则AD⊥ ,CD =_____,原因是: ;AB =_______,原因是 .2.如图,△ABC 中, AD 是边BC 的垂直平分线,若AB=10cm ,BC=12 cm ,则AC= cm ,BD= cm . 3.如图, DE 是AC 的垂直平分线,AE=3,△ABD 的周长为cm 31,求△ABC 的周长.【课堂小结】1.线段垂直平分线的定义:经过 并且线,叫做这条线段的垂直平分线. 2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线.3.线段垂直平分线的性质:线段垂直平分线上的点与 相等.课后作业1302--轴对称 (课时2)1.如图,在△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________. 2.如图,在 ABC 中,AB 、BC 的垂直平分线相交于三角形内一点P , 下列结论中,错误的是( )A .PA=PB B .PA=PC C .PB=PC第1、2题(第2题)D .点P 到AB 、BC 、CA 的距离相等3.如图,已知AE =CE , BD ⊥AC .求证:AB +CD =AD +BC .4.如图,在△ABC 中,DE 是AB 的垂直平分线,(1)请写出相等的线段 _________________________; (2)若BC =10cm ,AC =6cm ,求△ADC 的周长.5.如图所示,已知在△ABC 中,AB 与AC 的垂直平分线分别交AB 于点D ,交AC 于点E ,它们相交于点F ,求证:BF=FC .6.如图所示,在△ABC 中,AC=12,BC=7,DE 垂直平分AB 交AC 于D ,交AB 于E , 求△BCD 的周长.7.如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABC 的周长为22,AE=5,求△ABD 的周长.※ 8.如图,点P 在AOB 内,点M 、N 分别为点P 关于直线AO 、BO 的对称点,M 、N 的连线与AO 、B O 交与E 、F .若△PEF 的周长为20cm ,求线段MN 的长.【教学反思】 答案: 课堂探究:4.线段两个端点的距离解:BC DC AB AC 线段垂直平分线上的点与线段两个端点的距离相等. 5.解:∵PC 是线段AB 的垂直平分线,∴∠ACP=∠BCP=90° ∵PA=5,AC=4第1题第2题∴BC=AC=4,PB=AP=5∴△PAB的周长为:5+5+8=186.AB+BD=DE.∵AD⊥BC,BD=DC(垂直平分线)∴AB=AC.∴AC+CD=AB+BD又∵点C在AE的垂直平分线上,∴AC=EC.又∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=DE.【课堂检测】1.BC BD 线段垂直平分线的定义AC 线段垂直平分线上的点与线段两个端点的距离相等2.10 63.如图:AE=3∵DE为AC的垂直平分线∴AE=EC=3 AD=DC又∵△ABD的周长为13 即:AB+AD+BD=13∴△ABC的周长为AB+AC+BD=AB+(AE+EC)+(BD+DC)=13+6=19课后作业:1.52.D3.∵AE=CE ,BD⊥AC∴BA=BC, DA=DC(线段的垂直平分线的点到这条线段的2个端点相等)∴AB+CD=AD+BC4.(1)AD=BD,AE=BE(2)∵DE是AB的垂直平分线∴AD=DB∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=16cm5.证明:连接AF∵CD为AB的垂直平分线,∴AF=BF∵EF为AC的垂直平分线,∴AF=FC∴BF=FC6.解:AC=12 ,∵DE垂直平分AB,∴BE=AE,∴BE+EC=AE+EC=AC,∵BC=7,∴△BCE的周长=BC+BE+EC=BC+AC=7+12=19.7.解:∵DE是边AC的垂直平分线,∴AD=CD,AE=EC,∵AE=5,△ABC的周长为22,∴AC=AE+EC=5+5=10,△ABC的周长=AB+BC+AC=22∴AB+BC=22-10=12△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=12,8.∵点M是点P关于AO,的对称点,∴AO垂直平分MP,∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+PF,∵△PEF的周长为20cm,∴MN=EP+EF+PF=20cm.。
13.1轴对称13.1.1轴对称1.在生活实例中认识轴对称图形.(重点)2.分析轴对称图形,理解轴对称的概念.(重点)3.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.(难点)一、情境导入请同学们认真观看动画片,听故事,思考最后的问题.(配合动画讲故事)故事:在小河边的花丛中,有一只美丽的蝴蝶正在采花蜜.忽然,来了一只蜻蜓在它面前飞来飞去,蝴蝶生气地说:“谁在跟我捣乱?”蜻蜓笑嘻嘻地说:“你怎么连一家人都不认识了,我是来找你玩的.”这时蝴蝶更生气了,说道:“你是蜻蜓,我是蝴蝶,我们怎么可能是一家呢?”于是,蜻蜓就落在了旁边的一片叶子上,说:“这你就不知道了吧,不仅蜻蜓、蝴蝶是一家,有些树叶,还有我们身边的很多物体都和我们是一家呢.”(播放动画)思考问题:为什么蜻蜓、蝴蝶、树叶是一家?二、合作探究探究点一:轴对称图形【类型一】轴对称图形的识别下列体育运动标志中,从图案看不是轴对称图形的有( )A.4个 B.3个 C.2个 D.1个解析:根据轴对称图形的概念可得(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选B.方法总结:要确定一个图形是否是轴对称图形要根据定义进行判断,关键是寻找对称轴,图形两部分折叠后可重合.【类型二】判断对称轴的条数下列轴对称图形中,恰好有两条对称轴的是( )A .正方形B .等腰三角形C .长方形D .圆解析:A.正方形有四条对称轴;B.等腰三角形有一条对称轴;C.长方形有两条对称轴;D.圆有无数条对称轴.故选C.方法总结:判断对称轴的条数,仍然是根据定义进行判断,判断轴对称图形的关键是寻找对称轴,注意不要遗漏.探究点二:轴对称及轴对称图形的性质【类型一】 应用轴对称的性质求角度如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,则∠BCD 的度数是( )A .130°B .150°C .40°D .65°解析:∵这种滑翔伞的形状是左右成轴对称的四边形ABCD ,其中∠BAD =150°,∠B =40°,∴∠D =40°,∴∠BCD =360°-150°-40°-40°=130°.故选A.方法总结:轴对称其实就是一种全等变换,所以轴对称往往和三角形的内角和、外角的性质综合考查.【类型二】 利用轴对称的性质求阴影部分的面积如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为( )A .4cm 2B .8cm 2C .12cm 2D .16cm 2解析:根据正方形的轴对称性可得,阴影部分的面积等于正方形ABCD 面积的一半,∵正方形ABCD 的边长为4cm ,∴S 阴影=12×42=8(cm)2.故选B. 方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】 用轴对称的性质证明线段之间的关系如图,O 为△ABC 内部一点,OB =72,P 、R 为O 分别以直线AB 、BC 为对称轴的对称点.(1)请指出当∠ABC 是什么角度时,会使得PR 的长度等于7?并完整说明PR 的长度为何在此时等于7的理由.(2)承(1)小题,请判断当∠ABC 不是你指出的角度时,PR 的长度小于7还是大于7?并完整说明你判断的理由.解析:(1)连接PB 、RB ,根据轴对称的性质可得PB =OB ,RB =OB ,然后判断出点P 、B 、R 三点共线时PR =7,再根据平角的定义求解;(2)根据三角形的任意两边之和大于第三边解答.解:(1)如图,∠ABC =90°时,PR =7.证明如下:连接PB 、RB ,∵P 、R 为O 分别以直线AB 、BC 为对称轴的对称点,∴PB =OB =72,RB =OB =72.∵∠ABC =90°,∴∠ABP +∠CBR =∠ABO +∠CBO =∠ABC =90°,∴点P 、B 、R 三点共线,∴PR =2×72=7; (2)PR 的长度小于7,理由如下:∠ABC ≠90°,则点P 、B 、R 三点不在同一直线上,∴PB +BR >PR ,∵PB +BR =2OB =2×72=7,∴PR <7.方法总结:利用轴对称的性质可以将线段进行转化,然后结合三角形的任意两边之和大于第三边的性质予以解答,总之熟记各性质是解题的关键.【类型四】 轴对称在折叠问题中的应用如图,将长方形纸片先沿虚线AB 向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,那么打开后的展开图是( )解析:∵第三个图形是三角形,∴将第三个图形展开,可得,即可排除答案A.∵再展开可知两个短边正对着,∴选择答案D ,排除B 与C.故选D.方法总结:对于此类问题,要充分发挥空间想象能力,或亲自动手操作答案即可呈现.三、板书设计轴对称图形1.轴对称图形的定义;2.对称轴; 3.轴对称图形的设计方法.这节课充分利用多媒体教学,给学生以直观指导,主动向学生质疑,促使学生思考与发现,形成认识,独立获取知识和技能.另外,借助多媒体教学给学生创设宽松的学习氛围,使学生在学习中始终保持兴奋、愉悦、渴求思索的心理状态,有利于学生主体性的发挥和创新能力的培养.13.1.2线段的垂直平分线的性质第1课时线段的垂直平分线的性质和判定1.掌握线段垂直平分线的性质.(重点)2.探索并总结出线段垂直平分线的性质,能运用其性质解答简单的问题.(难点)一、情境导入如图所示,有一块三角形田地,AB=AC=10m,作AB的垂直平分线ED交AC于D,交AB 于E,量得△BDC的周长为17m,你能帮测量人员计算BC的长吗?二、合作探究探究点一:线段垂直平分线的性质【类型一】应用线段垂直平分线的性质求线段的长如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )A.5cmB.10cmC.15cmD.17.5cm解析:∵△DBC的周长=BC+BD+CD=35cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=35cm.∵AC=AD+DC=20cm,∴BC=35-20=15cm.故选C.方法总结:利用线段垂直平分线的性质,可以实现线段之间的相互转化,从而求出未知线段的长.【类型二】 线段垂直平分线的性质与全等三角形的综合运用如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ;(2)AB =BC +AD .解析:(1)根据AD ∥BC 可知∠ADC =∠ECF ,再根据E 是CD 的中点可求出△ADE ≌△FCE ,根据全等三角形的性质即可解答.(2)根据线段垂直平分线的性质判断出AB =BF 即可.证明:(1)∵AD ∥BC ,∴∠ADC =∠ECF .∵E 是CD 的中点,∴DE =EC .又∵∠AED =∠CEF ,∴△ADE ≌△FCE ,∴FC =AD .(2)∵△ADE ≌△FCE ,∴AE =EF ,AD =CF .∵BE ⊥AE ,∴BE 是线段AF 的垂直平分线,∴AB =BF =BC +CF .∵AD =CF ,∴AB =BC +AD .方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.【类型三】 线段垂直平分线与角平分线的综合运用如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O .(1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.解析:(1)由垂直平分线的性质可得出相等的线段;(2)由条件可证明△AOC ≌△AOD ,可得AO 平分∠DAC ,根据角平分线的性质可得OE =OF .解:(1)∵AB 、CD 互相垂直平分,∴OC =OD ,AO =OB ,且AC =BC =AD =BD ;(2)OE =OF ,理由如下:在△AOC 和△AOD 中,∵⎩⎪⎨⎪⎧AC =AD ,OC =OD ,AO =AO ,∴△AOC ≌△AOD (SSS),∴∠CAO =∠DAO .又∵OE ⊥AC ,OF ⊥AD ,∴OE =OF .方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.探究点二:线段垂直平分线的判定如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的关系.解析:先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,易证AD 垂直平分EF .解:AD 垂直平分EF .∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴∠EAD =∠FAD ,DE =DF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,∠AED =∠AFD ,AD =AD ,∴△ADE ≌△ADF ,∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .方法总结:当一条直线上有两点都在同一线段的垂直平分线上时,这条直线就是该线段的垂直平分线,解题时常需利用此性质进行线段相等关系的转化.三、板书设计线段的垂直平分线1.线段的垂直平分线的作法.2.线段的垂直平分线性质定理和逆定理.3.三角形三边的垂直平分线交于一点.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因此本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.第2课时 线段的垂直平分线的有关作图1.作出轴对称图形的对称轴,即线段垂直平分线的尺规作图.(重点)2.依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴.(重点)一、情境导入有时我们感觉两个平面图形成轴对称,如何验证呢?不折叠图形,你能准确地作出轴对称图形的对称轴吗?二、合作探究探究点一:作线段的垂直平分线【类型一】 作某条线段的垂直平分线如图,点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?(注:作一对对应点的对称轴就是作线段AB 的垂直平分线)解析:本题其实就是作线段AB 的垂直平分线,根据线段垂直平分线的作法作出即可.解:作法:(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于E 、F 两点;(2)作直线EF ,EF 即为所求的直线.同样,对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.方法总结:要熟练掌握线段垂直平分线的作法,作出的图形中的作图痕迹要保留.【类型二】 垂直平分线的作法与垂直平分线的性质的综合如图,已知点A 、点B 以及直线l .(1)用尺规作图的方法在直线l 上求作一点P ,使PA =PB .(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM =PN ,BN =PM ,求证:∠MAP =∠NPB .解析:(1)利用线段垂直平分线的作法作出即可;(2)利用全等三角形的判定方法以及利用其性质得出即可.解:(1)如图所示:(2)在△AMP 和△BNP 中,∵⎩⎪⎨⎪⎧AM =PN ,PM =BN ,AP =BP ,∴△AMP ≌△PNB (SSS),∴∠MAP =∠NPB .方法总结:解决此类问题首先要正确作出图形,然后运用相关的知识解决其他问题.【类型三】 垂直平分线作法的应用如图,某地由于居民增多,要在公路l 边增加一个公共汽车站,A ,B 是路边两个新建小区,这个公共汽车站C 建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?解析:作线段AB的垂直平分线,由垂直平分线的定理可知,垂直平分线上的点到A,B的距离相等.解:连接AB,作AB的垂直平分线交直线l于O,交AB于E.∵EO是线段AB的垂直平分线,∴点O到A,B的距离相等,∴这个公共汽车站C应建在O点处,才能使到两个小区的路程一样长.方法总结:对于作图题首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.【类型四】线段垂直平分线与角平分线作法的综合运用如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)解析:到两条公路的距离相等,在这两条公路的夹角的平分线上;到两所大学的距离相等,在这两所大学两个端点的连线的垂直平分线上,所画两条直线的交点即为所求的位置.解:如图,点P为所求.方法总结:通过本题要熟练地掌握角平分线的作法以及线段垂直平分线的作法.探究点二:对称轴的画法【类型一】画出已知图形的对称轴画出下列轴对称图形的所有对称轴(不考虑颜色).解析:利用轴对称图形的性质分别得出其对称轴即可.解:如图所示:方法总结:画轴对称图形的对称轴,先找出对称点,然后作对称点的垂直平分线即可.【类型二】补全图形,并画出对称轴如图,在4×3的正方形网格中,阴影部分是由4个正方形组成的一个图形,请你用两种方法分别在如图方格内填涂2个小正方形,使这6个小正方形组成的图形是轴对称图形,并画出其对称轴.解析:根据轴对称的性质画出图形即可.解:如图所示:方法总结:解答此类问题,一般要先设计出轴对称图形,然后根据图形的特点,画出对称轴.三、板书设计线段的垂直平分线的有关作图1.线段垂直平分线的作法.2.作轴对称图形的对称轴的方法.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对线段垂直平分线性质定理的逆定理理解不透彻,还需在今后的教学和作业中进一步进行巩固和提高.13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD =( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A、B、C关于直线l的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( )A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P(2,3)关于x轴对称的点的坐标为(2,-3),关于y轴对称的点的坐标为(-2,3),故选D.方法总结:关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】关于坐标轴对称的点与方程的综合已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A、B关于x轴对称,求a、b的值;(2)若A、B关于y轴对称,求(4a+b)2016的值.解析:(1)根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a-b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b=-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12. 方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________;(3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52. 方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x 轴、y 轴对称的点的特征.2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度.13.3 等腰三角形13.3.1 等腰三角形第1课时 等腰三角形的性质1.理解并掌握等腰三角形的性质.(重点)2.经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.(难点)一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:等腰三角形的概念【类型一】利用等腰三角形的概念求边长或周长如果等腰三角形两边长是6cm和3cm,那么它的周长是( )A.9cm B.12cmC.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.探究点二:等腰三角形的性质【类型一】利用“等边对等角”求角度等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A.65°或50° B.80°或40°C.65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】利用方程思想求等腰三角形角的度数如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.解析:设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A =2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x +2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .【类型三】 利用“等边对等角”的性质进行证明如图,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明如图,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG -DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC . 方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题如图,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE ⊥。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校13.1.1 轴对称教学设计【教学目标】一、知识与技能1.了解轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.了解线段垂直平分线的概念.二、过程与方法探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.三、情感态度与价值观欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的应泛运用和它的丰富文化价值。
【教学重点】轴对称的概念和性质【教学重点】轴对称的概念和性质【教学方法】观察、作图操作、类比【教学课型】新授课【教学准备】多媒体、剪刀、尺规【教学过程】一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、探索新知:问题1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题2观察下面每对图形(如图),你能类比前面的内容概括出它们的共同特征吗?共同特征:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能结合具体的图形说明轴对称图形和两个图形成轴对称有什么区别与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
第十三章轴对称13.1 轴对称13.1.1 轴对称1.理解轴对称图形和两个图形关于某条直线对称的概念,了解轴对称及轴对称图形的的性质.2.能识别简单的轴对称图形及其对称轴.重点:轴对称与轴对称图形的概念.难点:轴对称与轴对称图形的性质.一、自学指导自学1:自学课本P58-59页“思考1及思考2”,了解轴对称图形、轴对称的概念,以及它们之间的区别和联系,完成下列填空.(5分钟)总结归纳:(1)如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.(2)把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.自学2:自学课本P59页“思考3”,了解轴对称及轴对称图形的的性质.(5分钟)如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,C′分别是点A,B,C的对称点.(1)设AA′交对称轴于点P,将△ABC或△A′B′C′沿MN折叠后,点A与点A′重合,则有△ABC≌△A′B′C′,PA=PA′,∠MPA=∠MPA′=90度.(2)MN与线段AA′的关系为MN垂直平分线段AA′.总结归纳:(1)经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)成轴对称的两个图形是全等形.(3)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.(4)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.如图所示的图案中,是轴对称图形的有A,B,C,D.2.下列图形中,不是轴对称图形的是(D)A.角B.等边三角形C.线段D.直角梯形3.下图中哪两个图形放在一起成轴对称B与F,C与D.4.轴对称与轴对称图形有什么区别与联系?答:区别为轴对称是指两个图形沿对称轴折叠后重合,而轴对称图形是指一个图形的两部分沿对称轴折叠后能完全重合;联系是都有对称轴、对称点和两部分完全重合的特性.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 下列图形是轴对称图形吗?如果是,指出轴对称图形的对称轴.①等边三角形;②正方形;③圆;④平行四边形.解:①等边三角形的对称轴为三条中线所在的直线;②正方形的对称轴为两条对角线所在的直线和两组对边中点所在的直线;③圆的对称轴为过圆心的直线.点拨精讲:对称轴是一条直线.探究2 如图,△ABC和△ADE关于直线l对称,若AB=2 cm,∠C=80°,则AE=2_cm,∠D=80°.点拨精讲:根据成轴对称的两个图形全等,再根据全等的性质得到对应线段相等,对应角相等.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.指出下列哪组图形是轴对称,并指出对称轴.①任意两个半径相等的圆;②正方形的一条对角线把一个正方形分成的两个三角形;③长方形的一条对角线把长方形分成的两个三角形.解:①两圆心所在的直线和连接两圆心的线段的垂直平分线;②正方形两条对角线所在的直线;③不是轴对称关系.点拨精讲:是不是轴对称看是否能沿某条直线折叠后重合.2.下列两个图形是轴对称关系的有A,B,C.3.如图,在网格中,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在旁边的网格中设计出一个轴对称图案.(不得与原图案相同,黑、白方块的个数要相同)(3分钟)1.可用折叠法判断是否为轴对称图形. 2.多角度、多方法思考对称轴的条数.3.对称轴是一条直线,一条垂直于对应点连线的直线.4.轴对称是指两个图形的位置关系,轴对称图形是指一个具有特殊形状的图形.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)1、在最软入的时候,你会想起谁。
第十三章 轴对称《13.1.1 轴对称》导学案 N0.1一、学习目标1.理解轴对称图形和两个图形关于某条直线对称的概念,能识别轴对称图形及其对称轴.2.掌握线段垂直平分线的概念,理解和掌握轴对称的性质.二、教学重、难点1.重点:轴对称图形和两个图形关于某直线对称的概念.2.难点:轴对称图形和两个图形关于某直线对称的区别和联系.三、自主学习自学课本P58-60页,完成下列问题:1.轴对称图形的概念:___________________________________________________。
2.轴对称图形的概念:___________________________________________________。
3.线段垂直平分线的概念:________________________________________________。
4.轴对称的性质:________________________________________________。
四、合作探究知识点一:轴对称和轴对称图形(一)轴对称图形:1.做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?2.议一议:观察下列图片,说一说它们的共同特征.归纳:如果一个平面图形沿一条_______折叠,______两旁的部分能够__________,这个图形就叫做轴对称图形,这条______就是它的对称轴.3.我们学过的图形中,你知道哪些图形是轴对称图形吗?你能找出它们的对称轴吗?学过的轴对称图形有:_______________________________________.(二)两个图形关于某条直线对称1.做一做:在纸上滴上墨水,把纸张对折,随后打开,看看形成的两块墨迹是不是关于折痕对称?它的对称轴是哪一条?把它画出来.2.p59思考:下面的每对图形有什么共同特点?归纳:如果一个图形沿一条________折叠,如果它能够与另一个图形________, 那么就说这两个图形关于这条直线________,这条________就是它的对称轴.讨论:轴对称图形和两个图形成轴对称的联系与区别:轴对称图形 两个图形成轴对称 图形联系区别练习:1.轴对称图形的对称轴是一条()A.直线 B.射线 C.线段2.请在下列一组图形符号中找出它们所蕴含的内在规律,然后在图中横线上填入恰当的图形_________ .3.下列图标中是轴对称图形的是()4.找出下列各图形中的对称轴,并说明哪一个图形的对称轴最多.图13.1-4知识点二:轴对称的性质1.观察教材中P59图13.1-4,,思考:图中的每对图形有什么共同的特点?把△A′B′C′沿直线l对折后能与△ABC重合,则称△A′B′C′与△ABC关于直线l对称,简称“轴对称”,点A与点A′对应,点B与B′对应,点C与C′对应,称为对称点,直线l叫做对称轴.2.观察教材中P59图13.1-4,线段AA′与直线MN有怎样的位置关系?你能说明理由吗?归纳:经过线段______并且_____于这条线段的直线,叫做这条线段的垂直平分线.轴对称的性质:如果两个图形关于某条直线对称,那么________是任何一对对应点所连线段的垂直平分线.练习:P60. 1、2.五、归纳小结六、拓展提高在由小正方形组成的L形的图中,用三种不同方法添画一个小正方形,使它成为轴对称图形.图 3图 2图 1七、达标检测(100分)一、选择题(每小题10分,共40分)1.在下列四家银行的标志中,不是轴对称图形的为()A. B. C. D.2.下列图形,对称轴最多的是()A.长方形 B.正方形 C.角 D.圆3.如图1,△ABC与△DEF关于直线MN轴对称,则以下结论中错误的是()A.AB∥DF B.∠B=∠E C.AB=DE D.AD的连线被MN垂直平分4.如图2,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A.4cm2 B.8cm2 C.12cm2 D.16cm2图1 图2 图3 图4二、填空题(每小题10分,共30分)5..观察规律并填空:6.如图3,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是_________.7.如图4,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为_______.三、解答题(共30分)8.如图,△ABC的顶点都在正方形网格的格点上,画出△ABC关于直线MN的对称图形;9.如图,O为△ABC内部一点,OB= 3 ,P、R为O分别以直线AB、BC为对称轴的对称点.(1)请指出当∠ABC是什么角度时,会使得PR的长度等于6?并完整说明PR的长度为何在此时等于6的理由.(1)小题,请判断当∠ABC不是你指出的角度时,PR的长度小于6还是大于6?并完整说明你判断的理由.八、布置作业 P64. 教材习题13.1第1,2,3题九、总结反思:数学教学应该选在牵一发而动全身的关键之处进行,轴对称图形的认识的教学就是要抓住“对折”与“完全重合”两个关键之处.不然就是隔靴搔痒. 当“部分重合”与“完全重合”理解了,轴对称图形的概念也会在学生脑海中留下深刻的印象.第十三章轴对称《13.1.2线段垂直平分线的性质(1)》导学案 N0.2一、学习目标1.会用尺规过一点作已知直线的垂线.2.掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题.二、教学重、难点1.重点:线段的垂直平分线的性质和判定及其运用.2.难点:灵活运用线段的垂直平分线的性质和判定解题.三、自主学习自学课本P61-62页,完成下列问题:1.线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点____________。
2.线段的垂直平分线的判定:与线段两个端点距离_____的点在这条线段的_______上。
四、合作探究知识点一:线段的垂直平分线的性质(一)性质的发现思考:如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点,分别量一量点P1,P2,P3…到点A与点B的距离,你有什么发现?归纳:线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.(二)性质的证明求证:线段垂直平分线上的点和这条线段两个端点的距离相等.已知:如图,直线MN⊥AB,垂足为C,AC =CB,点P 在MN上.求证:PA =PB.证明:在△APC和△BPC中,∵PC=PC(公共边),∠PCB=∠PCA(垂直定义),AC=BC(已知),∴△APC≌△BPC(SAS).∴PA=PB(全等三角形的对应边相等).(三)性质的应用例1:如图,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为35cm,则BC的长为( )A.5cm B.10cm C.15cm D.17.5cm方法归纳:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长.练习:已知:如图,在ΔABC中,边AB,BC的垂直平分线交于P.求证:PA=PB=PC.结论:三角形三边垂直平分线交于一点(外心),这一点到三角形三个顶点的距离相等.知识点二:线段的垂直平分线的判定写出“线段的垂直平分线的性质”这个命题的逆命题吗?它是真命题吗?线段的垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.证法一.过点P作已知线段AB的垂线PC,∵PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL).∴AC=BC,即P点在AB的垂直平分线上.证法二.取AB的中点C,过P,C作直线.∵PA=PB,PC=PC,AC=CB,∴△APC≌△BPC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,即PC⊥AB,∴P点在AB的垂直平分线上.证法三.过P点作∠APB的平分线.∵PA=PB,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应边相等,对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=90°,∴P点在AB的垂直平分线上.讨论:下列证明对吗?证明:过P作线段AB的垂直平分线PC。
∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线上.结论:“过P作AB的垂直平分线”是不可能实现的。
练习:P62. 1、2.六、归纳小结1.线段垂直平分线的性质与判定.2.三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.3.证明线段相等的方法有:(1)由全等得对应线段相等;(2)由线段垂直平分线的性质得出线段相等.六、拓展提高如图,AD是△ABC的角平分线,ABDE⊥于E点,ACDF⊥于F点,判断AD与EF的位置关系,并说明理由.BACMNM'N'PPA B七、达标检测(100分)一、选择题(每小题10分,共40分)1.如图1,BP AP =,BQ AQ =,则下列结论正确的是( )A .AB 垂直平分PQ B .PQ 垂直平分ABC .AB 平分PAQ ∠D .AB 平分PBQ ∠2.在锐角三角形ABC 内一点P,,满足PA=PB=PC,则点P 是△ABC ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.如图2,在ABC ∆中,若MP 和NQ 分别垂直平分AB 和AC ,若8=BC ,则APQ ∆的周长是( ) A .4 B .8 C .12 D .164.如图3,在ABC ∆中,O C 90=∠,点D 在AC 边上,沿着BD 折叠该三角形,顶点C 恰好落在AB 边的中点E 处.则A ∠等于( )A .O 30B .O 45C .O 60D .O 75 图1 图2 图3 图4二、填空题(每小题10分,共30分)5.某区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于_____处,才能使得它到三个小区的距离相等.6.如图4,小明做了一个如图所示的风筝,其中EH=FH ,ED=FD ,小明说不用测量就知道DH是EF 的垂直平分线.其中蕴含的道理是__________________________________________.7.下列说法:①若点P 、E 是线段AB 的垂直平分线上两点,则EA =EB ,PA =PB ;②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA =EB ,则经过点E 的直线垂直平分线段AB .其中正确的有_________(填序号).三、解答题(共30分)1.如图,AC AB =,CD BD =,点E 在直线AD 上,求证:CE BE =.2.如图,在△ABC 中,BAC ∠的角平分线与BC 的垂直平分线EF 相交于D 点,过D 点分别作AB DM ⊥于M 点,AC DN ⊥的延长线于N 点,求证:CN BM =. P Q BA M A NC Q P B NM DC B A ED C BA八、布置作业 P65--66. 教材习题13.1第6,9,13题十、总结反思:本节证明了线段的中垂线的性质定理及判定定理、运用作线段的中垂线.在课堂中,学生对证明过程的理解及掌握都比较好,在解决实际问题时可以直接用定理而不是借助于全等.第十三章轴对称《13.1.2线段垂直平分线的性质(2)--有关作图》导学案 N0.3一、学习目标1.能用尺规作已知线段的垂直平分线;解尺规作图的一般步骤和作图语言,理解作图的依据.2.轴对称图形的对称轴的画法;能够运用尺规作图的方法解决简单的作图问题.二、教学重、难点1.重点:用尺规作已知线段的垂直平分线;轴对称图形的对称轴的画法。