新人教版八年级数学上轴对称全章导学案
- 格式:doc
- 大小:1.60 MB
- 文档页数:40
新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。
2、会作轴对称图形的对称轴。
3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。
教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。
教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。
(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。
一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。
教师作总结,肯定学生的积极表现。
归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。
看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。
新人教版八年级数学上册:13.1轴对称 导学案教学目标:1通过观察实物图形 及折纸游戏,得到轴对称图形的概念。
2掌握图形轴对称的性质。
3掌握线段垂直平分线的性质。
重点:上面的两条性质。
难点:性质的应用。
教学过程: 一. 知识频道1观察并填空:请同学们欣赏图片4阅读课本并填空:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线。
轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对 ______所连线段的。
轴对称图形的 ,是任何一对对应点所连 的 。
2这些图形有什么共同特点? 请你利用手中的工具制作一个具有轴对称特征的图形 。
轴对称图形:如果 沿一条直线折叠,直线两旁的部分能够互相 ,那么这个图形就叫做轴对称图形,这条直线叫做这个图形的对称轴。
练习:下面的图形是轴对称图形吗?如果是,你能指出它的对称轴吗? 请大家仔细观察两个图形是否也有这样的特征呢? 你观察到了什么? 3、试一试:标出图中点A 、B 、C 的对称点A 1、B 1、C 1。
NA B CCB二:方法频道:先自学课本例题,再小组讨论疑难问题。
三:习题频道:1.找出下列图形的所有的对称轴,并一一画出来。
2.以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形:3.如图,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)4复习巩固:课本124页练习,125页1至8题5拓展延伸:课本9至12题6中考链接:⑴如图,△ABC与△A1B1C1关于直线L对称,将△A1B1C1向右平移得到△A2B2C2。
由此得出下列判断:①AB∥A2B2;②∠A=∠A2;③AB=A2B2;其中正确的是()。
A①② B②③ C①③ D①②③⑵如图,已知直线L及同旁的两点A、B,在直线L取一点C,使AC+BC最小。
••••⑶如图,两条公路交汇于点O,公路旁有两个小镇C、D,现修建一个加油站到两条公路的距离相等,到两个小镇C、D的距离也相等,请你找出符合条件的加油站位置。
新人教版八年级数学上册:13.2.1 作轴对称图形导学案学习目标:1.认识轴对称变换的特征。
2.能够作出简单图形经过一次或两次轴对称变换的图形.3.能够利用轴对称变换进行简单的图案设计,感受数学美.4.体会轴对称变换在现实生活中的应用.重点:能够作出简单图形经过一次或两次轴对称变换的图形.难点:体会轴对称变换在现实生活中的应用.学习过程:一知识频道(交流与发现)1.想一想在一张半透明的纸的左半部分画一张笑脸,把纸对折后描图,就会得到相应的笑脸。
这时两张笑脸成(),()就是它们的对称轴,连接任意一对对应点的线段被对称轴().2. 试一试同理,可以由一个图形得到与它成轴对称的另一个图形,重复这个过程可以得到美丽的图案.3.议一议对称轴方向和位置发生变化时,得到图形的()和()也会变化.4.悟一悟像上面,()叫轴对称变换.轴对称变换是一种变换,是由一个图形得到与他轴对称的图形的运动过程. 理解两点:一是轴对称变换前后两个图形()二是对应点连线被对称轴().二方法频道1.作出简单图形经过一次或两次轴对称变换的图形.例已知:△ABC和直线L。
求作:△A/B/C/与△ABC关于直线L成轴对称。
分析:△ABC可以由三个顶点的位置确定,只要能分别作出这三个顶点关于直线L的对称点,连接这些对称点,就能得到要作的图形。
归纳:几何图形都可以看作由点组成,只要分别作出特殊点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形。
感悟:成轴对称的两个图形中的任何一个可以看作由另一个图形经过()得到的。
2.补图例2.把下图补成以L为对称轴的轴对称图形。
感悟:一个轴对称图形可以看作以它的一部分为基础,经()扩展而成的。
三.思维频道要在管道L上修建一个泵站,分别向A,B两镇供汽,泵站修在管道的什么地方,可使所用的输汽管线最短?lA B分析:首先把数学问题转化为实际问题,把管道近似看成直线L ,两个小镇看作A ,B 两点,问题就是要在l 上找一点C ,使AC+BC 和最小。
新人教八年级数学上册13.1轴对称导学案【学习目标】1、(知识与技能):通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念。
2、(过程与方法):通过独立思考、小组合作、展示质疑发展学生的观察、归纳、想象能力3、(情感、态度与价值观):激情投入,快乐学习,感受对称美,培养良好的动手试验能力、归纳能力和语言表述能力【重点难点】重点:对轴对称图形与轴对称概念的理解。
难点:轴对称图形与轴对称的联系与区别。
【学法指导】采用“观察——实践——自主探究——合作探究”的方法.指导学生学会观察事物,善于把握事物规律与本质的学习方法.通过自主探究、合作探究导学过程方法导引课前导学案【自主学习,基础过关】一、课前准备每小组准备若干张干净整洁能折叠的纸,剪刀,墨水。
二、动手、观察实验,探究结论观察、讨论、交流,尝试用自己的语言描述这些实物、图片的共同特征共同特征:___________________________________________________________<一> 轴对称图形1、做一做把一张纸对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?位于折痕两侧图案有什么关系?2、想一想日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它们有什么共同特征?3、轴对称图形定义:如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴对称图形。
就是它的对称轴。
鼓励学生独立自主解决问题,让学生初步感受通过动手操作来掌握掌握轴对称图形和关于直线成轴对称这两个概念,引导学生由观察得到的感性认识。
由学生通过作图,通过实例认识轴对称,掌握轴对称图形和关于直线<二> 轴对称1、做一做: 折纸印墨迹问题1:你发现折痕两边的墨迹形状一样吗?问题2:两边墨迹的位置与折痕有什么关系?2、想一想: 教材P59-----思考1(最上面一个)3、轴对称定义把一个图形沿着某一条直线折叠,如果它能够与重合,那么就说这两个图形关于这条直线成轴对称。
省实验中学资料第一章轴对称与轴对称图形1.1我们身边的轴对称图形教学目标:1、观察、感受生活中的轴对称图形,认识轴对称图形。
2、能判断一个图形是否是轴对称图形。
3、理解两个图形关于某条直线成轴对称的意义。
4、正确区分轴对称图形与两个图形关于某条直线成轴对称。
5、理解并能应用轴对称的有关性质。
教学重点:1、能判断一个图形是否是轴对称图形。
2、轴对称的有关性质。
难点:1、判断一个图形是否是轴对称图形。
2、正确区分轴对称图形与两个图形关于某条直线成轴对称。
教学过程:一、情境导入教师展示图片:五角星、脸谱、正方形、禁行标志、山水倒映等。
学生欣赏,思考:这些图形有什么特点?二、探究新知1、生活中有许多奇妙的对称,如从镜子里看到自己的像;把手掌盖在镜子上,镜子里的手与自己的手完全重合在一起;这些都是对称,你还能举出例子吗?学生分组思考、讨论、交流,选代表发言。
教师巡回指导、点评。
2、动手做一做:用直尺和圆规在纸上作出一个梯形,并把纸上的梯形剪下来,沿上底和下底的中点的连线对折,直线两旁的局部能完全重合吗?学生活动:观察、小结特点。
3、教师给出轴对称图形的定义。
问题:⑴“完全重合〞是什么意思?⑵这条直线可能不经过这个图形本身吗?⑶圆的直径是圆的对称轴吗?学生分组思考、讨论、交流,选代表发言,教师点评。
⑴指形状一样,大小相等。
⑵不能,因为这条直线必须把这个图形分成能充分重合的两局部,那么必然经过这个图形的本身。
⑶不是,因为圆的直径是线段,而不是直线,应说直径所在的直线或经过圆心的直线。
4、猜测归纳:正三角形有几条对称轴?正方形呢?正五边形呢?正六边形呢?从中可以得到什么结论?学生思考、讨论、交流。
5、你还能举出生活中轴对称图形的例子吗?6、教科书第五页图1-6⑴⑵两个图,问题:想一想,每组图形中,左边图形沿虚线对折后与右边的图形有着怎样的关系?7、教师给出两个图形关于某条直线成轴对称的定义。
8、你还能举出生活中两个图形关于某条直线成轴对称的例子吗?思考:轴对称图形与两个图形关于某条直线成轴对称有什么异同?学生思考、分组讨论、交流。
第十三章轴对称复习导学案学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。
2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。
重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用导学过程:欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。
折痕所在的这条直线叫做______。
图形上能够重合的点叫。
分别在上面图形中画出它们的对称轴。
2.轴对称:欣赏下面几幅图片,并完成问题。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。
两个图形中的对应点叫。
如图,写出一对对称点是。
3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。
可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。
4.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。
5.角的平分线的性质角的平分线的性质上的点到的距离相等。
6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。
等边三角形的各角都是,有条对称轴。
一、独立完成发现问题(自主学习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。
而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。
联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。
如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。
新人教八年级数学上册导学案:13.1.1 轴对称【学习目标】1.初步认识轴对称图形;2. 理解轴对称图形和两个图形成轴对称这两个概念的区别与联系,能用概念判断一个图形是否是轴对称图形;3.通过动手实验,掌握关于某条直线成轴对称的两个图形是全等的。
重点:轴对称图形的性质难点:两个图形成轴对称与轴对称图形两个概念的区别与联系。
一、【预习导学】【问题探究一】轴对称图形1、观察课本P58图13.1-1中的6幅图,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处随意剪出一个图形,展开后得到的图形是的,即能够沿完全重合。
【归纳总结】如果一个平面图形沿一条_____折叠,_____两旁的部分能够互相_____,这个图形就叫做轴对称图形,这条____就是它的对称轴,这时,我们也说这个图形关于这条____(成轴) 对称.【探究一自测】下面的图形是轴对称图形吗?如果是,指出对称轴。
【问题探究二】轴对称观察课本P59的图13.1-3中的3幅图形,并沿虚线折叠,虚线两旁的部分能。
【归纳总结】一个图形沿着某条直线折叠,如果他能够与________重合,那么就说这两个图形关于这条直线对称,这条直线叫做_______,折叠后________叫做对称点.【讨论】1、成轴对称的两个图形全等吗?为什么?班级姓名第小组2、全等的两个图形成轴对称吗?试举例说明。
(可以画图说明)【问题探究三】轴对称的性质阅读课本P59最后一个“思考”及P60“练习”前面的内容,解决下列……………………………………1.(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A与A′重合吗?(PA =,∠MPA==度)(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN与线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线 .【归纳总结】如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。
新人教版八年级数学上轴对称全章导学案精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】(A ) (B ) (C ) (D ) .1 轴对称一、学习目标1、认识轴对称和轴对称图形,并能找出对称轴;2、知道轴对称和轴对称图形的区别和联系。
3、掌握轴对称的性质; 二、自主探究 合作展示探究(一) 自学课本58页,完成以下问题。
1、什么是轴对称图形?你能举几个轴对称图形的例子吗?2、试一试:下面的图形是轴对称图形吗?如果是,画出它的对称轴。
(1) (2) (3)(4) (5)探究(二) 自学课本59页,完成以下问题。
1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗? 探究(三)成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗? 归纳:区别:轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。
轴对称指的是_____个图形沿一条直线折叠 ,这个图形能够与另一个图形_________。
联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称) 练习1、我国的文字非常讲究对称美,下面四个图案中不是轴对称图形的是( ).2、下列图形中不是轴对称图形的有( )A 1个B 2个C 3个D 4个3、以下汽车标志中,和其他三个不同的是( )A B C D4、下列图形中对称轴最多的是( )A.圆B.正方形C.角D.线段5、写出英文26个大写字母中是轴对称图形的字母,写出三个是轴对称图形的汉字:6、美国哈佛大学在一次数学考试中,有这样一道填空题:要求在横线上填上适当的图形.你能完成吗?探究(四) 轴对称的性质1、如图(1),△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′、 B ′、C ′分别是点A 、B 、C 的对称点,线段AA ′、BB ′、CC ′ 与直线MN 有什么关系?(1) 设AA ′交对称轴MN 于点P ,将△ABC 和△A ′B ′C ′沿MN 折叠后,点A 与A ′重合吗?于是有PA =,∠MPA = = 度(2)对于其他的对应点,如点B ,B ′;C ,C ′也有类似的情况吗? (3)那么MN 与线段AA ′,BB ′,CC ′的连线有什么关系呢? 2、垂直平分线的定义:经过线段 并且 这条线段的直线,叫做这条线段的垂直平分线. 3、轴对称的性质:如果两个图形关于某条直线对称,那么 是任何一对对应点所连线段的 。
13.1 轴对称13.1.1轴对称(1)学习目标1、通过展示轴对称图形的图片,初步认识轴对称图形;2、通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;3、培养良好的动手试验能力、归纳能力和语言表述能力。
学习重点:理解轴对称图形的概念学习难点:判断图形是否是轴对称图形课前预习1、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.做下面的题,检验你预习的结果5、轴对称图形的对称轴是一条___________A直线 B射线 C线段6、课本P30练习题。
7、下面的图形是轴对称图形吗?如果是,指出对称轴。
课内探究:例1、我国的文字非常讲究对称美,分析图中的四个图案,图案()有别于其余三个图案.思路分析:(A) (B) (C) (D)第4题所用知识点:例2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)思路分析:所用知识点:当堂检测:A组:1、要求同学们找出所剪的图案的对称轴,并且用直尺把它画出来。
2、课本P36习题1,3、课本P63复习题1B组:1、找出英文26个大写字母中哪些是轴对称图形?2、你能举出三个是轴对称图形的汉字吗3、练习册习题C组:1、用两个圆、两个三角形、两条平行线构造轴对称图形,别忘了要加上一两句贴切、诙谐的解说词。
课后反思:课后训练:一、选择题1图中的图形中是常见的安全标记,其中是轴对称图形是 ( )#2、下列轴对称图形中,对称轴的条数四条的有()个A.1B.2C.3D.43、下列各图中,是轴对称图案的是()※4 在下列各电视台的台标图案中,是轴对称图形的是()(A)(B)(C)(D)二、填空题5、观察下列图形:轴对称图形的有13.1.1轴对称(2)学习目标1、通过动手实验,掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。
13.1 .1 轴对称一、学习目标1、认识轴对称和轴对称图形,并能找出对称轴;2、知道轴对称和轴对称图形的区别和联系。
3、掌握轴对称的性质;二、自主探究合作展示探究(一)自学课本58页,完成以下问题。
1、什么是轴对称图形?你能举几个轴对称图形的例子吗?2、试一试:下面的图形是轴对称图形吗?如果是,画出它的对称轴。
(1)(2)(3)(4)(5)探究(二)自学课本59页,完成以下问题。
1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗?探究(三)成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?(A) (B) (C) (D)归纳:区别:轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。
轴对称指的是_____个图形沿一条直线折叠,这个图形能够及另一个图形_________。
联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称)练习1、我国的文字非常讲究对称美,下面四个图案中不是轴对称图形的是( ).2、下列图形中不是轴对称图形的有()A 1个B 2个C 3个D 4个3、以下汽车标志中,和其他三个不同的是()A B C D4、下列图形中对称轴最多的是( )A.圆B.正方形C.角D.线段5、写出英文26个大写字母中是轴对称图形的字母,写出三个是轴对称图形的汉字:6、美国哈佛大学在一次数学考试中,有这样一道填空题:要求在横线上填上适当的图形.你能完成吗?探究(四)轴对称的性质1、如图(1),△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′图(1)及直线MN有什么关系?(1)设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN折叠后,点A及A′重合吗?于是有PA=,∠MPA==度(2)对于其他的对应点,如点B,B′;C,C′也有类似的情况吗?(3)那么MN及线段AA′,BB′,CC′的连线有什么关系呢?2、垂直平分线的定义:经过线段并且这条线段的直线,叫做这条线段的垂直平分线.3、轴对称的性质:如果两个图形关于某条直线对称,那么是任何一对对应点所连线段的。
类似地,轴对称图形的对称轴,是任何一对对应点所连线段的。
练习1、教材60页1、2(在教材上完成)2、如图是我国几家银行的标志,在这几个图案中是轴对称图形的有哪些?它们各有几条对称轴,你能画出来吗?(小组讨论完成)学习小结及反思:13.1.2 线段垂直平分线的性质一、学习目标1、掌握线段垂直平分线的性质2、掌握线段垂直平分线的判定3、运用线段垂直平分线的性质解决问题二、复习右面的图形是轴对称图形吗?如果是,画出它的对称轴。
三、探究(一)探究教材61页探究问题1、量出AP1、AP2、AP3、及BP1、BP2、BP3…讨论发现什么样的规律:。
总结线段垂直平分线的性质:2、你能利用判定两个三角形全等的方法证明这个性质吗?如图(1),直线l AB ⊥,垂足是C ,AC=BC,点P 在l 上。
求证: PA PB =探究(二)反过来,如果PA=PB,那么点P 是否在线段AB 的垂直平分线上呢?说明理由. (1)已知: (2)求证:(3)需要作辅助线吗?写出证明过程:总结线段垂直平分线的性质判定:四、练习1.如右图所示,△ABC 中,BC =10,边BC 的垂直平分线分别交AB 、BC 于点E 、D ,BE =6,求△BCE 的周长。
2、如图,△ABC 中,AB =AC =18cm ,BC = 10cm ,AB 的垂直平分线ED 交AC 于D 点,求:△BCD 的周长。
3,如图,在△ABC 中,BC =8,AB 的中垂线交BC 于D ,AC的中垂线如交BC 及E ,则△ADE 的周长等于___ ___.图(1)ECD BA4、如图,△ABC 中,∠ACB=90°,AD 平分∠BAC, DE 丄AB于E ,求证:AD 是CE 的垂直平分线.5、如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,⑴AB ,AC ,CE 的长度有什么关系? ⑵AB+BD 及DE 有什么关系?6、如图,在Rt △ABC 中,∠C=90°,沿着过点B 的一条直线BR 折叠△ABC 使点C 恰好落在AB 边的中点D 处,则∠A 的大小等于 .7、如图,△ABC 中,AD 垂直平分边BC交BC 于D ,AE 丄BE 于E, AF 丄CF 于F ,AE= AF ,求证:∠BAE =∠BAF.8题图8、(2013年泰州市)如图,△ABC 中,AB+AC=6 cm, BC 的垂直平分线L 及ACDBCA EDBCAE相交于点D,则△ABD的周长为 cm.9、如图,在△ABC中,E,F分别为AB,AC上的点,∠B=40°且EF//BC,将△AEF 沿着直线EF向下翻折,得到△A’EF,则∠BEA’= .五、小结及反思:13.1.3 轴对称(2)一、学习目标1、会依据轴对称的性质找出两个图形成轴对称及轴对称图形的对称轴;2、掌握作出轴对称图形的对称轴的方法,即线段垂直平分线的尺规作图。
3、运用线段垂直平分线的性质解决实际问题二、复习1、设A、B两点关于直线MN对称,则______垂直平分________.2、轴对称图形的对称轴及对应点所连线段的垂直平分线有什么关系?3、如图:不通过折叠的方法,你能验证出这两个四边形是否关于直线MN 对称吗?二、预习新知P62—P631、成轴对称的两个图形其对称轴是所连接的。
2、作轴对称图形的对称轴就是做作出一对对应点所连线段的_____________ 。
三、探究新知 预习63页例2 思考:(1)为什么要分别以点A 、B 为圆心,大于1/2AB 的长为半径画弧?(2)为什么直线CD 就是AB 垂直平分线?也是线段AB 的对称轴?四、练习1、画出下边两个轴对称图形的对称轴。
2、课本P64练习题1、2、33、下面是我们学过的一些几何图形,说出下面图形是不是轴对称图形,并完成下表。
长方形 正方形 三角形 等腰三角形等边三角形 平行四边形 任意梯形 等腰梯形 圆4、如图,已知线段AB. (1)用尺规作图的方法作出线段AB 的垂直平分线L(保留作图痕迹,不要求写出作法);(2)在(1)中所作的直线L 上任意取两点M,N(线段AB 的上方),连接AM, AN, BM,BN, 求证:∠MAN=∠MBN.5、如图,在中,∠C=90°,用直尺和圆规在AC 上作点P ,使P到A,B 的距离相等(保留作图痕迹,不写作法和证明).6、如图,△ABC 的周长为30 cm ,把△ABC 的边AC 对折,使顶点C 和点A 重合, 折痕交BC 边于点D,交AC 边于点E ,连接AD ,若AE=4cm , 求△ABD 的周长。
7、如图,已知,△ABC 中,AD 是角平分线,DE 丄AB 于E ,DF 丄AC 于F,求证:AD 是EF 的垂直平分线.对称轴的条数BACBAEDCBA8、已知△ABC中,BC的垂直平分线DE及∠BAC的平分线AE交于E,EF丄AB于F,EH丄AC于H,求证:BF=CH.小结及反思:13.2 画轴对称图形一、学习目标1、认识轴对称图形,探索并了解它的基本性质;2、能够按要求作出简单平面图形经过一次对称后的图形;二、温故知新1、什么是轴对称图形?2、请画出下列图形的对称轴。
三、自主探究合作展示探究(一)自学:认真阅读教材67页图13.2-1。
1、操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?2、归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形图(2)及原图形的 、 完全相同;(2)新图形上的每一点,都是原图形上的某一点关于直线l 的 点; (3)连接任意一对对应点的线段被对称轴 。
探究(二)1、请同学们尝试解决以下问题;如图(1),实线所构成的图形为已知图形,虚线为对称轴,请画出已知图形的轴对称图形。
问题:(1)你可以通过什么方法来验证你画的是否正确? (2)和其他同学比较一下,你的方法是最简单的吗?2、如图(2),已知点A 和直线l ,试画出点A 关于直线l 的对称点A ′。
A ·3、如图,已知点A 和直线l ,试画出线段AB 关于直线l 的对称图形。
BA ·l图(1)lA BCl4、如图已知△ABC ,直线l ,画出△ABC 关于直线l 的对称图形。
四、双基检测1、把下列图形补成关于l 对称的图形。
2、小明在平面镜中看到身后墙上钟表显示的时间是12:15,这时的实际时间应该是 。
、以直线MN 为对称轴,画出△ABC 的对称图形△111C B A 。
(保留作图痕迹,不写画法,不要证明)CBANM3、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(-3, 5), B(-4,3); C(-l, 1). (1)作出△ABC 向右平移6个单位长度的△111C B A (2)作出关于x 轴对称的△222C B A ,并写出点2C 的坐标.l lllyxABC4、完成课本62页练习及65页第6题,66页第10、12、13题五、学习反思13.2.2 用坐标表示轴对称一、学习目标1、能够经过探索利用坐标来表示轴对称;2、掌握关于x轴、y轴对称的点的坐标特点。
二、温故知新如图:(1)观察图(1)中两个圆脸有什么关系?(2)若已知图(1)中圆脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?三、自主探究合作展示探究(一)1、在如图(2)所示平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?已知点A(2,-3)B(-1,2)C(-6,-5)D(0.5,1)E(4,0)关于x 轴对称的点'A()'B()'C( )'D()'E()图(1)关于y轴对称的点'A()'B()'C()'D()'E()2、归纳:点(x,y)关于x轴对称的点的坐标是;点(x,y)关于y轴对称的点的坐标是探究(二)例题:如图(3),四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别作出四边形ABCD关于y轴和x轴对称的图形。
(在教材中完成)四、双基检测1、分别写出下列各点关于x轴和y轴对称的点的坐标。