数字信号处理课件第8章 信号的抽取与插值
- 格式:ppt
- 大小:1.45 MB
- 文档页数:31
信号的抽样与插值目前,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率视为恒定值,即在一个数字系统中只有一个抽样率。
但是,在实际工作中,我们经常会遇到抽样率转换的问题。
一方面,要求一个数字系统能工作在“多抽样率(multirate )”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。
建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。
减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim )”,增加抽样率以增加数据的过程称为信号的“插值(interpolation )。
抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。
例如:⑴ 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。
因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;⑵ 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;⑶ 对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;⑷ 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。
1 信号的抽取设()()|t nTs x n x t ==,欲使s f 减少M 倍,最简单的方法是将()x n 中的每M 个点中抽取 一个,依次组成一个新的序列()y n ,即()()y n x Mn = ~n =-∞+∞ (1.1)现在我们证明,()y n 和()x n 的DTFT 有如下关系:1(2)01()()M j j k Mk Y e X eMωωπ--==∑ (1.2)证明:由式2.1,()y n 的Z 变换为()()()nnn n Y z y n zx Mn z∞∞--=-∞=-∞==∑∑ (1.3)为了导出()Y z 和()X z 之间的关系,我们定义一个中间序列1()x n :1()()0x n x n ⎧=⎨⎩ 0,,2,,n M M =±±其他 (1.4)注意,1()x n 的抽样率仍示s f ,而()y n 的抽样率是s f M 。
多速率信号处理及抽取和内插一:多速率信号处理1、在信号处理系统中有时需要不同的抽样率,这样做的目的有时是为了适应不同系统之间的级联,以利于信号的处理、编码、传输和存储,有时则是为了节省计算工作量。
数据速率的转换两种途径:1)数字信号→数模转换→模拟信号→模数转换→另一抽样率抽样2)数字信号处理→数字信号处理基本方法→抽样率转换目的:改变原有数字信号的频率方法:抽取和内插,低通滤波。
低通滤波:抽取和内插的前提条件是信号频带内没有频谱混叠,实现这一点需要用到低通滤波。
2、多速率滤波器-->具有线性相位的FIR滤波器。
常用的多速率滤波器:多速率FIR滤波器,积分梳状滤波器(CIC)和半带滤波器(HB);3、常用多速率信号处理结构第一级:CIC滤波器。
用于实现抽取和低通滤波第二级:fir实现的半带滤波器优点:工作在较低频率下,且滤波器参数得到优化,更容易以较低阶数实现,达到节省资源,降低功耗的目的。
二:抽取概念:使抽样率降低的转换。
1、整数倍抽取当信号的抽取数据量太大时,为了减少数据量以便于处理和计算,我们把抽样数据每隔(D-1)个取一个,这里D是一个整数。
这样的抽取称为整数抽取,D称为抽取因子。
2、抽取后结果:信号的频谱:信号的频谱周期降低1/D;信号的时域:信号的时域每D个少了(D-1)信号。
3、抗混叠滤波:在抽取前,对信号进行低通滤波,把信号的频带限制在抽样后频率的一半以下,这样,整数倍抽取的的问题就变成了一个低通滤波的问题。
信号时域图信号频域图程序运行后所得到的滤波前后信号的时域图,滤波器的频率响应图如上图。
从图中可以看出,经半带滤波器滤波后的信号,与原信号相比,波形没有改变,但抽样速率降低了一半;半带滤波器通阻带容限相同,具有严格线性相位。
三:内插概念:使抽样率升高的转换。
1、整数倍内插:在已知的相邻抽样点之间等间隔插入(I-1)个零值点。
然后进行低通滤波,即可求得I倍内插的结果。
2、内插后结果:信号的时域:已知抽样序列的两相邻抽样点之间等间隔多了I-1个值信号的频谱:信号的频谱周期增加了I倍。