实验一:低通采样定理和内插与抽取实现a
- 格式:doc
- 大小:203.00 KB
- 文档页数:13
抽取与内插的频谱分析工科试验班钟汇凯43我们知道,为了避免在抽样信号中出现混叠,抽样定理要求被抽样的信号是一个带限信号。
然而,在实际应用中,绝大多数信号都不能满足这个要求,为了减小混叠的影响以及放宽对滤波器性能指标的要求,在实际应用中往往采取一种提高抽样率的办法,使信号的抽样率远远大于限带滤波器通带频率的两倍。
例如,在下图中,当抽样频率略大于限带频率 ωm 的两倍时,混叠的影响还是很明显的,而当抽样频率远远大于两倍的 ωm 时,混叠的影响就非常之小了。
虽然提高抽样率可以减小混叠的影响,但是,在对连续时间信号进行处理的离散时间系统中,过高的抽样率将增加系统的成本,因为,过高的抽样率将要求离散时间系统以较高的速率工作,而高速率器件的成本一般都要贵于低速率的器件。
可以设想,如果能对信号的抽样率进行调整,使得在信号的抽样和恢复中使用较高的抽样率,在离散时间处理中使用较低的抽样率,那么,上述性能和成本的矛盾就可以得到适当的折中,而离散时间信号的抽取和内插就是一种调整信号抽样率的办法。
从技术性能层面来看。
这两种方法类似于连续时间信号的抽样和内插。
抽取离散时间信号的抽取包含信号抽样和尺度变换两个步骤:首先,以抽样间隔N 对离散时间信号进行抽样,然后再对抽样信号进行1/ N 的尺度压缩变换。
下图是离散时间信号的抽取过程,图中,x [ n ] 是离散时间信号,xs [ n ] 是抽样信号,抽样间隔N=3,xd [ n ] 是抽取信号,它是xs [ n ] 进行1/N 尺度压缩变换后所得到的结果。
由图可见,在抽样信号xs [ n ] 和抽取信号xd [ n ] 之间存在以下关系:(1)由于抽样信号xs [ n ] 在N 的整数倍上和离散时间信号x [ n ] 相等,因此,式(4.55)也可等效为:(2)虽然式(1)和式(2)在形式上完全相同,但两者的含义不同:式(1)的含义是,抽取信号xd [ n ] 是由抽样信号xs [ n ] 进行1/N 尺度压缩变换的结果;而式(2)的含义是,抽取信号xd [ n ] 是从离散时间信号x [ n ] 中每隔(N-1)个点取一个样本值所组成的一个新序列,这个过程就称为离散时间信号的抽取。
带通采样定理和低通采样定理模拟信号经过采样转换成数字信号,时域分析为模拟信号与采样的周期冲击串相乘,根据傅里叶变换的时频对应关系可知,频域以采样周期为周期的频谱搬移过程,低通采样定理要求采样频率大于信号最高上限频率的2倍,频谱搬移的过程不会导致频谱混叠,带通采样频率小于这一条件,当满足一定的条件后频谱也不会混叠,但是此时频带发生传动,信号的重构和低通信号有很大差别。
一、低通采样周期性频谱搬移低通采样的原理分析见数字信号处理(西电版)。
首先,低通采样实现的原理是进行周期性的频谱搬移,实际FFT 变换的结果只有(O:fs或者-fs/2:fs/2),周期频谱搬移就是每个周期的信号频谱相同,只是索引值不同带来的结果不同,可以保持一个周期频谱不变,改变对应的真实频率范围获得搬移的效果。
@——fftshift()函数对应的真实频谱范围:fs*(-N/2:N/2-1)/N @------fft()函数对应的真实频谱范围:fs*(0:N-1)/N庚宙IB茸障站霆号的魚谒E 64 2 Q 24€B .:1.■U的耳 IS r/电 £写抽Mil保持原始信号的频谱不变,转换频谱搬移周期,刚好达到两倍采 样频率,谱结构如下:结论:(1) 低通采样定理的周期性频谱搬移以采样频率为周期,采样频率 必须大于信号最高上限的二倍,否则就会导致频谱混叠。
(2) 低通采样后的信号重构只需要经过低通滤波器即可。
二、带通采样定理原理和重构分析 1、带通采样定理原理带通采样定理:一个频带限制在f L ,f H 内的连续时间信号X t ,信号带宽B f H f L ,令N 为不大于f H B 的最大正整数,当采样频率f s 满足一 下条件-]I -1 ir■ qr n 11I 1 : !i i…-一.....r1i ii ii :1 11 1iiJLJi L i*L1JiL ] JL€则可以由采样后的序列无失真的重构原始信号 x t 原理分析:X(f)Xs(f)采样后的信号在频域变现为周期性的频谱搬移,为了能够重构原 始信号,选择合适的采样频率,使f H ,f L 和f L ,f H 的频带分量不会 和延拓分量出现混叠,这样通过升采样后经过带通滤波器即可恢复原 始信号,分析正频率附近无混叠的条件:保证延拓的频谱分量f H mf s , f L mf s 和 f H (m 1)f s , h (m 1)f s 与无拓展频率分量不会混叠,即满足以下关系:整理可得,2f Hf 2fL m 1 s m当m 0时,f s 2f H ,此时为低通采样定理(奈奎斯特采样定理) 延拓周期还要保证f s 2B ,f s2f LfHfL 01)fsf H m 1 f s f H2f L f Lf s B带通采样定理由此而来2、重构分析低通采样后的信号经过低通滤波器后即可恢复原始信号,低通信号的抽样和恢复比起带通信号来要简单。
实验一低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理 1.抽样定理若)(t f 是带限信号,带宽为m ω,)(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱)(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当s ω<m ω时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h 其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(s csnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有)(s i n )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa : 三、实验内容已知信号()()99(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a)20000s f Hz =;(b)10000s f Hz =;(c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。
数字信号处理实验指导书实验名称:采样定理依托实验室:信号系统与处理实验室二00六年十二月数字信号处理实验一:采样定理一.实验目的1.熟练掌握SYSTEMVIEW软件工具的使用2.掌握采样定理的精髓3.了解采样定理在实际中的应用4.了解巴特沃斯滤波器的设计与仿真二.实验原理及方案1.采样定理的内容:奈奎斯特采样定理说明要从抽样信号中无失真地恢复原信号,抽样频率应大于或等于信号最高频率的2倍。
抽样频率小于信号最高频率的2倍时,抽样信号的频谱有混叠,用低通滤波器不可能恢复原始信号。
2.实验方案:三.实验内容系统参数设置:(1)系统时钟采样频率:最好大于4000HZ(2)观察时间0—0.1秒(3)低通滤波器:巴特沃斯滤波器(5阶,截止频率150HZ)(4)信号预处理:低通滤波器+放大器(5)抽样脉冲宽度:0.002秒1.信号源是100HZ的正弦波;抽样信号的频率分别设置为180HZ,350HZ,800HZ,分别观察信号的输出波形是否有失真,记录结果。
180HZ:350HZ:800HZ:2.信号源是20HZ的方波抽样信号的频率分别设置为180HZ,350HZ,800HZ,分别观察信号的输出波形是否有失真,记录结果。
180HZ:350HZ:800HZ:四.实验结果分析分析实验内容中信号的频率改变以及抽样脉冲频率改变对结果的影响,在分析的基础上得出结论。
答:180HZ的采样频率会使结果失真。
五.思考题1.方波信号的最大频率如何确定?2.为什么180HZ的采样频率会使结果失真?3.滤波器的阶数改变时对结果有何影响?4.系统的时钟抽样频率如何确定,为什么越大越好?。
实验一:低通采样定理和内插与抽取实现一.实验目的1. 连续信号和系统的表示方法,以及坊真方法。
2.用MATLAB实现连续信号采用与重构的方法,3. 采样信号的插值和抽取等重采样实现方法。
4. 用时域采样信号重构连续时域信号的原理和方法。
5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。
二.原理1 、时域抽样定理令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为:故可以推得p(t)的傅里叶变换为:其中:根据卷积定理可知:得到抽样信号x(t)的傅里叶变换为:其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。
因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。
假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。
显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。
2、信号的重建从频域看,设信号最高频率不超过折叠频率:Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2Xa(jΩ)=0 |Ω|>Ωs/2则理想取样后的频谱就不会产生混叠,故有:让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器:H(jΩ)=T |Ω|<Ωs/2H(jΩ)=0 |Ω|>Ωs/2滤波器只允许通过基带频谱,即原信号频谱,故:Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ)因此在滤波器的输出得到了恢复的原模拟信号:y(t)=xa(t)从时域上看,上述理想的低通滤波器的脉冲响应为:根据卷积公式可求得理想低通滤波器的输出为:由上式显然可得:则:上式表明只要满足取样频率高于两倍信号最高频率,连续时间函数xa(t)就可用他的取样值xa(nT)来表达而不损失任何信息,这时只要把每一个取样瞬时值与内插函数式相乘求和即可得出xa(t),在每一取样点上,由于只有该取样值所对应的内插函数式不为零,所以各个取样点上的信号值不变。
实验二低通抽样定理验证实验一、实验目的1、熟悉使用System View软件,了解各部分功能模块的操作和使用方法。
2、通过实验进一步掌握低通抽样定理的原理。
二、实验内容}用System View建立一个低通抽样定理仿真电路,通过观察各个模块输出波形变化,理解低通抽样定理原理。
三、电路构成图1 低通抽样定理验证实验原理图参数设置:Token3:产生模拟信号(参数设置:Source――Periodic――Sinusoid,幅度1V,频率50HZ,相位0度)《Token4:MultiplierToken5:产生抽样信号(参数设置:Source——Periodic——Pulse Train,幅度1V,频率100Hz,脉冲宽度,偏移0V,相位0度,抽样速率可调)Token6:产生一个模拟低通滤波器,滤除高频信号,保留低频信号(参数设置:Operator——Filters/Systems——Linear Sys Filters,选择:Analog——Lowpass——Butterworth,Lowcuttoff=50Hz,No of Poles=3,截止频率=模拟信号最高频率)四、实验结果(1)原始的输入信号波形图)图2 原始的输入信号波形图(2)原始的输入信号的频谱图图3 原始的输入信号频谱图。
(3)被抽样以后的图形图4 被抽样以后的图形>(4)被抽样以后的频谱图图5 被抽样以后的频谱图分析:由于原始输入波形的离散化,使得输出频谱周期化。
输出频谱如图5所示。
\(5)经过低通滤波器后,还原出波形如图6】图6 还原出的波形(6)经过低通滤波器后,还原后的频谱图!图7 还原后的频谱图可以发现频谱图基本和图3所示相同,但是由于滤波器不是理想低通,使得使得输出频谱周期化的现象仍然存在。
但是基本上已被滤波器滤除,不影响输出波形。
五、思考题#1、观察仿真电路中各个模块输出波形变化,理解低通抽样定理原理。
答:输出波形如上图2至7所示。
抽样定理实验⼀抽样定理实验⼀、实验⽬的1、了解抽样定理在通信系统中的重要性2、掌握⾃然抽样及平顶抽样的实现⽅法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产⽣孔径失真的原理8、理解带通采样定理的原理⼆、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:⼀个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进⾏等间隔抽样,则()m t 将被所得到的抽样值完全确定。
(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产⽣的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。
抽样定理实验的原理框图如下:抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号图1抽样定理实验原理框图抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号低通滤波器图2实际抽样系统为了让学⽣能全⾯观察并理解抽样定理的实质,我们应该对被抽样信号进⾏精⼼的安排和考虑。
在传统的抽样定理的实验中,我们⽤正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种⽅案放弃了。
另⼀种⽅案是采⽤较复杂的信号,但这种信号不便于观察,如错误!未找到引⽤源。
所⽰:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对⽐你能分辨错误!未找到引⽤源。
中抽样恢复后信号的失真吗因此,我们选择了⼀种不是很复杂,但⼜包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所⽰:图1被抽样信号波形及频谱⽰意图对抽样脉冲信号的考虑⼤家都知道,理想的抽样脉冲是⼀个⽆线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有⼀定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,⽤不同的宽度的脉冲信号来抽样所带来的失真程度是不⼀样的,为了让⼤家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中⼤家可以⼀边调节脉冲宽度,⼀边从频域和时域两个⽅⾯来观察孔径失真现象。
实验一抽样定理一.概述抽样的分类:(1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理。
(2) 根据用来抽样的脉冲序列是等间隔的还是非等同隔的,又分均匀抽样定理和非均匀抽样。
(3) 根据抽样的脉冲序列是冲击序列还是非冲击序列,又可分理想抽样和实际抽样。
二.实验原理及其框图抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。
低通型连续信号的抽样定理一个频带限制在内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
原理框图图1 抽样说明:抽样过程中满足抽样定理时,PCM系统应无失真。
这一点与量化过程有本质区别。
量化是有失真的,只不过失真的大小可以控制。
三.实验步骤1、根据抽样原理,用Systemview 软件建立一个仿真电路,如下图所示:图2 仿真电路元件参数配制Token 0: 被采样的模拟信号—正弦波(频率=100Hz,电平=1V,相位=0)Token 2: 乘法器Token 5 抽样脉冲——窄脉宽矩形脉冲(脉宽=1us )Token1,3: 模拟低通滤波器(截止频率=100 Hz )Token 4,6,7: 观察点—分析窗(6频率=100Hz 电压=-1V)2、运行时间设置运行时间=0.3 秒采样频率=10,00 赫兹3、运行系统在Systemview 系统窗内运行该系统后,转到分析窗观察Token 5,6,8三个点的波形。
4、功率谱在分析窗绘出该系统调制后的功率谱。
四、实验报告1)观察实验波形:Token 0-被采样的模拟信号波形;Token 2-采样后波形;Token 3-恢复信号的波形。
2)整理波形,存入文档。
3)观察采样前后各信号的功率谱,结果存入文档,进行比较。
4)分析说明实验结果与理论值之间的差别。
5)改变参数配置,将所得不同结果存档后,与实验结果进行比较,说明参数改变对结果的影响。
通信原理实验报告一、实验名称MATLAB验证低通抽样定理二、实验目的1、掌握抽样定理的工作原理。
2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。
同时训练应用计算机分析问题的能力。
3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。
它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。
4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。
三、实验步骤及原理1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。
2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。
四、实验内容1、画出连续时间信号的时域波形及其幅频特性曲线,信号为x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形;3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。
4、对信号进行谱分析,观察与3中结果有无差别。
5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。
五、实验仿真图(1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。
clear;close all;dt=0.05;t=-2:dt:2x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(2,1,2)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');grid;(2)采样频率分别为10Hz时的采样序列波形, 幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.1;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(3)采样频率分别为20 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;clear;close all;dt=0.05;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2;fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形')xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形')xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形')xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|');xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401))title('恢复后的信号');xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|');xlabel('f1');grid;(4)采样频率分别为50 Hz时的采样序列波形,幅频特性曲线,以及由采样序列恢复出连续时间信号时域、频域波形;;clear;close all;dt=0.02;t0=-2:0.01:2t=-2:dt:2ts1=0.01x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0);x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t);B=length(t0);Y2=fft(x0)/B*2;fs2=1/0.01;df2=fs2/(B-1);f2=(0:B-1)*df2;N=length(t);Y=fft(x)/N*2;fs=1/dt;df=fs/(N-1);f=(0:N-1)*df;tm=-50:ts1:50gt=sinc(fs*tm)st=sigexpand(x,dt/ts1)x3=conv(st,gt)A=length(tm(5001:5401));Y1=fft(x3(5001:5401))/A*2; fs1=1/ts1;df1=fs1/(A-1);f1=(0:A-1)*df1;subplot(3,2,1)plot(t0,x0)title('原始时域波形') xlabel('t')subplot(3,2,2)plot(f2,abs(Y2))title('原始频域波形') xlabel('t')subplot(3,2,3)plot(t,x)title('抽样时域波形') xlabel('t')grid;subplot(3,2,4)plot(f,abs(Y));title('抽样频域信号 |Y|'); xlabel('f');subplot(3,2,5)plot(t0,x3(5001:5401)) title('恢复后的信号'); xlabel('tm')subplot(3,2,6)plot(f1,abs(Y1));title('恢复频域信号 |Y1|'); xlabel('f1');grid;六、实验结论实验中对模拟信号进行采样,需要根据最高截止频率Fmax,按照采样定理的要求选择采样频率的两倍,即 Fs>2Fmax。
武汉大学教学实验报告电子信息学院通信工程专业 2015 年 9月 24 日实验名称信号的抽样与内插指导教师姓名年级学号成绩迭现象,不能从抽样后信号fs(t)中恢复原信号f(t)。
图1信号抽样与恢复示意图1.设计信号 , 的抽样与恢复实验⑴.在 MATLAB 命令窗口中输入“simulink”,启动SimulinkLibraryBrowser;⑵.在 Simulink Library Browser 中,新建一个模型文件,编辑模型文件。
建立如图 2 所示的抽样与内插的仿真模型,并保存为 sample.mdl。
图2 信号抽样与恢复模型⑶.分别在欠采样与过采样条件下,配置各模块的参数。
⑷.在模型文件的菜单中选择 Simulation->Start,运行在欠采样、与过采样条件下的仿真模型。
⑸.仿真结束后,打开示波器,观察在欠采样与过采样条件下的仿真结果。
图3 所示为过采样和欠采样条件下的仿真结果图3.1 过采样图3.2 欠采样⑹.画出各信号的频谱图。
图4为正弦波的各信号频谱图4.1 过采样图4.1 欠采样参考程序代码如下N=length(time); Ts=(time(N) - time(1))/N;m=floor(N/2); Ws=2*pi/Ts; W=Ws*(0:m)/N; F=fft(z1,N); FF=F(1:m+1); F11=abs(FF);F=fft(z2,N); FF=F(1:m+1); F12=abs(FF);F=fft(z3,N); FF=F(1:m+1); F13=abs(FF);F=fft(z4,N); FF=F(1:m+1); F14=abs(FF);figure(1)plot(W,F11,'b',-W,F11,'b');title('输入信号的幅频特性');xlabel('频率(Rad/s)');figure(2)plot(W,F12,'b',-W,F12,'b');title('滤波后信号的幅频特性');xlabel('频率(Rad/s)');figure(3)plot(W,F13,'b',-W,F13,'b');title('抽样后信号的幅频特性');xlabel('频率(Rad/s)');figure(4)plot(W,F14,'b',-W,F14,'b');title('恢复后信号的幅频特性');xlabel('频率(Rad/s)');⑺.改变信号源的波形,将信号源的波形换成方波、三角波后重复上述实验,观察信号波形与频谱的变化。
低通型采样定理低通型采样定理是信号处理领域中的重要理论,它描述了在数字信号处理中对连续信号进行采样的方法和限制条件。
本文将详细介绍低通型采样定理的原理、应用以及一些相关概念。
一、低通型采样定理的原理低通型采样定理是由著名数学家香农(Claude Shannon)在1949年提出的。
它的基本原理是:如果一个连续信号的最高频率为f,则将其进行采样时,采样频率应该大于2f才能完全恢复原始信号。
也就是说,在采样过程中,采样频率必须大于信号的最高频率的两倍,才能保证采样后的信号不发生混叠现象。
二、低通型采样定理的应用低通型采样定理在实际应用中有着广泛的应用。
在音频和视频领域,低通型采样定理被广泛应用于数字音频、数字视频的采样和处理过程中。
通过合理的采样频率选择,可以在不损失信息的情况下,将连续信号转换为数字信号,从而实现信号的存储、传输和处理。
在通信领域,低通型采样定理也起着至关重要的作用。
在无线通信系统中,天线接收到的连续信号首先需要经过模数转换器(ADC)进行采样,然后才能进行数字信号处理和解调。
根据低通型采样定理,合理选择采样频率可以避免信号混叠,保证信号的完整性和准确性。
在生物医学领域,低通型采样定理也被广泛应用于生理信号的采样和处理过程中。
例如,心电图(ECG)信号和脑电图(EEG)信号都是连续信号,为了实现对这些信号的准确分析和诊断,需要首先对其进行采样,然后进行数字信号处理。
三、低通型采样定理的相关概念1. 采样频率:指每秒钟对连续信号进行采样的次数,用赫兹(Hz)表示。
根据低通型采样定理,采样频率应大于信号最高频率的两倍。
2. 采样定理:也称为奈奎斯特采样定理,是信号处理领域中的基本理论,指出连续信号在进行采样时,采样频率应大于信号最高频率的两倍,以避免信号混叠。
3. 混叠现象:也称为折叠现象,是指在采样过程中由于采样频率不满足低通型采样定理的要求,导致高频部分的信号频谱被折叠到低频区域,从而引起信号失真。
低通与带通抽样定理验证【分析内容】按照低通抽样定理与带通抽样定理,分别对构造的低通型信号和带通型信号、两种抽样后的信号及滤波重建信号进行时域和频域观察,形象地给出低通抽样定理与带通抽样定理(带通部分选做)。
【分析目的】通过分析验证低通抽样定理与带通抽样定理。
【系统组成】抽样定理实质上研究的是随时间连续变化的模拟信号经抽样变成离散序列后,能否由此离散序列值重建原始模拟信号的问题。
对于低通型和带通型模拟信号,分别对应不同的抽样定理,抽样定理是模拟信号数字化的理论基础。
对上限频率为f H 的低通型信号,低通抽样定理要求抽样频率应满足: 对下限频率为f L 、上限频率为f H 的带通型信号,带通抽样定理要求抽样频率满足:其中, 为信号带宽,n 为正整数, 。
应该注意的是,当 时,无论带通型信号的f L 和f H 为何值,只需将抽样频率设定在2B ,理论上就不会发生抽样后的频谱重叠,而不像低通抽样定理要求的必须为上限频率的2倍以上。
仿真分析系统将按照图1所示结构创建。
其中,对于恒定频谱的冲激函数,通过低通滤波产生低通型信号,再进行低通抽样;通过带通滤波产生带通型信号,再进行带通滤波产生带通抽样,最后分别滤波重建原始信号。
仿真分析时,设低通滤波器的上限频率为10Hz ,带通滤波器下限频率为100Hz 、上限频率为120Hz ,低通抽样频率选为30Hz ;带通型信号上限频率f H = 6×20=120Hz (B=20Hz ,n=6),带通抽样频率至少应取40Hz ,现取60 Hz的带通抽样频率。
【创建分析】第1步:进入SystemView 系统视窗,设置“时间窗”参数如下:① 运行时间:Start Time: 0秒;StopTime: 0.4秒;② 采样频率:Sample Rate= 10000Hz 。
第2步:在SystemView 系统窗下,创Hs f f 2≥]1[2nk B f s +⋅≥L H f f B -=10<≤k nBf H =冲激函数 发生器 低通 滤波 低通抽样带通 滤波 带通 抽样 低通 重建 带通 重建 图1 仿真分析系统结构图2 SystemView 仿真分析系统建的仿真分析系统如图2所示。
成绩《通信原理》软件仿真实验报告实验名称:低通型采样定理院系:通信与信息工程学院专业班级: 1学生姓名:学号:(班内序号)0指导教师:报告日期:2012年11月22日●实验目的:1、掌握低通型采样定理;2、掌握理想采样、自然采样和瞬时采样的特点;●知识要点:1、低通型采样定理;2、理想采样及其特点;3、自然采样及其特点;4、瞬时采样及其特点;●仿真模拟图:1、理想采样时信源、样值序列和恢复信号的波形和频谱:理想采样时信源:样值序列:恢复信号:分析:理想采样时的波形与原波形一样频谱也与原波形一致。
2、自然采样时样值序列和恢复信号的波形和频谱:恢复信号:分析:自然采样时的波形是与矩形脉冲相乘 但还是呈原波形的形状只是中间有了间隔而频谱形状会出现某段的频谱衰减或消失。
3、瞬时采样时样值序列和恢复信号的波形和频谱;瞬时采样时样值序列:瞬时采样恢复信号:分析:瞬时采样的波形与自然采样的波形比较像但与自然采样不同的是波形的顶部不是与原波形一样,而是水平直线频谱的顶部形状也会有变化也会出现衰减和消失的现象。
实验成绩评定一览表系统设计与模块布局系统设计合理,模块布局合理,线迹美观清楚系统设计合理,模块布局较合理,线迹清楚系统设计、模块布局较合理,线迹较清楚系统设计基本合理,模块布局较合理,线迹较清楚系统设计不够合理,模块布局较合理,线迹较清楚参数设置与仿真波形参数设置合理,仿真波形丰富、准确参数设置合理,仿真波形较丰富、较准确参数设置较合理,仿真波形较丰富参数设置较合理,仿真波形无缺失、无重大错误参数设置较合理,仿真波形有缺失参数设置不够合理,仿真波形有缺失或重大错误实验分析实验分析全面、准确、表达流畅实验分析较全面、基本无误、表述清楚实验分析基本正确、个别地方表述不清实验分析无原则性错误、表述不清楚实验分析有缺失或存在严重错误实验成绩。
低通采样原理及应用分析低通采样是一种信号处理技术,用于从一个连续时间信号中提取出其频率范围内的低频分量,并将其转换为离散时间信号。
该技术在信号处理、通信系统、音频处理、图像处理等领域有着广泛的应用。
低通采样的原理是基于奈奎斯特采样定理。
奈奎斯特采样定理指出,如果一个连续时间信号的最高频率分量为fmax,那么就需要以不小于2fmax的采样频率对其进行采样,才能完全还原该连续时间信号。
然而,在实际应用中,信号的最高频率通常不会很高,因此可以通过低通采样来降低采样频率,减少存储和处理的复杂度。
低通采样的基本步骤是首先对原始连续时间信号进行采样,然后通过低通滤波器将采样信号的高频成分去除,最后将滤波后的信号转换为离散时间信号。
通常使用的低通滤波器有抗混叠滤波器、Butterworth滤波器、卡尔曼滤波器等。
低通采样在实际应用中有着广泛的应用。
以下是一些低通采样的应用案例:1. 数字音频处理:在音频录制和音频压缩中,通常需要对音频信号进行低通采样。
通过降低采样频率,可以减少存储和传输带宽,同时保留音频信号的主要特征。
2. 图像处理:在数字相机和图像压缩中,通常需要对图像信号进行低通采样。
通过降低采样频率,可以减少图像数据的存储和传输量,同时保留图像的主要特征。
3. 通信系统:在无线通信系统中,为了适应带宽有限的信道,通常需要对调制后的信号进行低通采样。
通过降低采样频率,可以减少信号处理的复杂度和功耗。
4. 传感器信号处理:在传感器信号处理中,通常需要对传感器输出信号进行低通采样。
通过降低采样频率,可以减少信号处理的复杂度和功耗,同时保留传感器信号的主要特征。
总之,低通采样是一种常用的信号处理技术,可以从连续时间信号中提取出其频率范围内的低频分量,并将其转换为离散时间信号。
在音频处理、图像处理、通信系统、传感器信号处理等领域都有着广泛的应用。
通过降低采样频率,低通采样可以减少存储和处理的复杂度,同时保留信号的主要特征。
实验报告(一)实验日期:2020 年4 月26 日;时间:19:00实验项目:信源编码技术实验使用仪器及装置:仪器:示波器,连接线,装置:主控&信号源模块、3号、21号模块(各一块)实验内容:一、抽样定理实验1、实验目的(1)了解抽样定理在通信系统中的重要性。
(2)掌握自然抽样及平顶抽样的实现方法。
(3)理解低通采样定理的原理。
(4)理解实际的抽样系统。
(5)理解低通滤波器的幅频特性对抽样信号恢复的影响。
(6)理解低通滤波器的相频特性对抽样信号恢复的影响。
(7)理解带通采样定理的原理。
2、实验原理(1)实验原理框图抽样定理实验框图(2)实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
3、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
1、登录e-Labsim仿真系统,创建实验文件,选择实验所需模块和示波器。
2、运行仿真,开启所有模块的电源开关。
3、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
4、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。
5、实验操作及波形观测。
(1)调用示波器观测自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器CH1和CH2分别接MUSIC主控&信号源和抽样输出3#。
实验一:低通采样定理和内插与抽取实现一.实验目的1. 连续信号和系统的表示方法,以及坊真方法。
2.用MATLAB实现连续信号采用与重构的方法,3. 采样信号的插值和抽取等重采样实现方法。
4. 用时域采样信号重构连续时域信号的原理和方法。
5. 用MATLAB绘图函数表示信号的基本方法,实验数据的可视化表示。
二.原理1 、时域抽样定理令连续信号xa(t)的傅里叶变换为Xa(jΩ),抽样脉冲序列p(t)傅里叶变换为P(jΩ),抽样后的信号x^(t)的傅里叶变换为X^(jΩ)若采用均匀抽样,抽样周期Ts,抽样频率为Ωs=2πfs,由前面分析可知:抽样的过程可以通过抽样脉冲序列p(t)与连续信号xa(t)相乘来完成,即满足:x^(t)=xa(t) p(t),又周期信号f(t)傅里叶变换为:故可以推得p(t)的傅里叶变换为:其中:根据卷积定理可知:得到抽样信号x(t)的傅里叶变换为:其表明:信号在时域被抽样后,他的频谱X(jΩ)是连续信号频谱X(jΩ)的形状以抽样频率Ω为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn 加权。
因为Pn只是n的函数,所以X(jΩ)在重复的过程中不会使其形状发生变化。
假定信号x(t)的频谱限制在-Ωm~+Ωm的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(jΩ)是以Ωs为周期重复。
显然,若在抽样的过程中Ωs<2Ωm,则X^(jΩ)将发生频谱混叠现象,只有在抽样的过程中满足Ωs>=2Ωm条件,X^(jΩ)才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。
2、信号的重建从频域看,设信号最高频率不超过折叠频率:Xa(jΩ)=Xa(jΩ) |Ω|<Ωs/2Xa(jΩ)=0 |Ω|>Ωs/2则理想取样后的频谱就不会产生混叠,故有:让取样信号x^(t)通过一带宽等于折叠频率的理想低通滤波器:H(jΩ)=T |Ω|<Ωs/2H(jΩ)=0 |Ω|>Ωs/2滤波器只允许通过基带频谱,即原信号频谱,故:Y(jΩ)=X^(jΩ)H(jΩ)=Xa(jΩ)因此在滤波器的输出得到了恢复的原模拟信号:y(t)=xa(t)从时域上看,上述理想的低通滤波器的脉冲响应为:根据卷积公式可求得理想低通滤波器的输出为:由上式显然可得:则:上式表明只要满足取样频率高于两倍信号最高频率,连续时间函数xa(t)就可用他的取样值xa(nT)来表达而不损失任何信息,这时只要把每一个取样瞬时值与内插函数式相乘求和即可得出xa(t),在每一取样点上,由于只有该取样值所对应的内插函数式不为零,所以各个取样点上的信号值不变。
三. 内容1.设计连续时间信号线性滤波器分离信号组份已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试设计滤波器,分离出如下信号:(1)m 1,2,3......50= (2)m 51,52,53......100= (3)m 40,41,42......60= (4)m 1,2,3......40,61,62......100=据以下采样频率:(a) 20000s f Hz = (b) 10000s f Hz = (c)30000s f Hz = 求信号频谱及相应的滤波器。
参考程序如下:设计一个Butterworth 模拟带通滤波器,设计指标为:通带频率:1000- 2000Hz ,两侧过渡带宽500Hz ,通带波纹1dB ,阻带衰减100dB 。
假设一个信号,其中f1=100Hz,f2=1500Hz,f3=2900Hz 。
信号的采样频率为10000Hz 。
试将原信号与通过该滤波器的模拟信号进行比较。
参考程序如下:wp=[1000 2000]*2*pi;ws=[500 2500]*2*pi;Rp=1;Rs=100; %滤波器设计参数,对于给定Hz 应乘以2[N,Wn]=buttord(wp,ws,Rp,Rs,'s'); %求得滤波器的最小阶数和截止频率 w=linspace(1,3000,1000)*2*pi; %设置绘制频率响应的频率点 [b,a]=butter(N,Wn,'s'); %设计模拟Butterworth 滤波器H=freqs(b,a,w); %计算给定频率点的复数频率响应magH=abs(H);phaH=unwrap(angle(H)); %计算幅频响应和相频响应 plot(w/(2*pi),20*log10(magH)); %以频率为横坐标绘制幅频响应 xlabel('频率/Hz');ylabel('振幅/dB'); title('Butterworth 模拟带通滤波器');hold on;plot([1000 1000],ylim,'r');plot([2000 2000],ylim,'r');%绘带边界grid on figure(2)dt=1/10000; %模拟信号采样间隔f1=100;f2=1500;f3=2900;%输入信号的三个频率成分 t=0:dt:0.04; %给定模拟时间段x=sin(2*pi*f1*t)+0.5*cos(2*pi*f2*t)+0.5*sin(2*pi*f3*t); %输入信号 H=[tf(b,a)]; %滤波器在MATLAB 系统中的表示 [y,t1]=lsim(H,x,t); %模拟输出subplot(2,1,1),plot(t,x),title('输入信号') %绘出输入信号 subplot(2,1,2),plot(t1,y) %绘制输出信号 title('输出信号'),xlabel('时间/s')2. 连续时间信号的采样和重建已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以20000s f Hz =采样频率对该信号采样,并用插值公式重建该信号。
参考程序:①、分别用150HZ 及300HZ 对信号采样源信号为:fa=5*sin(2*pi*40*t1)+1.8*sin(4*pi*40*t1)+0.8*sin(5*pi*40*t1),用150Hz 的频率对f(t)进行采样,其采样图如图1所示;用300Hz 的频率对f(t)进行采样,其采样图如图2所示。
程序如下: fs1=150;t1=-0.1:1/fs1:0.1;fa=5*sin(2*pi*40*t1)+1.8*sin(4*pi*40*t1)+0.8*sin(5*pi*40*t1); figure(1);plot(t1,fa),xlabel('fs1=150Hz 时,fa 采样时域图'); hold off; fs2=300;t2=-0.1:1/fs2:0.1;fb=5*sin(2*pi*40*t2)+1.8*sin(4*pi*40*t2)+0.8*sin(5*pi*40*t2); figure(2);plot(t2,fb),xlabel('fs2=300Hz 时,fb 采样时域图');fs1=150Hz时,fa采样时域图图1 150HZ采样频率对信号采样图fs2=300Hz时,fb采样时域图图2 300HZ采样频率对信号采样图②、对信号进行快速离散傅里叶变换将两个采样信号进行快速离散傅里叶变换(FFT),用150Hz的频率对f(t)进行采样,其采样后快速傅立叶变换频谱图图3所示;用300Hz的频率对f(t)进行采样,其采样后快速傅立叶变换频谱图图4所示。
程序如下:f=40;fs=150;N=300;k=0:N-1;t=-0.1:1/fs:0.1;w1=150*k/N;fa=5*sin(2*pi*f*t)+1.8*sin(4*pi*f*t)+0.8*sin(5*pi*f*t);xfa=fft(fa,N);xf1=abs(xfa);figure(1);plot(w1,xf1),xlabel('fs=150Hz时,fa经fft后频谱图.单位:Hz');f=40;fs=300;N=300;k=0:N-1;t=-0.1:1/fs:0.1;w2=300*k/Nfb=5*sin(2*pi*f*t)+1.8*sin(4*pi*f*t)+0.8*sin(5*pi*f*t);xfb=fft(fb,N);xf2=abs(xfb);figure(2);plot(w2,xf2),xlabel('fs=300Hz时,fb经fft后频谱图.单位:Hz ');fs=150Hz时,fa经fft后频谱图.单位:Hz图3 150HZ采样后经FFT后频谱图fs=300Hz时,fb经fft后频谱图.单位:Hz图4 300HZ采样后经FFT后频谱图③、信号的重建我们可以通过利用内插法把原信号从采样信号中恢复出来,观察信号在满足怎样的采样条件下能够恢复为原信号,图5和图6分别为恢复后的原信号。
程序如下:Wm=180*pi;Wc=Wm;fs1=150;Ws=2*pi*fs1;n=-800:800;nTs1=n/fs1;fa=5.1*sin(2*pi*40*nTs1)+1.8*sin(4*pi*40*nTs1)+0.8*sin(5*pi*40*nTs1);Dt=1/fs1;t1=-0.1:Dt:0.1;fa1=fa/fs1*Wc/pi*sinc((Wc/pi)*(ones(length(nTs1),1)*t1-nTs1'*ones(1,length( t1)));figure(1);plot(t1,fa1);axis([-0.1 0.1 -8 8]);xlabel('fs=150Hz时,fa利用内插由样本重建原信号图.');Wm=180*pi;Wc=Wm;fs2=300;Ws=2*pi*fs2;n=-800:800;nTs2=n/fs2;fb=5.1*sin(2*pi*40*nTs2)+1.8*sin(4*pi*40*nTs2)+0.8*sin(5*pi*40*nTs2);Dt=1/fs2;t1=-0.1:Dt:0.1;fb1=fb/fs2*Wc/pi*sinc((Wc/pi)*(ones(length(nTs2),1)*t1-nTs2'*ones(1,length( t1)));figure(2);plot(t1,fb1);axis([-0.1 0.1 -8 8]);xlabel('fs=300Hz时,fb利用内插由样本重建原信号图.');grid;fs=150Hz时,fa利用内插由样本重建原信号图.图5 150HZ采样后的信号的重建信号-0.1-0.08-0.06-0.04-0.0200.020.040.060.080.1fs=300Hz 时,fb 利用内插由样本重建原信号图.图6 300HZ 采样后的信号的重建信号3.采样信号的抽取和插值⑴.已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,以20000s f Hz =采样频率采样后,设计抽取因子D 和滤波器,分离出如下信号m 1,2,3......50= 信号组分。