七年级数学合并同类项 同步练习(二)北师大版.
- 格式:doc
- 大小:49.00 KB
- 文档页数:3
北师大新版七年级下册《1同底数幂的乘法》2024年同步练习卷(2)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列计算正确的是()A. B. C. D.2.计算:()A. B. C. D.3.下列计算中,错误的是()A. B.C. D.4.小胡同学做了以下四个练习,你认为正确的是()A. B. C. D.5.下列计算结果与不相等的是()A. B. C. D.6.已知,用含m的代数式表示正确的是()A. B. C. D.7.若,则m的值为()A.2B.3C.4D.88.已知,,则等于()A.24B.32C.64D.1289.下列各式中,不能运用平方差公式计算的是()A. B.C. D.10.计算的结果是()A. B. C. D.二、填空题:本题共3小题,每小题3分,共9分。
11.已知,,则的值为______.12.计算:______结果用幂的形式表示13.若,则______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
14.本小题8分计算下列各式,结果用幂的形式表示15.本小题8分若,,,探究a、b、c之间存在怎样的数量关系,并说明理由.16.本小题8分我国在2021年开展的第七次人口普查的资料表明:我国的人口约为万,假设当年人均可支配收入约为元,请你计算当年全国人民的总可支配收入约为多少万元.17.本小题8分规定一种新运算“*”:如果,那么;如果,那么试计算:;如果正整数m、n满足:,,且,试求m、n的值.答案和解析1.【答案】C【解析】解:,故此选项不合题意;B.,故此选项不合题意;C.,故此选项符合题意;D.,故此选项不合题意.故选:直接利用同底数幂的乘法运算法则以及合并同类项法则分别判断得出答案.此题主要考查了同底数幂的乘法运算以及合并同类项,正确掌握相关运算法则是解题关键.2.【答案】A【解析】解:,故选A根据同底数幂的乘法计算即可.此题考查同底数幂的乘法,关键是根据法则底数不变,指数相加计算.3.【答案】D【解析】解:根据合并同类项法则,,那么A正确,故A不符合题意.B.根据同底数幂的乘法法则,,那么B正确,故B不符合题意.C.根据同底数幂的乘法法则,,那么C正确,故C不符合题意.D.根据实数的乘法,与不一定相等,那么D错误,故D符合题意.故选:根据合并同类项法则、同底数幂的乘法法则解决此题.本题主要考查合并同类项、同底数幂的乘法,熟练掌握合并同类项法则、同底数幂的乘法法则是解决本题的关键.4.【答案】C【解析】解:,不符合题意;B.,不符合题意;C.,符合题意;D.,不符合题意;故选:根据同底数幂的乘法的法则同底数幂的乘法法则为:同底数幂相乘,底数不变,指数相加,进行求解即可.本题主要考查同底数幂的乘法,解答的关键是明确同底数幂的乘法的法则:底数不变,指数相加.5.【答案】C【解析】解:,不符合题意;B.,不符合题意;C.,符合题意;D.,不符合题意;故选:根据同底数幂的乘法的法则进行求解即可.本题主要考查同底数幂的乘法,解答的关键是明确同底数幂的乘法的法则:底数不变,指数相加.6.【答案】A【解析】解:,故选:逆运用同底数幂的乘法法则可得结论.本题考查了整式的运算,掌握同底数幂的乘法法则是解决本题的关键.7.【答案】D【解析】解:,,故选:根据同底数的幂相除的法则计算即可.本题考查有理数的乘方运算,解题的关键是掌握乘方的意义和同底数的幂相除的法则.8.【答案】D【解析】解:,故选:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加可得,再代入计算即可.此题主要考查了同底数幂的乘法,关键是掌握计算法则.9.【答案】A【解析】解:,选项A符合题意;,选项B不符合题意;,选项C不符合题意;,选项D不符合题意;故选:根据平方差公式和完全平方公式的特点对每个选项进行分析,即可得出答案.本题考查了平方差公式和完全平方公式,熟练掌握平方差公式和完全平方公式的特点是解决问题的关键.10.【答案】B【解析】解:故选:利用幂的乘方的法则与同底数幂的乘法的法则进行运算即可.本题主要考查幂的乘方,同底数幂的乘法,解答的关键是对相应的运算法则的掌握.11.【答案】24【解析】解:,,故答案为:原式逆用同底数幂乘法法则变形,将已知等式代入计算即可求出值.此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.12.【答案】【解析】解:故答案为:根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.本题考查了同底数幂的乘法法则,属于基础题,掌握基本的运算法则是关键.13.【答案】2【解析】解:,,,,故答案为:根据同底数幂的乘法,可得关于n的一元一次方程,根据解方程,可得答案.本题考查了同底数幂的乘法,利用了同底数幂的乘法法则,解一元一次方程的方法.14.【答案】解:原式;原式;原式;原式【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.15.【答案】解:,理由如下:,,,,,【解析】根据时,随n的增大而增大,可得答案.本题考查了幂的乘方与积的乘方,利用时,随n的增大而增大是解题关键.16.【答案】解:万元答:当年全国人民的总可支配收入约为万元.【解析】通过计算得到全国人民的总可支配收入,然后利用科学记数法的表示形式表示,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数.17.【答案】解:根据题中的新定义得:原式;已知等式化简得:,可得,当时,;时,;时,【解析】原式利用题中的新定义计算即可求出值;已知等式利用题中的新定义化简,计算即可求出各自的值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
北师大版(2024)七年级上册《3.1代数式2》2024年同步练习卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.给出下列式子:,3a,,,1,,其中单项式的个数是()A.1B.2C.3D.42.代数式,,,,,中整式有()A.3个B.4个C.5个D.6个3.在代数式,,,,,,5x中,整式有()A.3个B.1个C.5个D.6个4.下列语句中正确的是()A.数字0不是单项式B.单项式的系数与次数都是1C.是二次单项式D.的系数是5.多项式是关于x的四次三项式,则m的值是()A. B.4 C. D.4或6.下列说法正确的是()A.的系数是B.的次数是6次C.多项式是二次三项式D.的常数项为17.下列各式中,不是整式的是()A.3aB.C.0D.8.对于多项式,下列说法正确的是()A.一次项系数是3B.最高次项是C.常数项是1D.是四次三项式9.多项式的各项分别是()A.,,5B.,x,5C.,2x,5D.3,2,510.按一定规律排列的单项式:a,,4a,,16a,,…,第n个单项式是()A. B. C. D.二、填空题:本题共1小题,每小题3分,共3分。
11.若关于x的多项式合并同类项后,不含一次项,则k的值是______.三、计算题:本大题共1小题,共6分。
12.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.四、解答题:本题共6小题,共48分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分指出下列各代数式中的单项式,并写出各单项式的系数和次数,14.本小题8分用单项式表示下列各量,并说出它的系数和次数:原产量n吨,增产之后的产量;的平方与y的积的;底面积为,高为h cm的圆锥的体积.15.本小题8分说出下列多项式是几次几项式,并指出常数项和最高次项的系数.;16.本小题8分列出下列问题的代数式,并判断所列式子是不是多项式,若是,则写出它的次数.对如图①所示的一块长方形空地进行绿化,长方形的长AB为a,宽BC为b,分别以A,B为圆心,b 长为半径作扇形,用含有a,b的代数式表示绿化部分阴影部分的面积结果保留;如图②所示,有一块长为5p,宽为的长方形纸板,把它的四角各切去一个同样的正方形,然后将四周突出部分折起,制成一个高为p的长方体形状的无盖纸盒.求这个长方体纸盒的容积17.本小题8分对于多项式,回答下列问题:它是几项式?写出它的各项;写出它的最高次项、最高次项的次数;写出多项式的次数;写出常数项.18.本小题8分已知关于x的整式若是二次式,求的值:若是二项式,求k的值.答案和解析1.【答案】D【解析】解:,3a,,1是单项式,共4个,故选:根据单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式可得答案.此题主要考查了单项式,关键是掌握单项式定义.2.【答案】B【解析】解:在代数式,,,,,中,整式有,,,,共4个.故选:根据整式定义解答即可.本题考查了整式的定义,掌握整整式的定义是解题的关键.3.【答案】C【解析】解:代数式,,,,,,5x中,整式有:,,,,5x,共5个,故选:根据整式包括单项式和多项式进行解答即可.单项式就是数与字母的乘积,以及单独的数与单独的字母都是单项式,几个单项式的和叫做多项式.据此解答.本题考查了整式的定义,熟记定义是解本题的关键.4.【答案】C【解析】解:A、数字0是单项式,说法不正确的,不符合题意.B、单项式的系数是,次数是1,说法不正确,不符合题意.C、是二次单项式,说法正确,符合题意.D、的系数是,说法不正确,不符合题意.故选:根据单项式系数、次数的定义求解,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,单独一个数字也是单项式.本题考查了单项式,解题的关键在于掌握其定义.5.【答案】C【解析】解:多项式是关于x的四次三项式,,解得,故选:根据多项式的定义以及性质即可求出m的值.本题考查了多项式的问题,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.6.【答案】C【解析】解:A、的系数是,故此选项错误;B、的次数项为4,故此选项错误;C、是二次三项式,故此选项正确;D、的常数项为,故此选项正确;故选:直接利用单项式的次数与系数、多项式的项数与次数确定方法分别分析得出答案.本题主要考查了单项式和多项式,掌握相关定义是解题关键.7.【答案】B【解析】解:A、3a是单项式,属于整式,故本选项不符合题意;B、的分母中含有字母,属于分式,故本选项符合题意;C、0是单项式,属于整式,故本选项不符合题意;D、是多项式,属于整式,故本选项不符合题意;故选:单项式和多项式统称为整式.主要考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法8.【答案】B【解析】解:多项式,A、一次项系数是,故此选项错误;B、最高次项是,此选项正确;C、常数项是,故此选项错误;D、是三次三项式,故此选项错误.故选:根据多项式的项和次数的定义进行判断.本题考查了多项式的知识,多项式的次数是“多项式中次数最高的项的次数”,不含字母的项是常数项.9.【答案】A【解析】解:多项式的各项分别是,,5,故选:根据多项式的定义进行判断即可.本题考查多项式,理解多项式的定义以及“项数”“次数”的定义是正确解答的前提.10.【答案】A【解析】解:,,,,,,…由上规律可知,第n个单项式为:故选:根据题意,找出规律:单项式的系数为的幂,其指数为比序号数少1,字母为本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.11.【答案】【解析】解:,关于x的多项式合并同类项后,不含一次项,,解得故答案为:根据合并同类项法则合并同类项后,直接利用已知得出关于k的等式,进而得出答案.本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.12.【答案】解:多项式是六次四项式,,;又单项式的次数与多项式次数相同,,,故所求n的值为【解析】由于多项式的次数是“多项式中次数最高的项的次数”,多项式中和的次数都是3次,因此是最高次项,由此得到,从而确定m的值;又单项式的次数也是6次,由此可以确定n的值.本题主要考查了多项式的次数和项数的定义,利用定义列出方程,解方程求出结果.13.【答案】解:是单项式.的系数是,次数是0;的系数是,次数是1;的系数是,次数是3;的系数是,次数是2;的系数是,次数是【解析】根据单项式的定义以及单项式次数与系数的定义分别分析得出即可.此题主要考查了单项式的次数与系数,熟练掌握相关的定义是解题关键.14.【答案】解:,系数为,次数为1;,系数为,次数为3;,系数为,次数为【解析】根据单项式和单项式系数和次数的概念求解.本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.15.【答案】解:是五次四项式,常数项是,最高次项的系数是;是五次三项式,常数项是,最高次项的系数是【解析】根据多项式相关概念即可得到答案.本题考查多项式相关概念,解题的关键是掌握多项式的项数、次数及常数项等概念.16.【答案】解:长方形的面积为:ab,一个扇形的面积为:,阴影部分面积为:,是多项式,次数是2;由题意可知:长方体纸盒的底面长为,长方体纸盒底面的宽为,长方体纸盒的容积,不是多项式,是单项式.【解析】利用长方形的面积-两个扇形的面积=阴影部分面积,即可求解;由题意可得长方体纸盒的底面长为,长方体纸盒底面的宽为,然后利用长方体纸盒的容积长宽高,即可解决问题.本题主要考查了作图-三视图,矩形的性质,列代数式,多项式,单项式,利用长方形的面积减去扇形的面积表示阴影部分的面积是解题的关键.17.【答案】解:含四项,为四项式,分别为、、、由中的四项、、、,次数分别是2、5、0、最高次项为,次数为由可知,多项式的次数为常数项为【解析】根据多项式的定义解决此题.根据多项式的次数以及定义解决此题.根据多项式的次数的定义解决此题.根据常数项的定义解决此题.本题主要考查多项式,熟练掌握多项式的定义是解决本题的关键.18.【答案】解:因为关于x的整式是二次式,所以且,解得,所以;因为关于x的整式是二项式,所以①且,解得;②故k的值是或【解析】由整式为二次式,根据定义得到且,求出k的值,再代入计算求出的值;由整式为二项式,得到①且;②;依此即可求解.此题考查了多项式,关键是熟悉几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.。
北师大版七年级数学上册《5.2一元一次方程的解法》同步测试题附答案学校:___________班级:___________姓名:___________考号:___________(满分120分)1.解方程:3−1.2x=x−12.2.计算:(1)5x+8−7x=2x+4;(2)12x+1=23−2x.3.解方程:3(3x+5)=2(2x−1).4.解方程:(1)13x−x+12=x−14;(2)4[12x−34(x−1)]=13(5+x).5.解下列方程:(1)x6−30−x4=5;(2)3x0.5−1.4x0.4=5x−76.6.解方程:0.1−0.2x0.3−1=0.7−x0.4.7.解下列方程:(1)5x−14=3x+12−2−x3;(2)3x+22−1=2x−14−2x+15.8.解方程2−x15+8x−914=7x−920+12x−1021.9.已知关于x的方程3(x−1)−m=m+32的解是x=4,求m的值.10.如果方程3x−14−1=5x−76的解与方程4x−(3a+1)=6x+2a−1的解相同,求a的值.11.已知关于x的方程:2(x−1)+1=x与3(x+m)=m−1有相同的解.(1)求m的值(2)求以y为未知数的方程3−my3=m−3x2的解.12.已知关于x方程2(x−5)=3m+1与方程3x+2=8的解互为相反数,求m的值.13.已知关于x的方程2−m−x3=0的解是关于x的方程6x−1=2x+7的解的4倍,求m的值.14.在解关于x的方程2x−13+1=2x+m5时,小马在去分母这一步骤中忘记将方程左边的“1”这一项乘公分母15,求出方程的解为x =4.(1)求m 的值;(2)写出正确的求解过程.15.若关于x 的方程2x 3−3x 6=1的解是关于x 的方程x +3a 2=7的解的2倍,求关于x 的方程−12ax +4=3的解.16.对于整数a ,b ,c ,d ,定义|a b dc |=ac −bd 如:|1423|=1×3−4×2=−5; (1)计算:|234−5|的值; (2)当|3x 54−2|=3−2x 时,求x 的值. 17.平顶山某初中数学小组学完“一元一次方程”后,对一种新的求解方法进行了交流,请你仔细阅读. 小明:对于3(x +1)−13(x −1)=2(x −1)−12(x +1),我采取的去括号移项的方法,计算比较繁琐. 小亮:我有一种方法——整体求解法.可先将(x +1)、(x −1)分别看成整体进行移项、合并同类项,得方程72(x +1)=73(x −1),然后再继续求解. 小明:你的这种方法比我的要简便一些,我尝试一下…(1)请你继续进行小亮的求解.(2)请利用小亮的方法解下面的方程:7(x +3)+4=24−3(x +3).18.在学习中我们掌握了代入法、消元法解方程,整体法、换元法也是初中需要掌握的一种思想方法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来;或者变为熟悉的形式,把复杂的计算和推证简化.把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.例如x +3=1+x+32,设x +3=a ,则原方程变形为a =1+a 2……解得a =2,即x +3=2,所以原方程的解为x=−1.(1)补充求解a 的过程.(2)用换元法解方程(3y −2)−(3y−2)−12=2−(3y−2)+23.19.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x −2=0是方程x −1=0的“后移方程”(1)判断方程2x +1=0是否为方程2x +3=0的“后移方程”;(2)若关于x 的方程3(x −1)−m =m+32是关于x 的方程2(x −3)−1=3−(x +1)的“后移方程”,求m 的值.20.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x =8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x−2=x+10是“美好方程”,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程12023x+3=2x+k和12023x+1=0是“美好方程”,利用整体思想,求关于y的一元一次方程12023(y−1)+3=2(y−1)+k的解.参考答案1.解:移项得:−65x−x=−12−3合并同类项得:−115x=−15系数化成1得:x=7511.2.解:(1)5x−7x−2x=4−8−4x=−4 x=1;(2)3x+6=4−12x3x+12x=4−615x=−2x=−215.3.解:3(3x+5)=2(2x−1)去括号,得9x+15=4x−2移项,得9x−4x=−2−15合并同类项,得5x=−17系数化为1,得x=−175.4.(1)解:13x−x+12=x−14去分母,得4x−6(x+1)=3(x−1)去括号,得4x−6x−6=3x−3移项,得4x−6x−3x=−3+6合并同类项,得−5x=3系数化为1,得:x=−35.(2)解:4[12x−34(x−1)]=13(5+x)去括号得:4(12x−34x+34)=53+13x去括号得:2x−3x+3=53+13x移项得:2x−3x−13x=53−3合并同类项得:−43x=−43解得:x=1.5.(1)解:去分母,得2x−90+3x=60移项合并同类项,得5x=150系数化为1,得x=30;(2)解:原方程可化为6x−72x=5x−76去分母,得36x−21x=5x−7移项合并,得10x=−7系数化为1,得x=−0.7.6.:解:方程整理得:1−2x3−1=7−10x4去分母得:4(1−2x)−12=3(7−10x)去括号得:4−8x−12=21−30x移项合并得:22x=29解得:x=2922.7.解:(1)5x−14=3x+12−2−x3去分母,得:3(5x−1)=6(3x+1)−4(2−x)去括号,得:15x−3=18x+6−8+4x移项,得:15x−18x−4x=6−8+3合并同类项,得:−7x=1系数化为1,得:x=−17;(2)3x+22−1=2x−14−2x+15去分母,得:10(3x+2)−20=5(2x−1)−4(2x+1)去括号,得:30x+20−20=10x−5−8x−4移项,得:30x−10x+8x=−5−4−20+20合并同类项,得:28x=−9系数化为1,得:x=−928;8.解:移项得2−x15−7x−920=12x−1021−8x−914通分得8−4x60−21x−2760=24x−2042−24x−2742∴35−25x60=742∴35−25x=10解得x=1.9.解:∵x=4是关于x的方程3(x−1)−m=m+32的解∵3×(4−1)−m=m+32整理得,9−m=m+32去分母得18−2m=m+3移项得−2m−m=3−18合并同类项得−3m=−15系数化为1得m=5∵m的值为5.10.解:方程3x−14−1=5x−76去分母得3(3x−1)−12=2(5x−7)去括号得9x−3−12=10x−14移项得9x−10x=−14+3+12合并同类项得−x=1系数化为1得x=−1把x=−1代入4x−(3a+1)=6x+2a−1得−4−3a−1=−6+2a−1∵−3a−2a=−6−1+4+1∵−5a=−2∵a=25.11.(1)解:2(x−1)+1=x去括号移项,合并同类项把x=1代入方程3(x+m)=m−1得,3(1+m)=m−1∵m=−2.(2)解:x=1,m=−2∵原方程变为3+2y3=−52去分母去括号移项,合并同类项系数化为1,y=−214.12.解:解关于x方程2(x−5)=3m+1得:x=3m+112解方程3x+2=8得:x=2由两方程的解互为相反数,则3m+112+2=0,解得m=-5.13.解:由方程2−m−x3=0得:x=m−6由方程6x−1=2x+7得:x=2∵关于x的方程2−m−x3=0的解是关于x的方程6x−1=2x+7的解的4倍∵m−6=4×2解得:m=14.14.(1)解:根据小明的步骤去分母得:5(2x−1)+1=3(2x+m)整理得:10x−4=6x+3m将x=4代入可得:10×4−4=6×4+3m解得:m=4(2)解:2x−13+1=2x+45去分母,得:5(2x−1)+15=3(2x+4)去括号得:10x−5+15=6x+12移项,得:10x −6x =12+5−15合并同类项,得:4x =2系数化1,得:x =1215.解:方程2x 3−3x 6=1去分母,得4x −3x =6合并同类项得x =6方程x +3a 2=7去分母,得2x +3a =14移项,得2x =14−3a系数化为1,得x =14−3a 2 ∵方程2x 3−3x 6=1的解是关于x 的方程x +3a 2=7的解的2倍 ∴ 6=2×14−3a 2解得:a =83将a =83代入方程−12ax +4=3得−12×83x +4=3 解得:x =34. 16.(1)解:|234−5|=2×(−5)−3×4=−10−12=−22; (2)解:∵|3x 54−2|=3−2x ∵−2×3x −4×5=3−2x解得x =−234. 17.(1)解:解方程72(x +1)=73(x −1)去括号,得72x +72=73x −73移项,得72x −73x =−73−72合并同类项,得76x =−356系数化为1,得x =−5;(2)解7(x +3)+4=24−3(x +3)将(x+3)看作一个整体移项,得7(x+3)+3(x+3)=−4+24合并同类项,得10(x+3)=20系数化为1,得x+3=2x=−1.18.(1)解:a=1+a2∵a−a2=1∵a2=1解得:a=2.(2)解:(3y−2)−(3y−2)−12=2−(3y−2)+23设k=3y−2,则原方程可变形为k−k−12=2−k+236k−3(k−1)=12−2(k+2)6k−3k+3=12−2k−43k+3=8−2k3k+2k=8−35k=5k=1∵3y−2=1解得y=1.19.(1)解:方程2x+1=0的解是x=−12方程2x+3=0的解是x=−32∵两个方程的解相差1∴方程2x+1=0是方程2x+3=0的后移方程;(2)解:2(x−3)−1=3−(x+1)2x−6−1=3−x−12x+x=3−1+6+13x=9,x=3∵关于x 的方程3(x −1)−m =m+32是关于x 的方程2(x −3)−1=3−(x +1)的“后移方程” ∴3(x −1)−m =m+32的解为x =3+1=4把x =4代入3(x −1)−m =m+32得:3(4−1)−m =m+32∴m =5.20.(1)解:∵3x +m =0∴ x =−m 3 ∵4x −2=x +10∴x =4∵关于x 的方程3x +m =0与方程4x −2=x +10是“美好方程” ∴ −m 3+4=1∴m =9;(2)∵ “美好方程”的两个解的和为1,其中一个解为n ∴另一个方程的解为:1−n∵两个解的差为8∴1−n −n =8或n −(1−n)=8∴ n =−72或n =92;(3)∵ 12023x +1=0∴x =−2023∵关于x 的一元一次方程12023x +3=2x +k 和12023x +1=0是“美好方程” ∴关于x 的一元一次方程12023x +3=2x +k 的解为:x =1−(−2023)=2024 ∴关于y 的一元一次方程12023(y −1)+3=2(y −1)+k 中y −1=2024;∴y =2025∴关于y 的一元一次方程12023(y −1)+3=2(y −1)+k 的解为y =2025;。
北师大版七年级数学上册第三章 3.4.1合并同类项 同步测试题一、选择题1.下列各式中,与3x 2y 3是同类项的是( )A .2x 5B .3x 3y2C .-12x 2y 3D .-13y 52.下列各组中的两项,不是同类项的是( ) A .a 2b 与-3ab 2B .-x 2y 与2yx 2C .2πr 与π2rD .35与533.如果3ab 2m -1与9ab m +1是同类项,那么m 等于( )A .2B .1C .-1D .04.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是( ) A .加法交换律B .乘法交换律C .乘法对加法的分配律D .乘法结合律5.计算3x 2-x 2的结果是( ) A .2B .2x 2C .2xD .4x 26.下列各组中的两个单项式能合并的是( ) A .4和4xB .3x 2y 3和-y 2x 3C .2ab 2和100ab 2cD .m 和m27.把多项式2x 2-5x +x +4-2x 2合并同类项后,所得多项式是( ) A .二次二项式B .二次三项式C .一次二项式D .三次二项式8.下列运算正确的是( ) A .3a +2a =5a2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 39.若单项式am -1b 2与12a 2b n 的和仍是单项式,则n m的值是( )A .3B .6C .8D .910.如果多项式x 2-7ab +b 2+kab -1中不含ab 项,那么k 的值为( ) A .0 B .7 C .1 D .不能确定二、填空题11.计算:(1)a -3a =______;(2)(南通中考)3a 2b -a 2b =______. 12.已知3x 5y 2和-2x 3m y n是同类项,则6m -3n 的值为______. 13.如图,阴影部分的面积为______.14.三个连续的整数中,n 是最大的一个,这三个数的和为______. 三、解答题 15.合并同类项: (1)2x -3y +5x -8y -2;(2)23m -1-56m +1+12m ;(3)6x -10x 2+12x 2-5x.(4)x 2y -3xy 2+2yx 2-y 2x.16.先合并同类项,再求值.(1)3a 2-5a +2-6a 2+6a -3,其中a =-1;(2)3a +abc -13c 2-3a +13c 2,其中a =-16,b =2,c =-3;(3)-xyz -4yz -6xz +3xyz +5xz +4yz ,其中x =-2,y =-10,z =-5.17.为了绿化校园,学校决定修建一块长方形草坪,长30 m ,宽20 m ,并在草坪上修建如图所示的等宽的十字路,小路宽为x m. (1)用含x 的代数式表示小路的面积; (2)当x =3时,求小路的面积.18.如果单项式5mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若5mx a y-5nx2a-3y=0,且xy≠0,求(5m-5n)2 019的值.19.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”小明说:本题中a=0.35,b=-0.28是多余的条件;小强马上反对说:这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.参考答案 一、选择题1.下列各式中,与3x 2y 3是同类项的是(C)A .2x 5B .3x 3y2C .-12x 2y 3D .-13y 52.下列各组中的两项,不是同类项的是(A) A .a 2b 与-3ab 2B .-x 2y 与2yx 2C .2πr 与π2rD .35与533.如果3ab 2m -1与9ab m +1是同类项,那么m 等于(A)A .2B .1C .-1D .04.合并同类项-4a 2b +3a 2b =(-4+3)a 2b =-a 2b 时,依据的运算律是(C) A .加法交换律B .乘法交换律C .乘法对加法的分配律D .乘法结合律5.计算3x 2-x 2的结果是(B) A .2B .2x 2C .2xD .4x 26.下列各组中的两个单项式能合并的是(D)A .4和4xB .3x 2y 3和-y 2x 3C .2ab 2和100ab 2cD .m 和m27.把多项式2x 2-5x +x +4-2x 2合并同类项后,所得多项式是(C) A .二次二项式B .二次三项式C .一次二项式D .三次二项式8.下列运算正确的是(C) A .3a +2a =5a2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 39.若单项式am -1b 2与12a 2b n 的和仍是单项式,则n m的值是(C)A .3B .6C .8D .910.如果多项式x 2-7ab +b 2+kab -1中不含ab 项,那么k 的值为(B) A .0 B .7 C .1 D .不能确定二、填空题11.计算:(1)a -3a =-2a ;(2)(南通中考)3a 2b -a 2b =2a 2b . 12.已知3x 5y 2和-2x 3m y n是同类项,则6m -3n 的值为4. 13.如图,阴影部分的面积为112x .14.三个连续的整数中,n 是最大的一个,这三个数的和为3n -3. 三、解答题15.合并同类项: (1)2x -3y +5x -8y -2; 解:原式=7x -11y -2.(2)23m -1-56m +1+12m ; 解:原式=13m.(3)6x -10x 2+12x 2-5x. 解:原式=2x 2+x.(4)x 2y -3xy 2+2yx 2-y 2x. 解:原式=3x 2y -4xy 2.16.先合并同类项,再求值.(1)3a 2-5a +2-6a 2+6a -3,其中a =-1; 解:原式=-3a 2+a -1.当a =-1时,原式=-3-1-1=-5.(2)3a +abc -13c 2-3a +13c 2,其中a =-16,b =2,c =-3;解:原式=abc.当a =-16,b =2,c =-3时,原式=-16×2×(-3)=1.(3)-xyz -4yz -6xz +3xyz +5xz +4yz ,其中x =-2,y =-10,z =-5. 解:原式=(-1+3)xyz +(4-4)yz +(5-6)xz =2xyz -xz.当x =-2,y =-10,z =-5时,原式=2×(-2)×(-10)×(-5)-(-2)×(-5) =-200-10 =-210.17.为了绿化校园,学校决定修建一块长方形草坪,长30 m ,宽20 m ,并在草坪上修建如图所示的等宽的十字路,小路宽为x m. (1)用含x 的代数式表示小路的面积; (2)当x =3时,求小路的面积.解:(1)小路的面积为30x +20x -x 2=(50x -x 2)m 2. (2)当x =3时,50x -x 2=50×3-32=141. 答:当x =3时,小路的面积为141 m 2.18.如果单项式5mx a y与-5nx2a-3y是关于x,y的单项式,且它们是同类项.(1)求(7a-22)2 020的值;(2)若5mx a y-5nx2a-3y=0,且xy≠0,求(5m-5n)2 019的值.解:(1)由题意,得a=2a-3,解得a=3.所以(7a-22)2020=(7×3-22)2 020=(-1)2020=1.(2)由题意,得5m-5n=0,所以(5m-5n)2 019=02 019=0.19.有这样一道题:“当a=0.35,b=-0.28时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.”小明说:本题中a=0.35,b=-0.28是多余的条件;小强马上反对说:这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.解:我同意小明的观点.理由如下:因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.。
北师大版(2024)七年级上册《5.2一元一次方程的解法2》2024年同步练习卷一、选择题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列变形属于移项的是()A.由得到B.由得到C. D.由得到2.下列解方程移项正确的是()A.由,得B.由,得C.由,得D.由,得3.下列是四个同学解方程的过程,其中正确的是()A. B.C. D.4.解方程步骤如下:①去括号,得:;②移项,得:;③合并同类项,得:;④系数化为1,得:其中错误的是()A.①B.②C.③D.④二、填空题:本题共3小题,每小题3分,共9分。
5.如果的值与的值互为相反数,那么x等于______.6.如图,点A、B在数轴上,它们所对应的数分别是和,且满足,则x的值为______.7.定义,若,则x的值是:__________.三、计算题:本大题共1小题,共6分。
8.解方程:;四、解答题:本题共8小题,共64分。
解答应写出文字说明,证明过程或演算步骤。
9.本小题8分解方程:;10.本小题8分解下列方程:;;;11.本小题8分解方程:;12.本小题8分某礼品制造厂接了一批玩具熊的订单,按计划天数生产,若每天生产20个玩具熊,则最终比订单少生产100个;若每天生产23个玩具熊,则最终比订单多生产20个.原计划几天完成订单?13.本小题8分已知,当x取何值时,;当______时,的值比的值大14.15.本小题8分张新和李明到图书城去买书,请你根据他们的对话内容如图,求出李明上次所买书籍的原价.16.本小题8分先看例子,再解类似的题目.解方程:解法一:当或时,原方程化为解方程,得;当时,原方程化为解方程,得所以原方程的解是或解法二:移项,得合并同类项,得由绝对值的意义知,所以原方程的解为或用你学到的方法解方程:用两种方法解答案和解析1.【答案】D【解析】解:A中,移项后得:,故A不符合题意;B中,移项后得:,故B不符合题意;C中,移项后得:,故C不符合题意;D中,移项后得:,故D符合题意,故选:按照移项时,数和字母前面的符号进行改变来选择.本题考查了解一元一次方程,解题的关键是根据等式的性质来解答.2.【答案】C【解析】【分析】此题考查了解一元一次方程,移项时注意要变号.根据移项要变号判断即可.【解答】解:A、由,得,不符合题意;B、由,得,不符合题意;C、由,得,符合题意;D、由,得,不符合题意,故选:3.【答案】A【解析】解:去括号得,故选:根据去括号法则去掉括号即可得解.本题考查了一元一次方程的解法,去括号时注意符号以及不要漏乘系数.4.【答案】B【解析】解:,去括号,得,移项,得,合并同类项,得,错误的一步是②,故选:根据移项可得,因此②错误.本题考查了一元一次方程的知识,掌握一元一次方程的解法是关键.5.【答案】9【解析】解:根据题意得:,去括号得:,移项合并得:,解得:故答案为:根据互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.6.【答案】2【解析】解:点A、B在数轴上,它们所对应的数分别是和,,,,,,,,故答案为:根据题目的已知列出关于x的方程,然后进行计算即可解答.本题考查了数轴,根据点A、B在数轴上的位置表示出线段OA与OB的长是解题的关键.7.【答案】6【解析】【分析】此题考查了解一元一次方程,属于新定义题型,弄清题中的新定义是解本题的关键.【解答】解:根据题意得:,即,解得:故答案为:6根据题中的新定义将化为普通方程,求出方程的解即可得到x的值.8.【答案】解:移项合并得:,解得:;去括号得:,移项合并得:,解得:【解析】方程移项合并,把x系数化为1,即可求出解;方程去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.9.【答案】解:,,;,,,【解析】根据解一元一次方程的步骤对所给方程进行求解即可;根据解一元一次方程的步骤对所给方程进行求解即可.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.【答案】解:,,,;,,,;,,,,;,,,,【解析】根据解一元一次方程的步骤对所给方程进行求解即可;根据解一元二次方程的步骤对所给方程进行求解即可;根据解一元二次方程的步骤对所给方程进行求解即可;根据解一元二次方程的步骤对所给方程进行求解即可.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.【答案】解:,,,;,,,【解析】先把含有x的项移到左边,常数项移到右边,再合并同类项,把未知数的系数化成1即可;先去括号,再移项,合并同类项,最后把未知数的系数化成1即可.本题主要考查了解一元一次方程,解题关键是熟练掌握解一元一次方程的一般步骤.12.【答案】解:设原计划用x天完成,,,解得:,答:原计划用40天完成.【解析】设原计划用x天完成,根据题意可得,等量关系为订货任务是一定的,据此列方程求解.本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.13.【答案】【解析】解:;,移项,得:,合并同类项,得:,未知数的系数化为1,得:,依题意得:,去括号,得:,移项,得:,合并同类项,得:,未知数的系数化为1,得:故答案为:依题意得,由此解出x即可;依题意得,由此解出x即可.此题主要考查了解一元一次方程,理解题意,列出一元一次方程,熟练掌握解一元一次方程的方法与技巧是解决问题的关键.14.【答案】【解析】15.【答案】解:设原价为x元,根据题意得:,解之得:答:李明上次所买书籍的原价为100元.【解析】假设原价为x元,即可得出等式方程,求出即可.此题主要考查了一元一次方程的应用,根据两次花钱数目得出等式方程是解题关键.16.【答案】解:解法一:当时,原方程化为,解得:;当时,原方程化为,解得:,所以原方程的解是或;解法二:方程变形为,即,解得:则方程的解为4或【解析】解法一:讨论与时,两种情况即可求出解;解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.此题考查了含绝对值符号的一元一次方程,弄清题中的阅读材料中的解法是解本题的关键.。
合并同类项之蔡仲巾千创作一、选择题1 .计算223a a +的结果是( )A.23aB.24aC.43aD.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7 D 、-4a 2-3a-78 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________.10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。 13.化简:2(2a 2+9b)+3(-5a 2-4b) 14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。 18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a . 20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y+;请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x x xy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=1 25.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。 27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b=-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+-=-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。17.(1) ()()y x xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++-- =)5253()33()38331(22222y y xy xy x x x ++-++-=2y当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2;22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分)当1,2x y =-=,原式=2(1)(1)326-+-+⨯= (2)(212x x +)-(2132x y+) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=-(212x x +)+(2113x +)=255166x x ++=(212x x +)-(2113x +)=2111166x x +-=-(2132x y +)+(2113x +)=25473166x y ++=(2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+-()()2254128xy xy x x =-+-24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26.-827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+-- =22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y =∴原式=21(2)12-⨯+=3。
合并同类项(5种题型)【知识梳理】一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项. 要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关. (3)一个项的同类项有无数个,其本身也是它的同类项. 二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意: (1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有. (2) 合并同类项,只把系数相加减,字母、指数不作运算.【考点剖析】题型一、同类项的概念例1.下列各组单项式中属于同类项的是: ①22m n 和22a b ;②312x y −和3yx ;③6xyz 和6xy ;④20.2x y 和20.2xy ; ⑤xy 和yx −;⑥12−和2.【答案】②⑤⑥【解析】①③两个单项式所含字母不相同;④相同字母的次数不相同.【总结】本题主要考查同类项的概念:所含字母相同,并且相同字母的指数也分别相同的单项式,注意同类项与字母的顺序无关.【变式1】指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x −; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5−与8【答案与解析】本题应用同类项的概念与识别进行判断:解:(1)(4)是同类项;(2)不是同类项,因为22x yz 与22xyz 所含字母,x z 的指数不相等; (3)不是同类项,因为5x 与xy 所含字母不相同.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关. 【变式2】下列每组数中,是同类项的是( ) . ①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥ 【答案】C【变式3】判别下列各题中的两个项是不是同类项: (1)-4a 2b 3与5b 3a 2;(2)2213x y z −与2213xy z −;(3)-8和0;(4)-6a 2b 3c 与8ca 2. 【答案与解析】 (1)-4a2b3与5b3a2是同类项;(2)不是同类项;(3)-8和0都是常数,是同类项;(4)-6a2c 与8ca2是同类项.【总结升华】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同;“两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.此外注意常数项都是同类项.例2.单项式449m x y −与223n x y 是同类项,求23m n +的值. 【答案】7【解析】由题意,可得:4242m n =⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,所以12323272m n +=⨯+⨯=. 【总结】本题主要考查同类项的概念. 【变式1】315212135m n m n x y x y −−+−若与是同类项,求出m, n 的值. 【答案与解析】因为 315212135m n m n x y x y −−+−与是同类项,所以 315,21 1.m n −=⎧⎨−=⎩ , 解得:2,1.m n =⎧⎨=⎩所以2,1m n ==【总结升华】概念的灵活运用.【变式2】如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( ) A. a=2,b=3 B. a=1,b=2 C. a=1,b=3 D. a=2,b=2 【答案】C解:根据题意得:a+1=2,b=3, 则a=1.【变式3】单项式313a b a b x y +−−与23x y 是同类项,求a b −的值.【答案】32【解析】由题意,可得:231a b a b +=⎧⎨−=⎩,解得:7414a b ⎧=⎪⎪⎨⎪=⎪⎩,所以713442a b −=−=. 【总结】本题主要考查同类项的概念.题型二、合并同类项例3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy (2)3x 2y -4xy 2-3+5x 2y+2xy 2+5 【答案与解析】解: (1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy =-7x2-4y2-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+2【总结升华】(1)所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;(2)在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果. 【变式1】合并同类项: (1)22213224ab b a ab −+ (2)22222344x xy y xy y x −++−−; 解:2222213133(1).2(2)24244ab b a ab ab ab −+=−+=−;2222222222(2).2344(2)(4)(34)3x xy y xy y x x x xy xy y y x xy y −++−−=−+−++−=+−说明:多项式的同类项可以运用交换律、结合律、分配律进行合并. 注意: 在合并同类项时,应注意:(1)如果多项式中项数较多、较复杂时,可在同类项上标注记号,便于认清同类项,做到不遗漏、不重复. (2)所有常数项都是同类项,都可进行合并. 【变式2】合并下列同类项: (1)2215232x x x x −+−+−; (2)333332m n m n −−+;(3)2141732733m m a a a a −−+−+−.【答案】(1)211232x x −−+;(2)332m n −+;(3)25037a a m −−.【解析】(1)原式222111(3)(2)(5)2322x x x x x x =−+−−++=−−+; (2)原式333333(3)22m m n n m n =−+−+=+()-;(3)原式22411503(2)(7)33377a a a a m m a a m =+−+−+−−=−−.【总结】本题主要考查合并同类项的概念,合并时只需要将同类项的系数相加减即可. 【变式3】合并下列同类项 (1)2222210.120.150.12x y x y y yx +−+; (2)122121342n n n n n x y x y y x y x +++−−−;(3)2220.86 3.25a b ab a b ab a b −−++.【答案】(1)22220.620.150.1x y x y y x +−; (2)4n n x y −; (3)21.4a b ab −−. 【解析】(1)原式2222222221(0.12)0.150.10.620.150.12x y yx x y y x x y x y xy =++−=+−;(2)原式121212(32)44n n n n n n nx y x y x y x y x y +++=−−−=−;(3)原式222(0.8 3.2)(65) 1.4a b a b ab ab a b ab =−++−+=−−. 【变式4】合并同类项:()221324325x x x x −++−−;()2222265256a b ab b a −++−; ()2223542625yx xy xy x y xy −+−+++;()()()()()2323431215141x x x x −−−−−+− (注:将“1x −”或“1x −”看作整体)【思路点拨】同类项中,所含“字母”,可以表示字母,也可以表示多项式,如(4).【答案与解析】 (1)()()()22232234511x x x x x x =−+−++−=+−=+−原式(2)()()2222665522a a b b ab ab−+−++=原式=(3)原式=()()222562245x y x y xy xy xy −++−+++2245x y xy =++(4)()()()()()()223323315121412161x x x x x x ⎡⎤⎡⎤=−−−+−−−−=−−−−⎣⎦⎣⎦原式【总结升华】无同类项的项不能遗漏,在每步运算中照抄. 【变式5】化简:(1)32313125433xy x y xy x −−−+ (2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) 【答案】原式3323211231123()()53345334xy xy x x y xy x y =−+−−=−+−−3221.1512xy x y =−−−(2) (a-2b)2+(2b-a)-2(2b-a)2+4(a-2b) =(a-2b)2-2(a-2b)2+4(a-2b)-(a-2b) =(1-2)(a-2b)2+(4-1)(a-2b) =-(a-2b)2+3(a-2b). 【变式6】已知35414527m n ab pa b a b ++−=−,求m+n -p 的值.【思路点拨】两个单项式的和一般情形下为多项式.而条件给出的结果中仍是单项式,这就意味着352m a b+与41n pa b+是同类项.因此,可以利用同类项的定义解题.【答案与解析】解:依题意,得3+m =4,n+1=5,2-p =-7 解这三个方程得:m =1,n =4,p =9, ∴ m+n-p =1+4-9=-4.【总结升华】要善于利用题目中的隐含条件.题型三、化简求值例4.求代数式的值:2222345263x xy y xy y x −−+++−−,其中1,22x y ==.22222222(4)(32)6(53)236211113,22()3226222222x xy xy y y x x xy y x x y =+−++−+−+−=+−−+===⨯+⨯⨯−−⨯+=−解:原式当时,上式【变式1】当2,1p q ==时,分别求出下列各式的值. (1)221()2()()3()3p q p q q p p q −+−−−−−; (2)2283569p q q p −+−−【答案与解析】(1)把()p q −当作一个整体,先化简再求值: 解:22221()2()()3()31(1)()(23)()32()()3p q p q q p p q p q p q p q p q −+−−−−−=−−+−−=−−−−又 211p q −=−=所以,原式=22222()()111333p q p q −−−−=−⨯−=− (2解:2283569p q q p −+−− 2(86)(35)9p q =−+−+− 2229p q =+−当p =2,q =1时,原式=22229222191p q +−=⨯+⨯−=. 【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值.【变式2】先化简,再求值:(1)2323381231x x x x x −+−−+,其中2x =;(2)222242923x xy y x xy y ++−−+,其中2x =,1y =.【答案】解: (1)原式322981x x x =−−−+,当2x =时,原式=32229282167−⨯−⨯−⨯+=−.(2)原式22210x xy y =−+,当2x =,1y =时,原式=22222110116⨯−⨯+⨯=.【变式3】化简求值:(1)当1,2a b ==−时,求多项式3232399111552424ab a b ab a b ab a b −−+−−−的值. (2)若243(32)0a b b +++=,求多项式222(23)3(23)8(23)7(23)a b a b a b a b +−+++−+的值. 【答案与解析】(1)先合并同类项,再代入求值:原式=32391911()(5)52244a b ab a b −++−−−−=32345a b a b −−− 将1,2a b ==−代入,得:3233234541(2)1(2)519a b a b −−−=−⨯⨯−−⨯−−=− (2)把(23)a b +当作一个整体,先化简再求值:原式=22(28)(23)(37)(23)10(23)10(23)a b a b a b a b +++−−+=+−+ 由243(32)0a b b +++=可得:430,320a b b +=+=两式相加可得:462a b +=−,所以有231a b +=− 代入可得:原式=210(1)10(1)20⨯−−⨯−=【总结升华】此类先化简后求值的题通常的步骤为:先合并同类项,再代入数值求出整式的值. 【变式4】3422323323622已知与是同类项,求代数式的值a b x y xy b a b b a b +−−−−+.【答案】()()()3422323223323323231,2 4.2, 6.362232624,2,66426228.a b x y xy a b a b b a b b a b b b a b a b b a b a b +−−∴+=−=∴=−=−−+=−+−+=−∴=−==−⨯−⨯=解:与是同类项,当时,原式题型四、“无关”与“不含”型问题例5.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理. 【答案与解析】解:333336242215x x y x x y x −−+−+=(6-4-2)x3+(-2+2)x3y+15=15 通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.【总结升华】本题在化简时主要用的是合并同类项的方法,在合并同类项时,要明白:同类项的概念是所含字母相同,相同字母的指数也相同的项不是同类项的一定不能合并.【变式1】如果关于x 的多项式222542x x kx x −++−中没有2x 项,则k = .答案:2k=−解析:先合并含2x 的项:2222225422542(2)542x x kx x x kx x x k x x x −++−=+−+−=+−+−,如没有2x 项,即2x 项的系数为0,即20k +=,所以2k =−.【变式2】若关于x 的多项式-2x 2+mx+nx 2+5x-1的值与x 的值无关,求(x-m)2+n 的最小值. 【答案】 -2x2+mx+nx2+5x-1=nx2-2x2+mx+5x-1=(n-2)x2+(m+5)x-1 ∵ 此多项式的值与x ∴ 20,50.n m −=⎧⎨+=⎩ 解得: 25n m =⎧⎨=−⎩当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2. ∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n 有最小值为2. 题型五、综合应用例6.若多项式-2+8x+(b-1)x 2+ax 3与多项式2x 3-7x 2-2(c+1)x+3d+7恒等,求ab-cd.【答案与解析】 法一:由已知ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴ 2,17,82(1),237.a b c d =⎧⎪−=−⎪⎨=−+⎪⎪−=+⎩ 解得:2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27. 法二:说明:此题的另一个解法为:由已知(a-2)x3+(b+6)x2+[2(c+1)+8]x-(3d+9)≡0. 因为无论x 取何值时,此多项式的值恒为零.所以它的各项系数皆为零,即从而解得解得:【总结升华】若等式两边恒等,则说明等号两边对应项系数相等;若某式恒为0,则说明各项系数均为0;若某式不含某项,则说明该项的系数为0.【变式】若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n −−−−++−++,化简后是四次三项式,求m+n的值.【答案】分别计算出各项的次数,找出该多项式的最高此项:因为22m x y −的次数是m ,2m mx y −的次数为1m −,33m nx y −的次数为m ,32m x y −−的次数为2m −, 又因为是三项式 ,所以前四项必有两项为同类项,显然2233m m x y nx y −−与是同类项,且合并后为0, 所以有5,10m n =+= ,5(1)4m n +=+−=.【过关检测】一.选择题(共8小题)1.(2022秋•长安区期末)已知单项式3x 2m ﹣1y 与﹣x 3y n﹣2是同类项,则m ﹣2n 的值为( )A .2B .﹣4C .﹣2D .﹣1【分析】直接利用同类项的定义得出关于m ,n 的值,再代入计算即可.20,60,2(1)80,(39)0.a b c d −=⎧⎪+=⎪⎨++=⎪⎪−+=⎩2,6,5,3.a b c d =⎧⎪=−⎪⎨=−⎪⎪=−⎩【解答】解:∵单项式3x2m﹣1y与﹣x3yn﹣2是同类项,∴2m﹣1=3,n﹣2=1,解得m=2,n=3,∴m﹣2n=2﹣2×3=﹣4.故选:B.【点评】本题考查了同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.2.(2022秋•昆都仑区校级期末)下列说法中正确的是()A.单项式2πx的次数和系数都是2B.单项式m2n和n2m是同类项C.多项式2x2y+3xy﹣4是三次三项式D.多项式﹣x2+2x﹣1的项是x2,2x和1【分析】分别根据同类项、单项式与多项式的概念判断即可.【解答】解:A.单项式2πx的次数1,系数是2π,故本选项不合题意;B.单项式m2n和n2m所含字母相同,但同字母的指数不相同,不是同类项,故本选项不合题意;C.多项式2x2y+3xy﹣4是三次三项式,说法正确,故本选项符合题意;D.多项式﹣x2+2x﹣1的项是﹣x2,2x和﹣1,故本选项不合题意.故选:C.【点评】此题考查的是同类项、单项式与多项式,掌握相关定义是解答本题的关键.3.(2023春•南安市期中)若3a x12与4a3b y+2是同类项,则x,y的值分别是()A.x=4,y=0B.x=4,y=2C.x=3,y=1D.x=1,y=3【分析】根据同类项的定义即可求出答案.【解答】解:∵3ax﹣1b2与4a3by+2是同类项,∴x﹣1=3,y+2=2,解得x=4,y=0.故选:A.【点评】本题考查同类项.解题的关键是熟练运用同类项的定义.同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.4.(2022秋•河池期末)若2x2y+3x m y=5x2y,则m的值是()A.3B.2C.1D.0【分析】根据同类项的定义及合并同类项法则,即可求出m的值.【解答】解:∵2x2y+3xmy=5x2y,∴2x2y与3xmy是同类项,∴m=2,故选:B.【点评】本题考查了合并同类项,掌握同类项的定义是解决问题的关键.5.(2022秋•宣城期末)已知2a m b2和﹣a5b n是同类项,则m+n的值为()A.2B.3C.5D.7【分析】根据同类项的意义先求出m,n的值,然后再代入式子进行计算即可.【解答】解:∵2amb2和﹣a5bn是同类项,∴m=5,n=2,∴m+n=5+2=7,故选:D.【点评】本题考查了同类项,熟练掌握同类项的意义是解题的关键.6.(2022秋•曹县期末)已知单项式﹣a2m b2与单项式3a4b3+n的和仍然是一个单项式,则n m的值是()A.﹣1B.1C.2D.3【分析】利用同类项的定义可得:2m=4,3+n=2,从而可得m=2,n=﹣1,然后代入式子中进行计算即可解答.【解答】解:∵单项式﹣a2mb2与单项式3a4b3+n的和仍然是一个单项式,∴2m=4,3+n=2,∴m=2,n=﹣1,∴nm=(﹣1)2=1,故选:B.【点评】本题考查了合并同类项,单项式,熟练掌握同类项的定义是解题的关键.7.(2022秋•曹县期末)下列计算正确的是()A.3a+4b=7ab B.﹣3xy2﹣2y2x=﹣5xy2C.5ab﹣ab=4D.2a2+a2=3a4【分析】利用合并同类项的法则,进行计算逐一判断即可解答.【解答】解:A、3a与4b不能合并,故A不符合题意;B、﹣3xy2﹣2y2x=﹣5xy2,故B符合题意;C、5ab﹣ab=4ab,故C不符合题意;D、2a2+a2=3a2,故D不符合题意;故选:B.【点评】本题考查了合并同类项,熟练掌握合并同类项的法则是解题的关键.8.(2023春•曲阜市期中)若﹣3x m﹣n y2与x4y5m+n的和仍是单项式,则有()A.B.C.D.【分析】根据两式的和仍是单项式,得到两式为同类项,利用同类项定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:﹣3xm﹣ny2与x4y5m+n的和仍是单项式,∴,解得.故选:A.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二.填空题(共10小题)9.(2023春•鲤城区校级期中)如果3x2n﹣1y m与﹣5x m y3是同类项,则m+n的值是.【分析】根据同类项的概念求解.【解答】解:∵3x2n﹣1ym与﹣是同类项,∴2n﹣1=m,m=3,∴m=3,n=2,则m+n=3+2=5.故答案为:5.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.10.(2022秋•马尾区期末)﹣3ab2与是同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解:﹣3ab2与ab2是同类项.故答案为:ab2(答案不唯一).【点评】此题主要考查了同类项定义,关键是注意同类项定义中的三个“相同”:(1)所含字母相同;(2)相同字母的指数相同.11.(2022秋•鼓楼区校级期末)若单项式与2x3y n的和仍是单项式,则m+n=.【分析】根据和是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的加法法则,可得答案.【解答】解:∵单项式与2x3yn的和仍是单项式,∴单项式与2x3yn是同类项,∴m=3,n=2,m+n=3+2=5,故答案为:5.【点评】本题考查了合并同类项,掌握同类项的定义是解答本题的关键.12.(2023春•顺义区期末)若单项式﹣5a2b m﹣1与2a2b是同类项,则m=.【分析】直接利用同类项的定义分析得出答案.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:因为单项式﹣5a2bm﹣1与2a2b是同类项,所以m﹣1=1,解得m=2.故答案为:2.13.(2023•株洲)计算:3a2﹣2a2=.【分析】利用合并同类项的法则运算即可.【解答】解:3a2﹣2a2=a2.故答案为:a2.【点评】本题主要考查了合并同类项,正确应用合并同类项的法则是解题的关键.14.(2022秋•金牛区期末)若关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x中不含二次项,则m+n =.【分析】直接利用多项式不含二次项,得出关于m,n的等式,求出答案.【解答】解:∵(m﹣1)x2﹣3xy+nxy+2x2+2y+x=(m﹣1+2)x2+(n﹣3)xy+2y+x,关于关于x、y的多项式(m﹣1)x2﹣3xy+nxy+2x2+2y+x不含二次项,∴m﹣1+2=0,n﹣3=0,解得m=﹣1,n=3,故答案为:2.【点评】此题主要考查了合并同类项、多项式,正确得出m,n的值是解题关键.15.(2022秋•杭州期末)合并同类项2x﹣7y﹣5x+11y﹣1=.【分析】根据合并同类项法则计算即可.【解答】解:2x﹣7y﹣5x+11y﹣1=(2x﹣5x)+(11y﹣7y)﹣1=﹣3x+4y﹣1.故答案为:﹣3x+4y﹣1.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.16.(2022秋•东港区校级期末)当k=时,多项式x2+(k﹣1)xy﹣3y3﹣4xy﹣6中不含xy项.【分析】先合并同类项,然后使xy的项的系数为0,即可得出答案.【解答】解:x2+(k﹣1)xy﹣3y2﹣4xy﹣6=x2+(k﹣5)xy﹣3y2﹣6,∵多项式不含xy项,∴k﹣5=0,解得:k=5,故答案为:5.【点评】本题考查了合并同类项,属于基础题,解答本题的关键是掌握合并同类项的法则.17.(2022秋•邗江区期末)若﹣4x5y+4x2n+1y=0,则常数n的值为.【分析】根据同类项“相同字母的指数相同”列式求解即可.【解答】解:根据题意可知,﹣与4x2n+1y是同类项,∴2n+1=5,解得n=2.故答案为:2.【点评】本题主要考查了合并同类项的知识,熟练掌握同类项的定义是解题关键.18.(2022秋•射洪市期末)已知关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,则6a﹣15b=.【分析】根据多项式不含二次项,确定出a与b的值,代入原式计算即可求出值.【解答】解:∵关于x、y的多项式(3a+2)x2+(9a+10b)xy﹣x+2y+7中不含二次项,∴3a+2=0,9a+10b=0,解得:a=﹣,b=,则6a﹣15b=6×(﹣)﹣15×=﹣4﹣9=﹣13.【点评】此题考查了合并同类项,多项式,熟练掌握各自的性质是解本题的关键.三.解答题(共10小题)19.(2022秋•洛川县校级期末)已知单项式2x2m y7与单项式5x6y n+8是同类项,求m2+2n的值.【分析】利用同类项的定义求出m与n的值即可,再代入所求式子计算即可.定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵单项式2x2my7与单项式5x6yn+8是同类项,∴2m=6,n+8=7,解得m=3,n=﹣1,∴m2+2n=9﹣2=7.【点评】此题考查了同类项,以及代数式求值,熟练掌握同类项的定义求出m与n的值是解本题的关键.20.(2021秋•大荔县期末)找出下列式子中的同类项,并求这些同类项的和:ab,3xy2,,ab+1,6x2y,﹣5x2y.【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结合选项即可作出判断,然后进行合并即可.【解答】解:ab和是同类项,6x2y和﹣5x2y是同类项;,6x2y+(﹣5x2y)=x2y.【点评】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.21.(2022秋•榆阳区校级期末)已知a,b是有理数,关于x、y的多项式x3y a﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,请你写出这个多项式.【分析】根据多项式的定义解答即可.【解答】解:∵关于x、y的多项式x3ya﹣bx3+6x2y2+x的次数为5,且这个多项式中不含x3项,∴,解得,∴这个多项式为:x3y2+6x2y2+x.【点评】本题考查了多项式以及合并同类项,解题的关键是掌握与整式相关的概念.22.(2022秋•北京期末)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是;(2)已知x2﹣2y=4,求2﹣3x2+6y的值.【分析】(1)把(a﹣b)2看成一个整体,运用合并同类项法则进行计算即可;(2)把3x2﹣6y﹣21变形,得到3(x2﹣2y)﹣21,再根据整体代入法进行计算即可.【解答】解:(1)把(a﹣b)2看成一个整体,则3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=﹣3(x2﹣2y)+2=﹣12+2=﹣10.【点评】本题主要考查了整式的加减,解决问题的关键是运用整体思想;给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.23.(2022秋•吉林期中)已知多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,试写出这个多项式,再求当x=﹣1时该多项式的值.【分析】根据mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项可得出二次项和三次项的系数为0,从而求出m和n的值,再把x=﹣1【解答】解:∵多项式mx4+(m﹣2)x3+(n+1)x2﹣3x+n不含x2和x3的项,∴m﹣2=0,n+1=0,∴m=2,n=﹣1,∴多项式为2x4﹣3x﹣,当x=﹣1时,多项式为2×(﹣1)4﹣3×(﹣1)﹣1=2+3﹣1=4.【点评】本题主要考查多项式求值问题,关键是要能确定m和n的值.24.(2022秋•深圳校级期中)阅读材料:在合并同类项中,5a﹣3a+a=(5﹣3+1)a=3a,类似地,我们把(x+y)看成一个整体,则5(x+y)﹣3(x+y)+(x+y)=(5﹣3+1)(x+y)=3(x+y).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是.(2)已知a2﹣2b=1,求3﹣2a2+4b的值;拓展探索:(3)已知a﹣2b=1,2b﹣c=﹣1,c﹣d=2,求a﹣6b+5c﹣3d的值.【分析】(1)把(x﹣y2)看作一个整体,合并即可得到结果;(2)原式后两项提取2变形后,将已知等式代入计算即可求出值;(3)原式整理后,将已知等式代入计算即可求出值.【解答】解:(1)把(x﹣y)2看成一个整体,合并3(x﹣y)2﹣6(x﹣y)2+2(x﹣y)2的结果是﹣(x﹣y)2,故答案为:﹣(x﹣y)2;(2)∵a2﹣2b=1,∴原式=3﹣2(a2﹣2b)=3﹣2=1;(3)∵a﹣2b=1,2b﹣c=﹣1,c﹣d=2,∴原式=a﹣2b﹣4b+2c+3c﹣3d=(a﹣2b)﹣2(2b﹣c)+3(c﹣d)=1+2+6=9.【点评】此题考查了合并同类项,代数式求值,熟练掌握运算法则是解本题的关键.25.(2022秋•顺义区期末)已知3x m y3与﹣2y n x2是同类项,求代数式m﹣2n﹣mn的值.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同即可求解.【解答】解:因为3xmy3与﹣2ynx2是同类项,所以m=2,n=3,所以m﹣2n﹣mn=2﹣6﹣6=﹣【点评】本题主要考查了同类项,掌握同类项的定义是解题的关键.26.(2021秋•韩城市期中)已知单项式﹣2x2m y7与单项式﹣5x6y n+8是同类项,求﹣m2﹣n2021的值.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:因为单项式﹣2x2my7与单项式﹣5x6yn+8是同类项,所以2m=6,n+8=7,所以m=3,n=﹣1,所以﹣m2﹣n2021=﹣32﹣(﹣1)2021=﹣8.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.27.(2021秋•米脂县期末)已知单项式﹣2a2b与是同类项,多项式是五次三项式,求m﹣n的值.【分析】根据同类项的概念及多项式的有关概念求解.【解答】解:∵多项式是五次三项式,∴2+n=5,∴n=3,∵单项式﹣2a2b与是同类项,∴m=2.∴m﹣n=2﹣3=﹣1.【点评】本题考查了同类项的知识及多项式的有关概念,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.28.(2022秋•大荔县期末)已知关于a,b的单项式na x﹣1b4与6a2b y+3和为0,请求出n+x+y的值.【分析】根据同类项的定义解答即可.【解答】解:∵单项式nax﹣1b4与6a2by+3和为0,∴n=﹣6,x﹣1=2,y+3=4,解得,n=﹣6,x=3,y=1,∴n+x+y=﹣6+3+1=﹣2.【点评】本题考查的是同类项的定义,掌握同类项的定义是解题的关键.。
2024-2025学年七年级数学上学期期中测试总分:100分考生姓名:注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一、二、三章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把符合题目要求一项前的字母填写在题后的括号内;本题共8个小题,每小题2分,共16分)1.2024的相反数是( )A .4202B .2024-C .12024D .12024-【答案】B【分析】本题考查了相反数的定义.即只有符号不同的两个数叫做互为相反数,据此逐一判断即得.【详解】2024的相反数是2024-.故选:B .2.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A .8-B .3C .13D .3-【答案】A【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8-米.故选:A .3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约44亿,44亿用科学记数法表示为( )A .84410´B .104.410´C .84.410´D .94.410´小明将“庆祝奥运会!”分别写在一个正方体的展开图上,把展开图折叠成正方体后,与“奥”字相对的汉字是( )A .庆B .祝C .运D .会【答案】A【分析】本题考查了正方体展开图相对面上的字,解题的关键是掌握正方体展开图相对面的特征“隔一个或成Z 字端”.【详解】解:由图可知,与“奥”字相对的汉字是“庆”,故选:A .5.下列计算正确的是( )A .2222x y xy xy -=-B .2352x x x +=C .224358a a a =+D .32ax ax ax-=【答案】D【分析】本题考查了合并同类项.根据合并同类项的法则进行计算即可.【详解】解:A 、222x y xy -不能合并,故本选项不符合题意;B 、23x x +不能合并,故本选项不符合题意;C 、222358a a a =+,故本选项不符合题意;D 、32ax ax ax -=,故本选项符合题意;故选:D .6.下面各算式中,结果最大的是( )A .5167´B .5167¸C .5167¸D .557¸7.关于整式的概念,下列说法正确的是().A .326π7x y -的系数是67-B .233xy 的次数是6C .0是单项式D .27xy xy -+-是五次三项式也无空隙,记图 1 阴影部分周长之和为 m ,图 2 阴影部分周长为 n ,要求 m 与 n 的差,只需知道一个图形的周长,这个图形是( )A .整个长方形B .图①正方形C .图②正方形D .图③正方形【答案】D【分析】本题主要考查了整式加减的应用,设正方形①的边长为 a 、正方形②的边长为 b 、正方形③的边长为 c ,分别表示出 m 、n 的值,就可计算出m n -的值为2c ,从而可得只需知道正方形③的周长即可.【详解】解:设正方形①的边长为 a 、正方形②的边长为 b 、正方形③的边长为 c ,由题意得,()()22m c a c b a c b =+-+++-éùéùëûëû 2222222c a c b a c b=+-+++-42a c =+,()()2n a b c a c b =+-++-éùëû222222a b c a c b=+-++-4a =,∴4242m n a c a c -=+-=,∴只需要知道图③正方形的周长即可得到m 与 n 的差,故选:D .二、填空题(请把答案填在题中的横线上;本题共8个小题,每小题3分,共24分)9.计算:()263æö-´-=ç÷èø.【答案】4【分析】本题考查有理数的乘法运算,牢记运算法则是解题关键,根据有理数乘法运算法则即可求解.11.比较大小:45-78-.(填“>”、“<”或“=”).【答案】2020【分析】本题考查了代数式求值,考查了整体思想,整体代入到代数式中求值是解题的关键.根据条件得:231a a -=-,整体代入到代数式中求值即可得出答案.【详解】解:2310a a -+=Q ,231a a \-=-,\原式23(3)2023a a =-+3(1)2023=´-+32023=-+2020=.故答案为:202013.对于任意有理数a 和b ,定义一种新运算“*”,使得2*a b ab a =-,那么()1*3-= .【答案】4-【分析】本题主要考查了含乘方的有理数混合计算,根据新定义可得()()21*3131-=-´--,据此计算求解即可.【详解】解:由题意得,()()21*3131314-=-´--=--=-,故答案为:4-.14.若多项式()()2222233ax xy y x axy y ----+中不含xy 项,则该式子化简结果为 .【答案】227x y -【分析】本题主要考查了整式的加减,先去括号,再根据整式的加减法法则计算,并确定xy 项的系数,然后根据不含有某项是指系数为0,即可得出答案.【详解】原式22222263ax xy y x axy y =---+-222273(2)ax y x a xy =--+-.∵多项式中不含有xy 项,∴20a -=,解得2a =,∴多项式为222224737x y x x y --=-.故答案为:227x y -.15.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2024次输出的结果为 .16.标志logo 代表的是一个企业或是产品的文化精髓,小明模仿windows95的logo 设计思路,自己设计了一个logo .他将图①中的正方形剪开得到图②,再将图②中右上角的正方形剪开得到图③,继续将图③中右上角的正方形剪开得到图④,LL ;如此下去.他用正方形代表窗口,一直按照这样的规律剪下去代表窗口可以根据需要一直增加.按照小明的设计思路,图n 中共有 个正方形.【答案】()32n -【分析】本题考查了图形规律的探索,能根据数字发现规律是解题的关键.依次将前面每个图形的个数列出来,再根据数字寻找规律即可.【详解】解:图①中正方形的个数为1312=´-;图②中正方形的个数为4322=´-;图③中正方形的个数为7332=´-;图④中正方形的个数为10342=´-;L∴图n中正方形的个数为32n-,故答案为:() 32 n-三、作图题(共6分)17.如图2是由几个完全相同的小正方体搭成的一个几何体,每个小正方体的棱长为1cm.(1)请画出从不同方向看该几何体得到的平面图形;(在图1所提供的方格内涂上相应的阴影即可)(2)请计算出该几何体的体积;(3)如果小明还想添加一些相同的小正方体,并保持从上面和左面看得到的形状图不变,最多可以再添几个小正方体?【答案】(1)见解析(2)39cm(3)7个【分析】本题考查了从不同方向看,熟练掌握意义是解题的关键.(1)根据从不同方向看的意义画图即可.(2)根据每个小正方体的棱长为1cm,得到一个小正方体的体积为31cm,数出正方体的个数乘起来即可.(3)根据各自的意义,看到最左边可以加上2个,最高层的右边同行上可加224+=个,前一行可加1个,共加7个.【详解】(1)解:根据题意,画图如下:.(2)解:根据每个小正方体的棱长为1cm ,得到一个小正方体的体积为31cm ,一共有123129++++=个,故该几何体的体积为39cm .(3)解:根据各自的意义,看到最左边可以加上2个,最高层的右边同行上可加224+=个,前一行可加1个,共加7个.四、解答题(18题16分,19题8分,共24分)18.计算:(1)()221210.511143éùæö---¸-´-ç÷êúëûèø(2)()()16118éù----+-ëû(3)()()5417 1.2510545´+´---¸(4)3571491236æöæö--+¸-ç÷ç÷èøèø;(1)22(43)(144)a a a a ---+,其中2a =.(2)()()2222352xy x x xy x xy éù-----+ëû,其中1,2x y ==-.【答案】(1)1a -,1(2)xy ,2-【分析】本题考查整式的化简求值.(1)先去括号,然后合并同类项,最后代入数值计算即可.(2)先去括号,然后合并同类项,最后代入数值计算即可.【详解】(1)解:22(43)(144)a a a a ---+2243144a a a a =--+-1a =-,当2a =,原式211=-=.(2)()()2222352xy x x xy x xy éù-----+ëû()22226552xy x x xy x xy =-+--++22226552xy x x xy x xy=-+-+--xy =,当1,2x y ==-时,原式()122=´-=-.五、解答题(20题4分,21题5分、22题6分,共15分)20.(1)请用含x 和y 的代数式来表示阴影部分的面积.(2)当4x =,3y =时,阴影部分的面积是多少?【答案】【小问1】22x y -【小问2】7【分析】本题考查了列代数式表达式以及已知字母的值求代数式的值,正确掌握相关性质内容是解题的关键.(1)运用割补法,即大正方形面积减去小正方形的面积,进行列式即可作答.(2)把4x =,3y =代入22x y -,进行计算,即可作答.【详解】解:(1)依题意,阴影部分的面积等于大正方形面积减去小正方形的面积,即阴影部分的面积等于22x y -;(2)当4x =,3y =时,221697x y -=-=.21.刘明的爸爸上周买进股票1000股,每股27元,下表为本周每天该股票的涨跌情况.(星期六、日股市休市)(单位:元)星期一二三四五每股涨跌1+ 1.5+ 1.5- 2.5+0.5-(1)星期三收盘时,每股是多少元?(2)本周内每股最高价多少元?最低价是多少元?(3)若刘明爸爸按本周五的收盘价将股票全部卖出,你认为他会获利吗?获利多少?【答案】(1)28元(2)本周内每股最高价30.5元,最低价28元(3)会获利,获利3000元【分析】本题考查了正负数的实际应用和有理数的混合运算,正确理解题意并正确列出算式是解题关键.(1)根据题意列出算式,计算即可得到结果;(2)分别计算本周内每天的股价,比较即可获得答案;(3)结合(2)可知周五的收盘价大于买入价,然后计算获利即可.【详解】(1)解:()271 1.5 1.528+++-=元,∴星期三收盘时,每股是28元;(2)星期一股票价格为:27128+=元,星期二股票价格为:28 1.529.5+=元,星期三股票价格为:()29.5 1.528+-=元,星期四股票价格为:28 2.530.5+=元,星期五股票价格为:()30.50.530+-=元,∵2829.53030.5<<<,∴本周内每股最高价30.5元,最低价28元;(3)由(2)可知,周五的收盘价为30元,∵3027>,∴会获利,又∵()100030273000´-=元,∴他会获利3000元.22.如图,在纸面上有一个数轴,折叠纸面.(1)当沿原点折叠,表示1的点与表示1-的点重合时,表示2的点与表示___________的点重合;(2)当沿表示1-的点折叠,表示1的点与表示3-的点重合时.回答下列问题:①表示3的点与表示___________的点重合;②若数轴上A B 、两点(A 在B 的左侧)经折叠后重合,且到折叠点的距离为5,求A B 、两点表示的数分别是多少?【答案】(1)2-(2)①5-;②点A 表示的数是6-,点B 表示的数是4【分析】本题主要考查了数轴、有理数运算等知识,运用数形结合的思想分析问题是解题关键.(1)根据数轴的特征,结合折叠的性质解答即可;(2)①根据数轴的特征,结合折叠的性质解答即可;②根据题意,结合数轴解答即可.【详解】(1)解:沿原点折叠,表示1的点与表示1-的点重合时,表示2的点与表示2-的点重合.故答案为:2-;(2)①∵()314--=,145--=-,∴表示3的点与表示5-的点重合.故答案为:5-;②∵沿表示1-的点折叠,且到折叠点的距离为5,A 在B 的左侧,∴点A 表示的数是156--=-,点B 表示的数是154-+=.六、解答题(共8分)23.观察下列图形与等式的关系:第1个图2221213®-=+=第2个图2232325®-=+=第3个图2243437®-=+=第4个图2254549®-=+=……根据图形及等式的关系,解决下列问题:(1)第5个图中空白部分小正方形的个数是______,第6个图中空白部分小正方形的个数满足的算式:______;(2)用含n 的等式表示第n 个图中空白部分小正方形的个数反映的规律:______;(3)运用上述规律计算:()222222221202420232022202120202019211012-+-+-++-´L .【答案】(1)11,22767613-=+=(2)()221121n n n n n +-=++=+(3)2025【分析】本题考查图形变化的规律,有理数的混合运算等知识点,(1)根据题图找出规律即可得解;(2)根据题图找出规律即可得解;(2)根据题图找出的规律计算即可得解;能根据所给等式写出图n 空白部分小正方形个数满足的等式是解题的关键.【详解】(1)解:由图知:第5个空白小正方形的个数为22656511-=+=,第6个空白小正方形的个数算式应为:22767613-=+=,故答案为:11,22767613-=+=;(2)解:由题图知,图①空白部分小正方形的个数是221212-=+;24.如图,A ,B 两点在数轴上分别表示有理数a ,b ,且满足()2390a b ++-=,点O 为原点.(1)请直接写出a =______,b =______;(2)一动点P 从A 出发,以每秒2个单位长度向左运动,一动点Q 从B 出发,以每秒3个单位长度向左运动,设运动时间为t (秒).①试探究:P 、Q 两点到原点的距离可能相等吗?若能,请直接写出t 的值;若不能,请说明理由;②若动点Q 从B 出发后,到达原点O 后保持原来的速度向右运动,当点Q 在线段OB 上运动时,分别取OB 和AQ 的中点E ,F ,试判断AB OQ EF-的值是否为定值?若是,请求出该定值;若不是,请说明理由.。
新人教版(2024版)第四章整式的加减同步作业3 4.2.1合并同类项班级姓名家长签名年月日知识要点:1、所含字母相同,并且相同字母的指数也相同的项叫作同类项.几个常数项也是同类项.2、化简多项式的一般步骤:(1)找出同类项并做标记;(2)运用交换律、结合律将多项式的同类项结合;(3)合并同类项;(4)按同一个字母的降幂(或升幂排列).同步练习一.选择题1.计算4x2﹣x2的结果是()A.4B.3x2C.2x2D.4x22.下列计算正确的是()A.3x+3y=6xy B.ab﹣6ba=﹣5abC.3x2﹣2x=x D.4a2b+2ab2=6a2b3.已知单项式3a m+1b与﹣b n﹣2a3可以合并同类项,则m,n的值分别为()A.2,3B.2,2C.3,2D.3,34.下列运算正确的是()A.2x+3y=5xy B.6x﹣4x=2x2C.﹣a2﹣a2=0D.7a2b﹣3a2b=4a2b5.关于x,y的多项式1+4xy2+nxy2+xy中不含xy2项,则n的值是()A.0B.4C.﹣1D.﹣46.下列计算正确的是()A.2m3+3m2=5m5B.m+n=mnC.2m2n﹣nm2=m2n D.2m3﹣3m2=m7.若单项式3x 3y m 与−14x n+1y 2的和是单项式,则这两个单项式的和为( ) A .−34x 3y 2B .114x 2y 3C .114x 3y 2D .134x 3y 28.下列各项代数式相加能合并成一个单项式的是( ) A .3xy 与2ab B .2a 2b 与﹣0.5ba 2 C .3a 与2abD .13与x9.下列说法:①平方等于本身的数只有1;②若a ,b 互为相反数,且ab ≠0,则a b=−1;③若|a |=a ,则(﹣a )3的值为负数;④如果a +b +c =0,且|a |>|b |>|c |,那么ac <0;⑤2x 2+3x 3=5x 5;⑥多项式−2x 2y3+2xy −1是三次三项式;正确的个数为( )A .3个B .4个C .5个D .6个10.对于式子x +2x +3x +4x +…+99x +100x ,按照以下规则改变指定项的符号(仅限于正号与负号之间的变换):第一次操作改变偶数项前的符号,其余各项符号不变;第二次操作:在前一次操作的结果上只改变3的倍数项前的符号;第三次操作:在前一次操作的结果上只改变4的倍数项前的符号;第四次操作:在前一次操作的结果上只改变6的倍数项前的符号.下列说法:①第二次操作结束后,一共有51项的符号为正号;②第三次操作结束后,所有10的倍数项之和为170x ;③第四次操作结束后,所有项的和为825x .其中正确的个数是( ) A .0 B .1 C .2 D .3二.填空题(11.合并同类项:8m 2﹣5m 2= .12.若单项式12x 2y m与﹣2x n y 3的和仍为单项式,则m +n = .13.2x k y k +2与3x 2y n 的和是5x 2y n ,则k +n = . 14.若4x 2y 3+2ax 2y 3=4bx 2y 3,则3+a ﹣2b = .15.若a n +a n ⋯+a n ︸a 个a n=a 4(a 为大于1的整数),则n 的值是 .16.如图,某校的图书码共有7位数字,它是由6位“数字代码”和1位“校验码”构成,其中校验码是用来校验图书码中前6位数字代码的正确性的,它的编制是按照特定的算法得来的.以图1所示的图书码为例,其算法为:第1步,计算前6位数字中从左向右数偶数位上的数字之和为a ,即a =9+1+3=13;第2步,计算前6位数字中从左向右数奇数位上的数字之和为b ,即b =6+0+2=8; 第3步,计算3a 与b 的和为c ,即c =3×13+8=47;第4步,取大于或等于c 且为10的整数倍的最小数d ,即d =50; 第5步,计算d 与c 的差就是校验码X ,即X =50﹣47=3.如图2,某个图书码中的一位数字被墨水污染了,设这位数字为m ,则m 的值为 . (共9小题)17.计算:﹣3ab ﹣4ab 2+7ab ﹣2ab 2.18.单项式﹣2x 4y m ﹣1与5x n ﹣1y 2的和是一个单项式,求m ﹣2n 的值.19.已知单项式x 3y m +1与单项式12x n−1y 2的和也是单项式.(1)求m ,n 的值;(2)当x =1,y =2时,求x 3y m +1+12x n−1y 2的值.20.(1)已知x=3时,多项式ax3﹣bx+5的值是1,当x=﹣3时,求ax3﹣bx+5的值.(2)如果关于字母x的二次多项式﹣3x2+mx+nx2﹣x+3的值与x的取值无关,求(m+n)(m﹣n)的值.21.已知T=3a+ab﹣7c2+3a+7c2.(1)化简T;(2)当a=3,b=﹣2,c=−16时,求T的值.22.(1)计算:3333+3+3=;7777+7+7=.(2)设aaa是一个三位数,表示这个三位数每一数位上的数字都是a.试说明:无论a取何值,aaaa+a+a的值为定值.23.(1)小丽在计算14a 2−617a 2−1117a 2时,采用了如下做法:解:14a 2−617a 2−1117a 2=14a 2−(617a 2+1117a 2)⋯① =14a 2−a 2 =−34a 2⋯②步骤①的依据是: ; 步骤②的依据是: . (2)请试着用小丽的方法计算:−37x 2y −4419x 2y −47x 2y +619x 2y .24.阅读材料:在合并同类项中,5a ﹣3a +a =(5﹣3+1)a =3a ,类似地,我们把(x +y )看成一个整体,则5(x +y )﹣3(x +y )+(x +y )=(5﹣3+1)(x +y )=3(x +y ).“整体思想”是中学教学解题中的一种重要的思想,它在多项式的化简与求值中应用极为广泛. 尝试应用:(1)把(x ﹣y )2看成一个整体,合并3(x ﹣y )2﹣6(x ﹣y )2+2(x ﹣y )2的结果是 .(2)已知a 2﹣2b =1,求3﹣2a 2+4b 的值.25.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”.通常的解题方法是把x,y看作字母,把a看作系数合并同类项.因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,其中a+3=0,则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关,求m的值;【能力提升】(2)7张如图(a)的小长方形,长为a、宽为b,按照图(b)的方式不重叠地放在大长方形ABCD内,将大长方形中未被覆盖的两个部分涂上阴影,设右上角的面积为S1,左下角的面积为S2,当AD变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.。
合并同类项同步练习(二
滚动复习:计算
1)、 2)、
3) 4)、
5)、 6)、
5)、 6)、
一、填空题
(1)下列代数式:,,,,,,其中单项式有:;多项式有:。
(2)单项式的因数叫做这个单项式的系数。
(3)单项式的系数是;单项式的系数是。
(4)多项式是项式,它的项分别是。
二、选择题
(1)下列判断正确的是()
A、的项是和;
B、的系数是0;
C、和都是多项式;
D;是单项式。
(2)下列各式:,,,,中,单项式的个数是()。
A、1;
B、2;
C、3;
D、4。
三、写出下列代数式分别是几项的和?每项的系数分别是什么?
(1):;
(2):;
(3):;
(4):。
三、根据题意列出代数式:
(1)某山地上的野生动物的饮水告急,当地居民自发上山建造蓄水池。
其中一个长方体蓄水池的深度是米,底面的长与宽都是米。
这个蓄水池的最大容量是立方米
(2)3月12日是植树节,七年级一班和二班的同学参加了植树活动,一班种了棵树,二班种的比一班的2倍还多棵。
两个班一共种了棵树。
(3)三个连续整数,中间的一个是n,则前后两个整数分别是;三个连续奇数,中间的一个是m,则前后两个奇数分别是。
(4)一个三位数,个位数字是,十位数字是,百位数字是;这个三位数是;将这个三位数的个位和百位对调,所得的三位数是。
(5)如图,阴影部分的面积是。
(6)暑假里父亲、儿子、女儿准备外出旅行,咨询时了解到,甲旅行社规定:大人买全票一张,则两个孩子的费用可按全票价的70%优惠;乙旅行社规定:三人旅行可按团体票计价,即按原价的80%售票。
已知两家旅行社的原价相同(均为a 元),则当实际收费时,甲旅行社收费元,乙旅行社收费元。