mems陀螺温度补偿
- 格式:docx
- 大小:12.96 KB
- 文档页数:1
---------------------------------------------------------------最新资料推荐------------------------------------------------------陀螺最小二乘法温度补偿陀螺最小二乘法温度补偿基于 MEMS 姿态传感器温度补偿方法传感器的温度补偿方法大致可以分为两种,即硬件补偿和软件补偿。
硬件补偿方法主要是改变电路来达到补偿效果,但是这种方法会导致电路的复杂化,同时提高了成本。
软件补偿方法主要有最小二乘法、BP 神经网络法、回归法等。
从计算的方便性和补偿精度的准确性两个方面,本文采取最小二乘法进行温度补偿。
1 姿态传感器的温度补偿原理本文采用美国InvenSense 公司生产的 ITG3205 三轴陀螺仪芯片,该芯片中内嵌有数字输出温度传感器,因此可以随时检测出传感器所处的环境温度。
在不同的工作环境温度下,传感器实际角度输出值与理论角度输出值会出现一定的误差,称之为温度误差。
为了消除或者减少这种温度误差,利用最小二乘法进行曲线拟合,最终达到或接近理论角度输出值。
传感器根据输入的检测信号,通过姿态检测模块和温度检测模块采集相关数据,然后经过温度补偿模块进行相应的温度补偿,最后通过输出检测模块可得到预期的检测信号。
姿态传感器的温度补偿原理如框图 1 所示。
2 姿态传感器的温度补偿方法在同一温度下,不同角1 / 4度的理论值与输出值之间严格意义上是一种非线性关系,但是由于这种误差值相对不大,可以近似的认为是一种线性关系,即 y = mx + n 的线性关系。
通过最小二乘法进行线性拟合,可以得出参数 m 和 n 的值。
此时可以发现,在不同的温度下,所拟合出来的 m 和 n 值是随温度的变化而变化的。
在此情况下,必须找出温度分别与 m 和 n 之间的关系,为此同样可以根据最小二乘法再次进行曲线拟合,从而得出 m 值与温度之间的关系。
mems陀螺随机误差建模与补偿近些年,MEMS(Micro-electromechanical Systems)技术的快速发展对工程领域的数据采集技术带来了普遍的影响。
随着MEMS技术的应用,陀螺传感器作为一种重要的传感器技术,广泛应用于航空、航天、汽车行业及陆域的水文测量等多个领域。
但是,MEMS陀螺传感器在使用过程中,会遭受来自环境影响、温度影响、电磁干扰等一系列外部因素对其精度造成影响,甚至会导致其测量数据出现一定程度的随机误差。
而由随机误差引起的系统失稳问题已经成为影响MEMS陀螺精度的主要原因之一。
为了克服MEMS陀螺随机误差,首先要建立它们的误差模型。
这使得信号处理系统能更准确地模拟真实环境中陀螺传感器受到随机影响的行为,从而更好地满足陀螺精度校准和传感器精度补偿的需求。
目前有很多可用于建立随机误差模型的方法,如差分培根谱法,基于时域均方根值的系统灵敏度分析,改进的统计函数建模和基于最大似然估计的方法等。
经过模型建立,就可以采用不同的补偿方法来解决MEMS陀螺随机误差问题,这其中包括在传感器输出端采用反馈补偿(Feedback compensation)、自适应补偿(Adaptive compensation)和一般带宽低通特性补偿(Low-pass filter)等。
首先,反馈补偿技术是一种经典的陀螺补偿方法,它通过不断的检测陀螺的转速信号,通过调整控制器的输入获取环路系统的反馈信号,从而达到陀螺精度补偿的效果。
其次,自适应补偿技术也可以有效地抵消MEMS陀螺随机误差。
它通过利用虚拟输入和虚拟输出的抽样时间来不断学习和更新陀螺传感器的误差模型,有效补偿其随机误差。
此外,还可以使用一般带宽低通特性补偿技术,其原理是通过利用低通滤波器对传感器输出数据进行滤波,以实现补偿MEMS陀螺传感器随机误差的目的。
最后,基于改进统计方法的补偿技术也是被广泛使用的一种补偿方式,它将多次采集的陀螺传感器的原始输出数据进行分析,利用改进的统计函数把随机噪声模型应用到陀螺传感器的原始数据中,从而补偿随机误差。
2010年第29卷第3期 传感器与微系统(T r a n s d u c e r a n dM i c r o s y s t e mT e c h n o l o g i e s)M E M S陀螺误差辨识与补偿谈振藩,张勤拓(哈尔滨工程大学自动化学院,黑龙江哈尔滨150001)摘 要:由于制造工艺等原因,M E M S陀螺的随机漂移非常大,严重影响了系统的性能。
通过自制的基于M E M S的捷联惯导系统的相关实验,对M E M S陀螺的确定性误差和随机误差分别进行了辨识和补偿。
完成确定性误差补偿,对M E M S陀螺随机误差进行了时间序列分析,并建立了A R模型,根据所选模型参数建立了随机误差的系统方程,采用经典卡尔曼滤波进行随机误差补偿。
实验结果说明:无论是静态下还是动态下,补偿后信号的方差都大大下降,说明了滤波效果较为明显,具有一定的工程应用价值。
关键词:M E M S陀螺;时间序列分析;A R模型;卡尔曼滤波中图分类号:T P212 文献标识码:A 文章编号:1000—9787(2010)03—0039—03E r r o r i d e n t i f i c a t i o na n dc o m p e n s a t i o no f ME MSg y r o s c o p eT A NZ h e n-f a n,Z H A N GQ i n-t u o(C o l l e g e o f A u t o m a t i o n,H a r b i nE n g i n e e r i n g U n i v e r s i t y,H a r b i n150001,C h i n a)A b s t r a c t:M E M Sg y r o's r a n d o m d r i f t i s v e r yl a r g e,b e c a u s eo f t h em a n u f a c t u r i n gp r o c e s sa n do t h e r r e a s o n s,w h i c hs e r i o u s l y a f f e c t o n s y s t e mp e r f o r m a n c e.T h r o u g h e x p e r i m e n t s o f M E M S s t r a p d o w n i n e r t i a l n a v i g a t i o ns y s t e m,d e t e r m i n i s t i c a n ds t o c h a s t i c e r r o r w a s i d e n t i f i e da n dc o m p e n s a t e d.A f t e r d e t e r m i n i s t i ce r r o r w a s c o m p e n s a t e d,t h es t o c h a s t i ce r r o r w a s a n a l y z e d b a s e d o nt i m e s e r i e s a n dA Rm o d e l w a s s e t u p.S y s t e m e q u a t i o no f s t o c h a s t i ce r r o rw a s e s t a b l i s h e d b a s e d o nt h e s e l e c t e dm o d e l a n dt h ee r r o r w a s c o m p e n s a t e db y K a l m a nF i l t e r.T e s t r e s u l t s s h o wt h a t v a r i a n c e o f M E M S g y r o s c o p e s t o c h a s t i c e r r o r r e d u c e d g r e a t l y a f t e r f i l t e r,w h i c h i l l u s t r a t e s t h e f i l t e r i n g e f f e c t i so b v i o u s,a n d h a s a c e r t a i nv a l u e o f e n g i n e e r i n g a p p l i c a t i o n.K e yw o r d s:M E M S g y r o s c o p e;t i m e s e r i e s a n a l y s i s;A Rm o d e l;K a l m a nf i l t e r0 引 言微机电系统(m i c r o-e l e c t r o-m e c h a n i c a l-s y s t e m,M E M S)陀螺仪已经出现了近二十年[1],与其他陀螺相比,M E M S陀螺在体积、成本、功耗和抗冲击能力等方面都存在很大优势,但由于早期精度较低,并没有引起重视。
mems陀螺随机误差建模与补偿
MEMS陀螺随机误差建模与补偿是采用数学方法模拟微机电系统(MEMS)所产生的随机振动误差,并对其进行补偿,以改善其可靠性和精度。
随机误差建模和补偿通常利用一个模型,它利用从陀螺仪反馈出来的位置、速度或加速度信息来模拟陀螺仪的随机噪声。
具体而言,这种模型可以以不同方式建立,从而有效地模拟MEMS陀螺仪所产生的位置、速度、加速度和频率误差。
随机误差建模的第一步是将反馈的位置、速度或加速度信息转换为功率谱,以便更好地分析误差的特性。
然后将模型化成一定长度的时域过程,然后根据这一过程对误差参数进行估计。
最后,通过拟合功率谱和参数估计来判断模型的准确性,并确定MEMS的随机误差补偿方案。
随机误差补偿一般可以采用两种方式实现,即:信号补偿和结构补偿。
信号补偿通常是使用一些滤波器来减小模型的噪声,以改善信号的精度。
结构补偿则是对陀螺仪的结构进行改进,以抑制误差的源头,甚至抵消部分误差,从而获得更好的精度。
MEMS陀螺仪所产生的随机误差主要来自于设备内部的失真、电磁抖动和湿度抖动等因素,这些误差可利用MEMS陀螺随机误差建模与补偿技术加以抑制,以改进陀螺仪的精度和可靠性。
MEMS陀螺仪概况介绍MEMS陀螺仪是一种运用微机电系统(Micro-Electro-Mechanical System,MEMS)技术制造的陀螺仪。
MEMS陀螺仪的发展与传统机械陀螺仪相比,具有体积小、重量轻、功耗低、精度高、成本低等优势,因此在无线通信、导航定位、智能手机、游戏机、航空航天等领域得到了广泛的应用。
从原理上来说,MEMS陀螺仪是利用陀螺效应进行测量的。
根据陀螺效应,当陀螺体受到力矩作用时,会产生旋转运动,并随着陀螺体的旋转方向发生改变。
MEMS陀螺仪利用微加工技术制造出微小的陀螺体结构,通过测量陀螺体旋转的角速度来反映外界的力矩。
MEMS陀螺仪的核心部件是微机电系统传感器芯片。
该芯片由陀螺体、补偿机构和信号处理器组成。
陀螺体采用微机电技术制造,通常由微小的旋转结构和驱动电极组成。
补偿机构可以校正陀螺仪在使用过程中的误差,如温度漂移、震动干扰等。
信号处理器对传感器采集到的信号进行放大、滤波和数字化处理,最终输出测量结果。
MEMS陀螺仪主要应用于姿态控制、导航定位和惯性测量等领域。
在无人机、无线通信基站和汽车电子中,MEMS陀螺仪可以感知设备的姿态变化,并通过控制其他执行器实现稳定的定位和姿态控制。
在导航定位系统中,MEMS陀螺仪结合其他传感器如加速度计和磁力计,可以提供高精度的导航定位信息。
在惯性测量领域,MEMS陀螺仪可以用于测量物体的转动角速度,如飞行器的姿态角速度、旋转仪的角速度等。
然而,MEMS陀螺仪也存在一些挑战与局限性。
首先,由于微加工技术的限制,MEMS陀螺仪的测量范围和分辨率相对较小。
其次,由于设备内部结构的微小化,MEMS陀螺仪对温度变化和震动的敏感度较高,容易产生误差。
此外,MEMS陀螺仪在长时间运行过程中,由于不可避免的温度漂移和机械疲劳等因素,测量精度也会逐渐下降。
为了克服这些局限性,研究人员提出了一系列改进措施。
例如,通过增加补偿机构和算法优化,可以有效降低温度漂移和震动干扰对MEMS陀螺仪测量精度的影响。
mems陀螺温度补偿
MEMS陀螺仪具有尺寸小、能耗低、质量轻、价格低等优点,应用广泛,但由于加工工艺的原因,目前微机械陀螺仪精度相对较低,陀螺仪结构尺寸、材料性质及检测电路中电子器件均会受温度影响。
在实际监测过程中,运行管道内外温差较大,导致多MEMS监测系统的核心部件三轴MEMS陀螺仪产生温度漂移,影响监测到的角速度信号的精确度,从而干扰整个系统的稳定性和准确性。
因此,对MEMS陀螺仪进行温度补偿至关重要。
多MEMS监测系统的温度补偿,一般可以采取两种方式:一是增加温控设施,或通过温控电路来降低硬件的温度,但会增加测量系统的体积;二是通过分析温度误差特性,针对温度误差漂移规律,建立实时温度误差补偿模型进行温度补偿,从而提高MEMS陀螺仪的精确度。
相对于硬件补偿,建立温度误差补偿模型进行温度补偿的方法更加简单且实用有效。