微陀螺仪的设计与制造过程
- 格式:docx
- 大小:796.27 KB
- 文档页数:17
mems陀螺仪工艺流程一、引言MEMS(Micro Electro Mechanical Systems)陀螺仪是一种利用微机电系统技术制造的精密测量仪器,用于测量物体的旋转角速度。
它由微尺寸的机械结构和微电子器件组成,具有体积小、重量轻、功耗低等优点。
本文将介绍MEMS陀螺仪的工艺流程。
二、工艺流程1. 设计与模拟MEMS陀螺仪的工艺流程首先需要进行设计与模拟。
设计师根据需求确定陀螺仪的功能和性能指标,并通过计算机辅助设计软件进行模拟和验证。
设计包括机械结构设计、电路设计和封装设计等。
模拟则通过数值计算和仿真软件进行,以验证设计的可行性和优化设计参数。
2. 掩膜制备接下来是掩膜制备阶段。
掩膜是制作MEMS陀螺仪的关键工艺,它相当于制作微米级结构的模板。
制备掩膜通常采用光刻技术,即将光敏胶涂覆在硅片上,然后使用掩膜对光敏胶进行曝光,最后通过显影和清洗等步骤得到所需的掩膜结构。
3. 基片制备基片制备是指制作MEMS陀螺仪的硅基片。
首先,选择高纯度的单晶硅材料,并进行切割和研磨,以获得平整的硅片。
然后,在硅片上进行氧化处理,形成氧化硅层,作为陀螺仪的基底。
接下来,通过光刻、蚀刻和沉积等工艺步骤,在硅片上制备出陀螺仪的机械结构和电路等。
4. 结构制备结构制备是制作MEMS陀螺仪的关键步骤之一。
通过光刻和蚀刻等工艺,在硅片上制备出陀螺仪的机械结构,包括感应电极、驱动电极和挠曲结构等。
其中,感应电极用于检测陀螺仪的旋转角速度,驱动电极用于施加驱动力,挠曲结构则用于实现陀螺仪的旋转测量。
5. 封装与封装测试在结构制备完成后,需要对MEMS陀螺仪进行封装。
封装工艺通常包括焊接、封装材料注入、密封和测试等步骤。
焊接是将陀螺仪芯片与封装底座焊接在一起,以提供电气连接。
封装材料注入是将封装材料注入封装底座中,以保护陀螺仪芯片。
密封是将封装底座密封,以防止外界环境对陀螺仪的影响。
封装测试是对封装后的陀螺仪进行性能测试,以确保其符合设计要求。
电子陀螺仪原理
电子陀螺仪是一种通过感应器和电子控制系统工作的设备,用于测量和检测物体的角度变化和转动。
它是基于陀螺原理设计的,陀螺现象是物体在旋转时会保持自身的方向不变的特性。
电子陀螺仪利用这一原理来测量和跟踪物体的转动。
电子陀螺仪主要由以下几个部分组成:
1. 陀螺仪传感器:陀螺仪传感器是电子陀螺仪的核心部分,通常采用微机电系统(MEMS)技术制造。
传感器内部包含一个微小的陀螺仪装置,通过测量装置的角速度来检测物体的转动。
2. 控制电路:控制电路负责接收和处理传感器传输的信号。
它会将传感器测得的角速度数据转换为电信号,并进行放大和滤波处理,以保证信号的准确性和稳定性。
3. 算法和软件:陀螺仪算法和软件对控制电路采集到的数据进行处理和分析。
它们使用数学模型和算法来计算物体的姿态和转动角度,并将这些信息提供给用户或其他系统使用。
当物体发生转动时,陀螺仪传感器会感应到角速度的变化。
传感器内部的陀螺仪装置会受到转动的力矩,产生一个预先设定的固定轴向的力矩,抵消外部力矩的作用。
这样,陀螺仪装置就能保持自身的方向不变,从而实现对物体转动的测量和检测。
电子陀螺仪具有很高的灵敏度和精度,能够实时地测量物体的
角速度和角度变化。
它广泛应用于导航系统、飞行器的姿态控制、无人机、机器人等领域,并在实际应用中发挥重要作用。
mems陀螺工艺技术MEMS陀螺是一种将微机电系统(MEMS)技术应用到陀螺仪制造中的新型产品。
陀螺是一种能够测量和检测转动角速度的装置,而MEMS陀螺则是利用微小尺寸的MEMS器件制造而成的。
MEMS陀螺的制造工艺技术主要包括以下几个步骤:首先,制造MEMS陀螺的第一步是设计和制作探测器。
这个步骤通常使用光刻技术,通过在玻璃或硅片上进行图案设计,并使用掩膜将图案转移到片上。
然后,在制作好的图案上使用化学气相沉积(CVD)或物理气相沉积(PVD)技术将金属或氧化物材料沉积到基底上,形成探测器的结构。
其次,制造MEMS陀螺的第二步是制作驱动器。
驱动器通常是由多个电极和悬浮结构组成的。
这个步骤主要依赖于光刻技术和选择性腐蚀技术。
通过光刻技术将驱动器的图案设计在玻璃或硅片上,并使用掩膜将图案转移到片上。
然后,使用选择性腐蚀技术将不需要的部分材料腐蚀掉,形成驱动器的结构。
接下来,将探测器和驱动器组装在一起。
这个步骤需要使用微焊接或其他专用技术将两个部件精确地连接在一起,使其能够相互作用和运动。
最后,对制造好的MEMS陀螺进行封装和测试。
封装是将制造好的陀螺组件放置在密封的包装中,以保护其免受外部环境的干扰。
然后,对陀螺进行各种测试,包括性能测试、稳定性测试和可靠性测试等,以确保其符合设计要求。
总的来说,MEMS陀螺的制造工艺技术是一个复杂的过程。
它需要使用多种微纳米加工技术,如光刻、化学气相沉积、物理气相沉积、选择性腐蚀和微焊接等。
通过这些技术的组合应用,制造出微小尺寸、高灵敏度和高稳定性的MEMS陀螺产品。
这些产品在航空航天、导航仪器、惯性导航系统等领域具有广泛的应用前景。
MEMS陀螺仪发展综述及技术研究MEMS陀螺仪是一个基于微机电系统(MEMS)技术的传感器,用于测量和检测物体的转动或转动速度。
它具有体积小、重量轻、功耗低、精度高等优点,广泛应用于惯性导航、姿态控制、无人机、智能手机以及虚拟现实等领域。
MEMS陀螺仪的发展可以追溯到20世纪60年代,当时最早的陀螺仪是由机械零件构成的大型设备,体积庞大、制造成本高。
随着MEMS技术的发展,研究者开始尝试将陀螺仪制造成微型化的晶片,以满足更小型化、更便携的应用需求。
在20世纪90年代,研究者们成功地将MEMS陀螺仪制造成了微小的晶片,采用了表面微加工技术以及集成电路制造工艺。
这样的设计使得陀螺仪能够迅速地发展,并广泛应用于各个领域。
目前市场上的MEMS陀螺仪大多是基于表面微加工技术和压电效应制作的。
在技术方面,MEMS陀螺仪主要有两种原理,分别是压电陀螺仪和振动陀螺仪。
压电陀螺仪是利用压电效应来测量转动速度的,当陀螺仪旋转时,产生的角速度会导致陀螺片产生弯曲,进而改变电极之间的电容值,从而测量出角速度。
振动陀螺仪则是通过测量旋转物体在转动时产生的惯性力来获得转动信息的。
同时,MEMS陀螺仪的精度也得到了大幅提高。
随着微加工工艺的进步和传感器设计的改良,MEMS陀螺仪的噪声水平得到了显著降低,从而提高了测量精度。
此外,MEMS陀螺仪的应用领域不断拓展。
除了传统的航天、导航等领域外,MEMS陀螺仪还被广泛应用于智能手机、游戏手柄、运动追踪设备等消费电子产品中。
MEMS陀螺仪在这些领域中发挥着关键的作用,如智能手机中的姿态控制、游戏手柄中的运动感应等。
尽管MEMS陀螺仪已经取得了重大的进展,但仍面临一些挑战。
其中之一是温度漂移的问题,即在不同温度下,陀螺仪的测量结果可能会有所偏差。
另外,MEMS陀螺仪在高加速度、高震动环境下的稳定性也需要进一步提高。
综上所述,MEMS陀螺仪在技术发展和应用拓展方面取得了显著的进展。
随着对陀螺仪应用场景要求的不断提升,人们对MEMS陀螺仪的研究和改进将继续进行,以满足更广泛的应用需求。
那么什么是三轴陀螺仪呢?简单的说来就是3D版的重力感应,iPhone 4现在除了可以感应手机左右的晃动以外还能感受到前后的倾斜,这对于未来游戏或者软件的设计来说又提出了新的概念,我们希望在未来能够看见更多的基于陀螺仪的应用。
mems陀螺仪即硅微机电陀螺仪,绝大多数的MEMS陀螺仪依赖于相互正交的振动和转动引起的交变科里奥利力。
MEMS (Micro-Electro-Mechanical Systems)是指集机械元素、微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。
陀螺仪:最后,iPhone 4首次加入了新感应器三轴陀螺仪,保留了方向感应器、距离感应器和光线感应器,可以被更多的应用程序应用。
基于MEMS的加速传感器、陀螺仪、指南针、压力传感器、麦克风正在成为Android 新版本中的指定标配ST推出一款业界独创、采用一个感应结构检测三条正交轴向运动的3轴数字陀螺仪L3G4200D。
这种创新的设计概念大幅提升运动控制式消费电子应用的控制精度和可靠性,为设备的用户界面实现前所未有的现场感。
现有的3轴陀螺仪解决方案依赖两个或三个独立的感应结构,顶多是在同一硅基片上;而意法半导体的陀螺仪则是三轴共用一个感应结构,这一突破性概念可以消除轴与轴之间的信号干扰,避免输出信号受到干扰信号的影响。
此外,这个创新的产品架构使意法半导体的工程师将传感器与ASIC接口整合在一个4x4x1mm 的超小封装内,解决现在和未来的消费电子应用的空间限制问题。
意法半导体的3轴数字陀螺仪让用户可以设定全部量程,量程范围从±250 dps 到±2000 dps,低量程数值用于高精度慢速运动测量,而高量程则用于测量超快速的手势和运动。
这款器件提供一个16位数据输出,以及可配置的低通和高通滤波器等嵌入式数字功能。
就算时间推移或温度变化,这款器件仍然保持连续稳定的输出。
内置数字输出的L3G4200D 3轴MEMS陀螺仪的设计和制造采用意法半导体销售量超过6亿支的运动传感器的制程技术。
MEMS陀螺仪介绍MEMS陀螺仪(Micro-electromechanical system gyroscope)是一种利用微机电系统技术制造的陀螺仪。
它是一种测量角速度或角位移的传感器。
MEMS陀螺仪在航空航天、导航、惯性导航、虚拟现实、机器人和消费电子等领域中发挥着重要的作用。
本文将介绍MEMS陀螺仪的工作原理、分类、应用领域以及未来发展方向。
一、工作原理MEMS陀螺仪的关键部分是MEMS振动结构,它包括一个振动质量块和与之相连的弹性支撑结构。
当旋转速度发生变化时,质量块会感受到科氏力产生的偏移力,从而引起振动结构的振动变化。
通过测量振动结构的变化,可以得到旋转速度的信息。
二、分类根据工作原理的不同,MEMS陀螺仪可以分为容积扩散器陀螺仪、震动陀螺仪和光纤陀螺仪。
容积扩散器陀螺仪基于压电效应,通过测量振动微结构的容积变化来测量旋转速度。
震动陀螺仪则通过测量加速度和角位移之间的关系来得到旋转速度。
光纤陀螺仪则利用光的干涉效应来测量角速度。
容积扩散器陀螺仪是目前应用较广泛的MEMS陀螺仪,其精度和灵敏度较高。
震动陀螺仪是一种新兴的技术,具有体积小、功耗低等优势,逐渐被广泛应用。
三、应用领域1.导航和惯性测量单元:MEMS陀螺仪可以用于航空航天、导航和惯性测量单元中,用于测量飞行器的姿态和角速度,为导航和控制提供准确的数据。
2.虚拟现实和游戏:MEMS陀螺仪可以用于虚拟现实头盔和游戏手柄中,用于感知用户的头部运动和手柄的姿态变化,实现交互的沉浸式体验。
3.移动设备:MEMS陀螺仪也被广泛应用于手机、平板电脑和智能手表等移动设备中,用于实现屏幕旋转、手势控制和陀螺仪导航等功能。
4.机器人和自动驾驶:MEMS陀螺仪可以用于机器人和自动驾驶车辆中,用于感知和控制机器人或车辆的姿态和运动状态,实现精确的导航和控制。
四、未来发展方向随着技术的不断进步,MEMS陀螺仪仍然具有很大的发展潜力。
未来的发展方向主要包括以下几个方面:1.提高精度和稳定性:MEMS陀螺仪目前的精度和稳定性还有改进的空间。
微陀螺仪的设计与制造学校:华中科技大学专业:机械设计制造及其自动化姓名:**班级:1104班学号:U*********指导老师:廖广兰来五星中文摘要随着科学技术的发展以及科研技术的逐渐成熟。
陀螺仪也逐渐进入了各个领域。
现如今陀螺仪在航海导航、航天航空、研究动力学、兵器、汽车、生物医学、环境监控等方面有了广泛的应用。
而各种陀螺仪也因其原理的不同而有不同的分类,诸如哥氏加速度效应微振动陀螺、流体陀螺、固体微陀螺、悬浮转子式微陀螺、微集成光学式陀螺以及原子陀螺。
而其中随着MEMS技术的不断发展,以其为基础的微陀螺因尺寸小、精度高、重量轻、易于数字化、智能化而越来越受到大家青睐。
其在汽车导航、消费电子和移动应用等民用领域以及现代和可预见的未来高科技战场上拥有广阔的发展和市场前景。
文章首先对陀螺仪做了简单的原理和功能介绍,阐述了当前微陀螺仪是非常具有前景的研究防线,并简单介绍了几种常见的微陀螺仪,然后对微陀螺仪的结构进行了简单的分析并且分析了微机械陀螺仪的设计及制造过程和工艺方法并对其中的技术难点进行了分析,也对加工陀螺仪必须的MEMS工艺进行了概述,然后对微陀螺仪的前景及应用进行了进一步的探讨。
关键词:微机械陀螺仪,MEMS工艺,制作过程,关键技术AbstractWith the development of science and technology as well as scientific research and technology matures.Gyroscope is gradually coming into the fields.Now gyroscope has broad application in marine navigation, aerospace, research dynamics, weapons, cars, bio-medicine, environmental monitoring, etc.And also because of the various gyroscope different principles and have different classifications, such as the Coriolis acceleration effect of micro-vibration gyro, gyro fluid, solidmicro-gyroscope, suspended gyroscope rotor micro, micro-gyroscope integrated optical and atomic gyroscope. With the continuous development of which MEMS technology, with its micro-gyroscope-based due to the small size, high precision, light weight, easy-to-digital, intelligent and increasingly being favored. It has a broad development and market prospects in the car navigation, consumer electronics and mobile applications and other civilian areas as well as modern and high-tech battlefield for the foreseeable future.The article first gyroscope do a simple principle and function description, describes the current micro-gyroscope is a very promising line of research, and a brief introduction to some common micro-gyroscope, then the structure of the micro-gyroscope simple analysis and analysis of the micromachined gyroscope design and manufacturing process and process methods and technical difficulties which were analyzed, but also on the processing of MEMS gyroscope must be an overview of the process, then the prospects for and application of micro-gyroscopes were further discussion.Keywords:Micromechanical gyroscopes, MEMS technology, production process, key technologies目录1 微机械陀螺仪研究背景 (1)1.1 概念简介 (1)1.2 MEMS陀螺仪研究历史及发展现状 (1)1.3 研究目的 (1)1.4 研究方法 (2)2 微机械陀螺仪原理与结构 (5)2.1 MEMS陀螺仪基本原理 (5)2.2 MEMS陀螺仪分类及结构 (6)3 微机械陀螺仪设计及制造 (6)3.1 MEMS陀螺仪设计流程 (6)3.2 MEMS陀螺仪工艺方法 (7)3.3 MEMS陀螺仪技术难点 (8)4 微机械陀螺仪测试及应用 (8)4.1 MEMS陀螺仪测试内容及手段 (8)4.2 MEMS陀螺仪应用 (10)5 关于微机械陀螺仪发展的思考 (11)6 小结与体会 (11)参考文献 (12)1微机械陀螺仪研究背景1.1 概念简介微陀螺仪是属于微机械的一种。
微机械MEMS是英文Micro Electro Mechanical systems的缩写,即微电子机械系统。
微电子机械系统(MEMS)技术是建立在微米/纳米技术(micro/nanotechnology)基础上的 21世纪前沿技术,是指对微米/纳米材料进行设计、加工、制造、测量和控制的技术。
它可将机械构件、光学系统、驱动部件、电控系统集成为一个整体单元的微型系统。
微机械陀螺仪属于一种振动式角速率传感器,用于测量旋转速度或旋转角,作为重要的惯性器件,具有质量轻、体积小、成本低、可靠性好、稳定性高、功耗低、精度高、性能优等诸多优点,在工业控制、航空航天、汽车和消费类电子产品等领域中得到广泛的应用。
1.2 MEMS陀螺仪研究历史及发展现状微机械陀螺的研究始于20世纪80年代,经过几十年的研究国外相关已经比较成熟,众多科研单位及公司如美国Draper实验室、ADI公司、Berkeley大学,德国Daimler Benz公司、Bosch公司,日本Toyota公司,以及土耳其、芬兰等国家[4-9],已有商业化产品。
我国的MEMS 技术研究工作起步较晚,但正积极开展研究,国家已经投入巨资用于MEMS陀螺技术的研究。
目前主要的科研单位有清华、北大、中科院上海微系统所、复旦大学、哈工大等多家单位[10-15] ,经过十多年的努力,在基础理论、加工技术和工程应用等方面的研究已取得了明显的进步。
但不可否认,与国外差距仍然较大,高性能微机械陀螺少有商业化产品。
1.3 研究目的微机械的尺寸一般都是在厘米级别的,有的甚至已经到了毫米级别。
由此可见,微机械的加工以及制造时十分困难的。
如今,完全封装过后的微陀螺仪的最小尺寸已经到了1.5mm左右,甚至更小。
那么,要加工如此细微的零件,对于机械装备、机械技术以及加工人员的考验是非常大的。
而且,不像是传统普通零件加工,可以出现一点点的误差。
对于如此之小的微型机械,一旦加工之中出现了一些错误,即使是偏离一微米,对于微陀螺仪来说,都是极大的错误。
所以,微陀螺仪的设计与制造过程以及加工工艺的编排,在整个生产过程之中都是重中之重。
一旦,微陀螺仪的设计与制造过程以及加工工艺的编排出现问题,不管是哪个环节出现了问题,也不管是这个环节多么细微,整个生产情况都会出现严重的问题。
如果是设计环节出现了问题,整个生产都要被打断,然后重新设计微陀螺仪,重新布置加工过程,重新编排加工工艺。
如果是制造过程出现了问题,那么多半是机械质量不达标,或者是机械所处的环境标准不够。
同样的,只有购置新的加工机械,或者重新处理加工车间的问题。
如果是加工工艺出现了问题,那么就需要重新编排加工工艺。
所以,对于微陀螺仪的研究目的,就是减少生产损失,增加生产成功率,减少生产废品率,保证投资得到良好的回报。
1.4 研究办法由于微陀螺仪的加工,远远不同于传统机械加工,。
传统的陀螺仪主要是利用角动量守恒原理,因此它主要是一个不停转动的物体,它的转轴指向不随承载它的支架的旋转而变化。
但是微机械陀螺仪的工作原理不是这样的,因为要用微机械技术在硅片衬底上加工出一个可转动的结构可不是一件容易的事。
微机械陀螺仪利用科里奥利力(也叫哥氏力)——旋转物体在有径向运动时所受到的切向力。
微陀螺仪的原理:图 1.1 科里奥利力微机械陀螺仪利用了哥氏力现象,其原理如图1所示。
当图中的物体沿X 轴做周期性振动或其他运动时,并且XY坐标系沿Z轴做角速度为Ωz旋转运动,就会在该物体上产生一个沿Y轴方向的哥氏力,其矢量可按下式(1.1)计算。
(1.1)式中:F(t)是哥氏力,m是该物体的质量,ΩZ是坐标系旋转的角速度,是该物体的矢量速度。
微陀螺仪基本上就是利用这个原理制造成的,不同的微陀螺仪,进行感应测算的零件材料和方法是不同的。
进行了微陀螺仪设计之后,就需要对微陀螺仪进行验算或者测试,保证微陀螺仪在各种各样需要的环境之下都能可靠运行,同时还能保证足够的感应精度。
最主要的是,微陀螺仪要有足够的耐用度,没有足够的耐用度,微陀螺仪就是一个鸡肋。
毕竟微陀螺仪实在是太小了,更换的时候肯定十分困难,所以,必须要有足够的耐用度。
所以,微陀螺仪的研究方法,基本上可以概括为做实验。
利用各种不同的材料和感应方法,首先做出各种不同种类的微陀螺仪,然后在各个不同的环境下进行试验,对他们进行横向比较,一点点的改进,更换材料,保证微陀螺仪的质量不断上升。
完成了设计之后,微陀螺仪就进入了加工工艺编排过程。
微陀螺仪的加工工艺编排是十分重要的,没有良好的加工工艺,对于微陀螺仪这样的精密仪器,是生产不出来的。