如到果l3或图l42上7.,2-如1中图l12,7l.22两-2条(直1 线)l1相、交(,2)交,点所A刚得好的落对
应线段的比会相等吗?依据是什么?
你由 此又 能得 到什 么结 论呢?
如图:在△ABC中,点D,E分别在AB,AC上,且DE‖BC,则△ADE
与△ABC相似吗?
(1)议一议:这两个三角形的三个内角是否对应相等?
1、 如果△ ABC∽ △ADE,那么你能找出哪些角的关系?边呢?
A ∠A = ∠A,∠B = ∠ADE,∠C = ∠AED.
AB AC
BC
=
AD AE
=
DE
D
E
DE ∥ BC
B
C
2、△ ABC中, DE ∥ BC且分别交边AB、AC 于D、E两点,那么△ ABC与 △ADE有什么
关系呢?
任意画两条直线l1 ,l2 ,再画三条与l1 、l2 相交的平行
(2)量一量这两个三角形的边长,它们是否对应成比例?平行移动DE的
位置再试一试.
(3)你能用什么方法来判断呢?请你加以证明?
证明:在△ADE与△ABC中∠A= ∠A
A
∵ DE//BC
∴∠ADE=∠B, ∠AED=∠C 过E作EF//AB交BC于F
D
E
∵ DE//BC, EF//AB
∴ AD AE , BF AE
27.2 相似三角形的判定(1)
1、相似三角形的定义是什么?它具有什么性质呢?
在△ ABC和△ DEF中,如果∠A=∠D, ∠B=∠E,
∠C=∠F
A
AB AC BC DE DF EF
D B
E
那么 △ ABC∽ △DEF
F
C