证明: 因为
1 1 1 , 2 n( n 1) n1 ( n 1)
1 1 发散, 所以级数 发散. 而级数 n1 n( n 1) n1 n 1
Hale Waihona Puke 比较审敛法是一基本方法, 虽然有用, 但应用起来 却有许多不便. 因为它需要建立定理所要求的不等式, 而这种不等式常常不易建立, 为此介绍在应用上更为 方便的极限形式的比较审敛法. 4. 比较审敛法的极限形式: un 设 un , vn 为两个正项级数, 如果 lim l , n v n1 n1 n 则: (1) 当 0 < l <+ 时, 二级数有相同的敛散性; (2) 当 l = 0 时, 若 vn 收敛, 则 un 收敛;
故当 vn 发散时 un 发散.
n1 n1
5. 极限审敛法:
设 un 为正项级数,
n1
lim nun ), 则级数 un 发散; 如果 lim nun l 0 (或 n
n
p lim n 如果有 p>1, 使得 n un 存在, 则级数 un 收敛.
n1
极限审敛法是以p-级数为比较级数的审敛法. 例3: 判定下列级数的敛散性: 1 1 . (1) sin ; (2) n n1 3 n n n1 1 sin 1 n 1, 解(1): 由于 lim n sin lim n n n 1 1 n 所以级数 sin 发散. n n1
故原级数收敛. 当 >1时, 取 < –1, 使得 r = – > 1, 当n>N时, un+1> run > un, 故数列{ un }严格单调增加的, 所以有 lim un 0. 故原级数发散.