第六章_毛细管气相色谱法
- 格式:ppt
- 大小:766.00 KB
- 文档页数:55
甘油含量的测定毛细管气相色谱法本文介绍了用毛细管气相色谱法测定甘油含量的方法。
这一方法是一种快速、准确、灵敏的方法,可以快速有效地检测甘油含量。
用毛细管气相色谱法测定甘油含量,以分析取样物质中甘油组分的色谱峰峰度或面积为依据,进行定量检测。
甘油的组成成分包括甲醛(CHCHO)、甘油酸(CHOCOOH)、丙烯酸(CHO)等。
用毛细管气相色谱法测定甘油含量,要先将检测样本中的甘油酸、丙烯酸等组分转化为甲醛。
将能气源和活性碳配置在系统中,通过热熔法调节参数,使得甘油在毛细管内转化为甲醛,并输入到毛细管状气相色谱仪,获得色谱峰度。
具体的实验步骤是:1、取样:选取需要检测的样品,并取其适当的量。
2、消化:把样品和试剂放入消化釜中,加热消化,分解样品中的组分。
3、热水浴:把消化溶液放入热水浴中,加热缓冲,使其中各组分得到被解离。
4、除脂洗涤:把上清液放入除脂洗涤瓶中,用蒸馏水洗涤,除去脂肪、油脂等有机物,使被测物质获得最佳状态。
5、减压蒸发:把上清液通过减压蒸发设备蒸发至低温,使其中的甘油分子蒸发出来,转化成甲醛分子。
6、毛细管气相色谱:将从减压蒸发设备中蒸发出的甲醛分子通过毛细管气相色谱仪检测,获得甘油的色谱峰度。
7、计算:根据实验数据计算出甘油的含量。
用毛细管气相色谱法测定甘油含量的方法,虽然是一种快速、准确、灵敏的方法,但实验过程繁琐,费时费力,对实验室技术人员的专业技术水平要求较高,而且测定的数据也不太容易获得,在实际生产过程中,需要严格操作,确保样品的准确检测。
总之,用毛细管气相色谱法测定甘油含量是一种快速、准确、灵敏的方法,可用来测定取样物质中甘油组分的含量,但其实验过程复杂,对操作者的专业水平要求较高,需要严格操作,确保样品的准确检测。
综上所述,用毛细管气相色谱法测定甘油含量,既可以快速准确地取得甘油的含量,又可以节省大量时间和精力,节约经费,是一个较为实用的方法。
第六章毛细管柱气相色谱法第一节毛细管气相色谱仪现代的实验室用的气相色谱仪大都既可用作填充柱气相色谱又可用作毛细管色谱仪。
毛细管色谱仪应用范围广,可用于分析复杂有机物,如石油成分,天然产物,环境污染,农药残留等。
图6-1是毛细管气相色谱仪示意图,与填充柱色谱仪比,毛细管色谱仪在柱前多一个分流-不分流进样器,柱后加一个尾吹气路。
由于毛细管柱体积很小,柱容量很小,出峰快,所以死体积一定要小,要求瞬间注入极小量样品,因此柱前要分流。
对进样技术要求高,对操作条件要求严。
尾吹的目的是减小死体积和柱末端效应。
毛细管柱对固定液的要求不苛刻,一般2-3根不同极性的柱子可解决大部分的分析问题。
毛细管柱一般配有响应快,灵敏度高的质量型检测器。
高分辨率毛细管气相色谱仪的三要素是:要选择好的毛细管柱及最佳分析条件;按样品选择合适的毛细管进样系统;选择高性能的毛细管气相色谱仪。
图6-1 毛细管气相色谱仪示意图第二节毛细管色谱柱1957年,美国科学家Golay提出毛细管柱的气相色谱法。
Golay称毛细管色谱柱为开管柱。
因这种色谱柱中心是空的。
毛细管柱是内径为Φ0.1-0.5mm左右、长度为10-300m的毛细柱,虽然每米理论板数约为2000-5000,与填充柱相当,但由于柱子很长,总柱效可高达106。
一、毛细管色谱柱组成通常来说,一根毛细管色谱柱由管身和固定相两部分组成。
管身采用熔融二氧化硅(熔融石英),通常在其表面涂上一层聚酰亚胺保护层。
涂层后的熔融石英毛细管呈褐色:但是涂层后的毛细管之间的颜色却不尽相同。
色谱柱的颜色对于其色谱性能没有什么影响。
经过持续的较高温度处理后.聚酰亚胺涂层管的的温度会变得比以前更深:标准的聚酰亚胺涂层管熔融石英管的温度上限为360℃,高温聚酰亚胺涂层管的温度上限为400℃。
固定相种类很多,大部分的固定相是热稳定性好的聚合物,常用的有聚硅氧烷和聚乙二醇。
另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。
气相色谱法中毛细管制备与操作优化方法气相色谱法(GC)是一种常用的分离和定量分析技术,广泛应用于化学、生物、环境等领域。
其中,毛细管气相色谱(Capillary GC)是最常用和最有效的技术之一。
本文将介绍毛细管气相色谱法中的制备和操作优化方法。
首先,制备毛细管是毛细管气相色谱法中的关键步骤。
毛细管通常由玻璃或石英制成,直径通常在0.15-0.53 mm范围内。
制备毛细管的主要步骤有:修整、剪切和清洗。
修整是指去除毛细管两端的不均匀部分,以获得符合要求的长度。
剪切是指将修整后的毛细管剪成适当的长度,以适应仪器的要求。
清洗是指使用溶剂将毛细管内部和外部的污染物去除,以确保分析的准确性。
在操作优化方面,选择合适的柱和载气是至关重要的。
柱是GC中负责分离组分的关键部件。
常见的柱种类有非极性柱、极性柱和无定型柱。
选择合适的柱种类和长度要根据待测物的性质和分离要求来确定。
载气的选择取决于柱和待测物的性质。
常用的载气有氮气、氢气和氦气。
氢气是最常用的载气,因为它具有较高的扩散速率和较低的惯性。
另外,优化进样量和进样方式也是操作中需要考虑的问题。
进样量的大小直接影响分离效果和峰的形状。
通常情况下,进样量应尽可能小,以避免峰的展宽和分离效果的下降。
进样方式有定量进样和定性进样两种。
定量进样是指根据样品的浓度确定进样量;而定性进样是指根据样品的特征峰确定进样量。
此外,操作温度的选择也是优化的关键点之一。
操作温度的选择要根据待测物的性质、柱的性质和分离要求来确定。
一般来说,分析物的挥发性越小,操作温度越低;反之,挥发性越大,操作温度越高。
同时,操作温度还会影响柱的寿命,要根据需求进行合理调节。
最后,关于GC方法的优化,还需要重视仪器的维护和保养。
定期清洗和更换柱属于常规维护工作,可以提高仪器的分离效果和稳定性。
此外,校正仪器的流量、温度和压力等参数也是保证GC方法准确性的重要措施。
综上所述,毛细管气相色谱法的制备和操作优化是保证分析准确性和可重复性的关键环节。