集合(二)
- 格式:ppt
- 大小:281.00 KB
- 文档页数:12
高一数学集合知识点总结集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作dA。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N-或N+整数集Z有理数集Q实数集R①列举法:{a,b,c……}③语言描述法:例:{不是直角三角形的三角形}强调:描述法表示集合应注意集合的代表元素3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:____,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。
高一数学集合知识点总结(二)集合的分类(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x|-3<x≤5},N ={x|-5<x<5},则M∩N=________.2.已知集合A ={1,2,3},B ={2,m ,4},A∩B={2,3},则m =________.3.设集合A ={x|2≤x<4},B ={x|3x -7≥8-2x},则A ∪B =__________.4.集合P ={x ∈Z |0≤x<3},M ={x ∈Z |x 2≤9},则P∩M=________.5.集合M ={y|y =x 2-1,x ∈R },集合N ={x|y =9-x 2,x ∈R },则M∩N=________.[典型例题]题型一 与集合有关的运算例1. 设A ={x|2x 2-px +q =0},B ={x|6x 2+(p +2)x +5+q =0},若A∩B=⎩⎨⎧⎭⎬⎫12, 求A ∪B.变式:设全集是实数集R ,A ={x|2x 2-7x +3≤0},B ={x|x 2-4>0}.求A∩B;A ∪B ;(∁R A)∩B;(∁R A)∩(∁R B);A ∪(∁R B)题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的人百分率最多是多少,最少是多少?题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.题型四分类讨论思想在集合运算中的应用例4设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁R A)∩B=B,求实数a的取值范围.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.4.已知集合A ={y|y =x 2-4x ,x ∈R },B ={y|y =-x 2+4x ,x ∈R },求A ∩B.5. 已知集合A ={x|5<x ≤6},集合 B ={x|m+1<x<2m-1},若A ∩B φ≠,求实数m 的取值范围.[反思总结][课后检测]1.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数为________.2.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =____.3.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =______________.4. 已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},若9∈(A ∩B ),则实数a =________.5.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.6.设M={a|a=(2,0)+m(0,1),m∈R}和N={b|b=(1,1)+n(1,-1),n∈R}都是元素为向量的集合,则M∩N=________.7.已知集合A={x|y=x2-5x-14},集合B={x|y=lg(-x2-7x-12)},集合C={x|m+1≤x≤2m-1}.(1)求A∩B;(2)若A∪C=A,求实数m的取值范围.8.设集合A={x|x2-3x+2=0},B={x|x2+2(a+1)x+(a2-5)=0}.(1)若A∩B={2},求实数a的值;(2)若A∪B=A,求实数a的取值范围.集合及其运算(2)班级 姓名[学习目标]1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集2.能使用Venn 图表达集合的关系及运算.[基础训练]1.已知集合M ={x |-3<x ≤5},N ={x |-5<x <5},则M ∩N =________.答案 {x |-3<x <5}解析 画数轴,找出两个区间的公共部分即得M ∩N ={x |-3<x <5}.2.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________.答案 3解析 ∵A ∩B ={2,3},∴3∈B ,∴m =3.3.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =__________.{x |x ≥2}4.集合P ={x ∈Z |0≤x <3},M ={x ∈Z |x 2≤9},则P ∩M =________.答案 {0,1,2}解析 由题意知:P ={0,1,2},M ={-3,-2,-1,0,1,2,3},∴P ∩M ={0,1,2}5.集合M ={y |y =x 2-1,x ∈R },集合N ={x |y =9-x 2,x ∈R },则M ∩N =________.答案 [-1,3]解析 ∵y =x 2-1≥-1,∴M =[-1,+∞)[典型例题]题型一 方程解集的运算例1.设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B =⎩⎨⎧⎭⎬⎫12,求A ∪B . 【解析】 ∵A ∩B =⎩⎨⎧⎭⎬⎫12,∴12∈A ,12∈B .将12分别代入方程2x 2-px +q =0及6x 2+(p +2)x +5+q =0,联立得方程组⎩⎨⎧ 12-12p +q =0,32+12(p +2)+5+q =0,解得⎩⎪⎨⎪⎧p =-7,q =-4, ∴A ={x |2x 2+7x -4=0}=⎩⎨⎧⎭⎬⎫-4,12, B ={x |6x 2-5x +1=0}=⎩⎨⎧⎭⎬⎫12,13, ∴A ∪B =⎩⎨⎧⎭⎬⎫12,13,-4.题型二集合运算的实际应用例2.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,求同时参加数学和化学小组的有多少人?解析由题意知,同时参加三个小组的人数为0,令同时参加数学、化学人数为x人.20-x+6+5+4+9-x+x=36,x=8.答案8变式:变式:高三某班同学中,有象棋爱好者占53%,篮球爱好者占55%,同时爱好这两项的百分率最多是多少,最少是多少?53%,8%题型三利用韦恩(Venn)图进行集合的运算例3.已知A,B均为集合U={1,2,3,4,5,6}的子集,且A∩B={3},(∁U B)∩A ={1},(∁U A)∩(∁U B)={2,4},则B∩(∁U A)=________.解析依题意及韦恩图可得,B∩(∁U A)={5,6}.答案{5,6}题型四 分类讨论思想在集合运算中的应用例4设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.(1)当a =-4时,求A ∩B 和A ∪B ;(2)若(∁R A )∩B =B ,求实数a 的取值范围.解题导引 解决含参数问题的集合运算,首先要理清题目要求,看清集合间存在的相互关系,注意分类讨论、数形结合思想的应用以及空集的特殊性.解 (1)A ={x |12≤x ≤3}. 当a =-4时,B ={x |-2<x <2},∴A ∩B ={x |12≤x <2}, A ∪B ={x |-2<x ≤3}.(2)∁R A ={x |x <12或x >3}. 当(∁R A )∩B =B 时,B ⊆∁R A ,即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ;②当B ≠∅,即a <0时,B ={x |--a <x <-a },要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0. 综上可得,a 的取值范围为a ≥-14.[随堂练习]1.已知集合P ={-2,0,2,4},Q ={x |0<x <3},则P ∩Q =________.解析:由题易知P ∩Q ={2}.答案:{2}2.已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A )∩(∁U B )=________.解析:∁U A ={2,4,6,7,9},∁U B ={0,1,3,7,9},则(∁U A )∩(∁U B )={7,9}.答案:{7,9}3.已知S ={(x ,y )|y =1,x ∈R },T ={(x ,y )|x =1,y ∈R },则S ∩T =________.解析:集合S 表示直线y =1上的点,集合T 表示直线x =1上的点,S ∩T 表示直线y=1与直线x=1的交点.答案:{(1,1)}4.已知集合A={y|y=x2-4x,x∈R},B={y|y=-x2+4x,x∈R},求A∩B.A={y|y=(x-2)2-4,x∈R}={y|y≥-4,y∈R},B={y|y=-(x-2)2+4,x∈R}={y|y≤4,y∈R},所以A∩B={y|-4≤y≤4,y∈R}.≠,求实数m的取值范围.5. 已知集合A={x|5<x≤6},集合 B={x|m+1<x<2m-1},若A∩Bφ35<<m[反思总结][课后检测]1.设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为________.答案 4解析由题意知B的元素至少含有3,因此集合B可能为{3}、{1,3}、{2,3}、{1,2,3}.2.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=____.答案 1解析∵3∈B,由于a2+4≥4,∴a+2=3,即a=1.3.设全集U=A∪B={x∈N*|lg x<1},若A∩(∁U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=______________.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.4.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若9∈(A∩B),则实数a=________.[自主解答](1)集合{z|z=x+y,x∈A,y∈B}={-1,1,3}.故所求集合中元素的个数为3.(2)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9.∴a =5或a =±3.当a =5时,A ={-4,9,25},B ={0,-4,9},符合题意;当a =3时,A ={-4,5,9},B 不满足集合中元素的互异性,故a ≠3;当a =-3时,A ={-4,-7,9},B ={-8,4,9},符合题意.∴a =5或a =-3.[答案] (1)3 (2)5或-35.已知A ={(x ,y )|y =|ln x |},B =⎩⎨⎧⎭⎬⎫(x ,y )|x 29+y 24=1,则A ∩B 的子集个数为________.解析:A ∩B 中元素的个数就是函数y =|ln x |的图象与椭圆x 29+y 24=1的交点个数,如图所示.由图可知,函数图象和椭圆有两个交点,即A ∩B 中有两个元素,故A ∩B 的子集有22=4个.答案:46.设M ={a |a =(2,0)+m (0,1),m ∈R }和N ={b |b =(1,1)+n (1,-1),n ∈R }都是元素为向量的集合,则M ∩N =________.解析:设c =(x ,y )∈M ∩N ,则有(x ,y )=(2,0)+m (0,1)=(1,1)+n (1,-1),即(2,m )=(1+n,1-n ),所以⎩⎪⎨⎪⎧2=1+n ,m =1-n ,由此解得n =1,m =0,(x ,y )=(2,0), 即M ∩N ={(2,0)}.答案:{(2,0)}7.已知集合A ={x |y =x 2-5x -14},集合B ={x |y =lg(-x 2-7x -12)},集合C ={x |m +1≤x ≤2m -1}.(1)求A ∩B ;(2)若A ∪C =A ,求实数m 的取值范围.解:(1)∵A =(-∞,-2]∪[7,+∞),B =(-4,-3),∴A ∩B =(-4,-3).(2)∵A ∪C =A ,∴C ⊆A .①C =∅,2m -1<m +1,∴m <2.②C ≠∅,则⎩⎪⎨⎪⎧ m ≥2,2m -1≤-2,或⎩⎪⎨⎪⎧m ≥2,m +1≥7, 解得m ≥6.综上可得,实数m 的取值范围是m <2或m ≥6.8.设集合A ={x|x 2-3x +2=0},B ={x|x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.A ={x |x 2-3x +2=0}={1,2}.(1)∵A ∩B ={2},∴2∈B .将x =2代入B 中的方程,得a 2+4a +3=0,∴a =-1或a =-3.当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件.综上所述,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3),∵A ∪B =A ,∴B ⊆A ,∴①当Δ<0,即a <-3时,B =Ø,满足条件;②当Δ=0,即a =-3时,B ={2},满足条件;③当Δ>0,即a >-3时,只有B =A ={1,2}满足条件,则由根与系数的关系得:即 无解.综上所述,a 的取值范围是a ≤-3.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3},N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}.(2)A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2},当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,4.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )·(x -3a )<0}.(1)若A ⊆B ,求a 的取值范围;(2)若A ∩B =∅,求a 的取值范围;(3)若A ∩B ={x |3<x <4},求a 的取值范围.解:∵A ={x |x 2-6x +8<0},∴A ={x |2<x <4}.(1)若A ⊆B ,当a =0时,B =∅,显然不成立;当a >0时,B ={x |a <x <3a },应满足⎩⎪⎨⎪⎧a ≤2,3a ≥4⇒43≤a ≤2; 当a <0时,B ={x |3a <x <a },应满足⎩⎪⎨⎪⎧3a ≤2,a ≥4,此时不等式组无解, ∴当A ⊆B 时,43≤a ≤2. (2)∵要满足A ∩B =∅,当a =0时,B =∅满足条件;当a >0时,B ={x |a <x <3a },a ≥4或3a ≤2.∴0<a ≤23或a ≥4; 当a <0时,B ={x |3a <x <a },a ≤2或3a ≥4.∴a <0时成立,综上所述,a ≤23或a ≥4时,A ∩B =∅. (3)要满足A ∩B ={x |3<x <4},显然a =3.2.已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,求实数m 的取值范围.正解 由x 2-3x -10≤0,解得-2≤x ≤5,即A ={x |-2≤x ≤5}.因为A ∪B =A ,所以B ⊆A .①若B ≠Ø,则2m -1≥m +1,解得m ≥2.又B ⊆A ,所以解得-3≤m ≤3.所以2≤m ≤3.②若B =Ø,则2m -1<m +1,解得m <2.综合①②可知,m 的取值范围为(-∞,3].6.(2013·南京四校联考)已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________.解析:由条件得m ∈Q ,即-1<m <34,从而整数m =0. 答案:07.设函数f (x )=lg(1-x 2),集合A ={x |y =f (x )},B ={y |y =f (x )},则图中阴影部分表示的集合为________.解析:因为A ={x |y =f (x )}={x |1-x 2>0}={x |-1<x <1},则u =1-x 2∈(0,1],所以B ={y |y =f (x )}={y |y ≤0},A ∪B =(-∞,1),A ∩B =(-1,0],故图中阴影部分表示的集合为(-∞,-1]∪(0,1).答案:(-∞,-1]∪(0,1)11.(满分14分)A ={x |-2<x <-1或x >1},B ={x |a ≤x <b },A ∪B ={x |x >-2},A ∩B ={x |1<x <3},求实数a ,b 的值.解:∵A ∩B ={x |1<x <3},∴b =3,又A ∪B ={x |x >-2},∴-2<a ≤-1,又A ∩B ={x |1<x <3},∴-1≤a <1,∴a =-1.14. 已知A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-mx +2=0},且A ∪B =A ,A ∩C =C ,求实数a 及m 的值.解 ∵A ={1,2},B ={x |(x -1)[x -(a -1)]=0},又A∪B=A,∴B⊆A.∴a-1=2⇒a=3(此时A=B),或a-1=1⇒a=2(此时B={1}).由A∩C=C⇒C⊆A,从而C=A或C=∅(若C={1}或C={2}时,可检验不符合题意).当C=A时,m=3;当C=∅时,Δ=m2-8<0⇒-22<m<2 2.综上可知a=2或a=3,m=3或-22<m<2 2.。
集合的含义与表示(2)一.学习目标1.了解集合的含义,体会元素与集合的属于关系2.能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言意义和作用3.掌握集合的表示方法,常用数集及记法二.学习过程1.复习巩固(1)集合的概念:(2)集合与元素的关系:(3)集合中元素的三个特征:(4)集合A={x2+2x+1}的元素是----------,若1 ∈ A则x=(5)集合A={1,2},B={(1,2)},C={(2,1)},D={2,1}的元素分别是什么?四个集合有何关系?2.新课导学思考1.(1)你能用自然语言描述集合{2,4,6,8}吗?(2)你能用列举法表示不等式x-7< 3的解集吗?(3)比较如下集合的表示法:A={方程x2-1=0的根},B={-1,1},C={x ∈ R|x2-1=0} 新知1.描述法:试试1.不等式x-3>0的解组成的集合,用描述法表示--------------三.例题解析例1.试分别用列举法和描述法表示下列集合(1)方程x2-2=0的所有实数根组成的集合。
(2)由大于10小于20的所有整数组成的集合。
练习.试分别用列举法和描述法表示下列集合(1)方程x(x2-1)=0的所有实数根组成的集合。
(2)大于0的所有奇数。
小结:用列举法表示集合的优缺点:用描述法表示集合的优缺点:要特别指出的是:如果从上下文的关系来看,x ∈ R, x ∈ Z是明确的,那么x∈R,x∈ Z 可以省略,只写其元素x,例如,集合D={x∈R|x<10}也可表示为D={x|x<10},集合E={x ∈Z|x=2k+1,k ∈Z}也可表示为E={x|x=2k+1,k∈ Z}例2.试选择适当的方法表示下列集合(1)抛物线y=x2-1上的所有点组成的集合(2)方程组3x+2y=2 的解集2x+3y=27思考2.以下三个集合有什么区别?A={(x,y)|y=x2-1},B={y|y=x2-1},C={x|y=x2-1}特别指出:1.描述法表示集合时,应特别注意集合的代表元素2.集合的{ }已包含“所有的”意思,例如{整数}即代表整数集Z,不能写成{所有的整数}或{Z}3.列举法和描述法各有优点和缺点,应该根据具体问题确定采用哪种表示方法,要注意,一般集合中元素较多或无限个时,不宜采用列举法.试试2. 1.选择适当的方法表示集合(1)由小于8的所有素数组成的集合(2)不等式4x-5<3的解集2.已知集合A={x|-3<x<3 ,x ∈Z},集合B={(x,y)|y=x2+1,x ∈A}试用列举法分别表示集合A,B四.总结提升1.学习小结:2.知识拓展:1.描述法表示集合时,代表元素十分重要,例如:(1)所有直角三角形的集合可以表示为:{x|x是直角三角形},也可写成{直角三角形} (2)集合{(x,y)|y=x+1}与集合{y|y=x+1}是不同的集合。
1.1.2集合的概念及其表示(二)教学目标:了解有限集、元限集概念,掌握表示集合方法;了解空集的概念及其特殊性,渗透抽象、概括思想。
教学重点:集合的表示方法教学难点:正确表示一些简单集合课 型:自学辅导法教学手段:多媒体教学过程:一、创设情境复习提问集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何表示?二、活动尝试阅读教材第二部分,问题如下:(1)集合的表示方法有几种?分别是如何定义的?(2)有限集、无限集、空集的概念是什么?试各举一例。
三、师生探究1.请用列举法表示下列集合(投影a ):(1)小于5的正奇数.(2)能被3整除且大于4小于15的自然数.(3)方程x 2-9=0的解的集合.2.请用描述法表示下列集合:(4)到定点距离等于定长的点.(5)由适合x 2-x-2>0的所有解组成集合.(6)方程组⎩⎨⎧=+=+2732223y x y x 的解集 3.用描述法分别表示(投影2):(1)抛物线x 2=y 上的点.(2)抛物线x 2=y 上点的横坐标.(3)抛物线x 2=y 上点的纵坐标.四、数学理论(一)通过预习提纲师生共同归纳集合表示方法,通用的表示方法有:列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例如,“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“young 中的字母” 构成的集合,写成{y,o,u,n,g}由“book 中的字母” 构成的集合,写成{b,o,k}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素。
描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合。
集合在生活中的例子(二)项目管理中的集合•项目团队的集合:在项目管理中,集合是一个团队或者组织的方式,将相关的人员聚集在一起,共同工作和合作,以完成特定的项目目标。
项目团队的集合包括项目经理、项目成员、利益相关者等,他们通过共享信息和资源,协调工作,实现项目的成功交付。
•项目风险的集合:在项目管理中,项目风险是指可能影响项目目标实现的不确定事件或情况。
项目经理会使用风险管理工具和技术来识别、评估、规划和监控项目风险。
通过将所有的项目风险集合在一起,并采取相应的应对措施,可以帮助项目团队有效应对潜在的风险,确保项目按时、按质量要求完成。
数据分析中的集合•数据样本的集合:在数据分析中,样本集合是从总体中选择的一部分数据,用于做出总体特征的推断。
数据样本的集合要具备代表性,以确保分析结果的有效性。
通过对样本的集合进行统计分析,可以得出与总体相似的结果,从而为决策提供有力的支持。
•数据特征的集合:在数据分析中,数据特征是指在数据集合中可以观察到的属性或者变量。
通过将数据特征集合在一起,并运用相应的统计方法和可视化工具,可以对数据进行综合分析和解释,从而发现数据中的规律和趋势,为决策提供准确的依据。
教育中的集合•学生群体的集合:在教育中,学生群体是指在一定范围内具有相同或相似特征(例如年龄、学历等)的学生的集合。
通过将学生群体集合在一起,教育者可以更好地了解学生的需求和差异,有针对性地设计和实施教学计划,提供个性化的教育服务。
•教学资源的集合:在教育中,教学资源是指供教师和学生使用的各种教育工具、设备、书籍等。
通过将教学资源集合在一起,并合理地利用和管理,可以提高教学效果,提供多样化、高质量的教育体验。
生活中的集合•社区的集合:在生活中,社区是指具有相似背景、共同兴趣和关注的人们的集合。
社区的集合可以提供相互支持、交流和合作的平台,增进人际关系,改善生活质量。
•人脉的集合:在生活中,人脉是指个人所认识、联系和交往的人的集合。