复合材料成型工艺与设备(9.热塑性复合材料及其工艺)
- 格式:ppt
- 大小:1.56 MB
- 文档页数:36
第一章1.复合材料定义:是指两种或两种以上不同材料,用适当的方法复合成一种新材料,其性能比单一材料性能优越。
根据基体材料不同,分为金属基复合材料,非金属基复合材料,树脂基复合材料2.复合材料最大特点,是性能具有可设计性。
影响复合材料性能的因素很多,主要取决于增强材料的性能,含量及分布情况,基体材料的性能和含量,以及它们之间的界面结合情况。
3.树脂基复合材料的使用温度一般为60摄氏度到250摄氏度;金属基复合材料为400摄氏度到600摄氏度;陶瓷基复合材料为1000摄氏度到1500摄氏度。
复合材料硬度主要取决于基体材料的性能,一般硬度为陶瓷基复合材料大于金属基复合材料大于树脂基复合材料4.就力学性能而言,复合材料的力学性能取决于增强材料的性能,含量和分布,以及基体材料的性能和含量。
复合材料的耐自然老化性能,取决于基体材料的性能和与增强材料的界面粘结。
一般优劣次序为,陶瓷基复合材料大于金属基复合材料大于树脂基复合材料。
导热性能的优劣比较为:金属基复合材料大于陶瓷基复合材料大于树脂基复合材料。
5.选择成型方法时应考虑:①产品外形构造和尺寸大小②材料性能和产品质量要求③生产批量大小及供应时间(允许的生产周期)要求④企业可能提供的设备条件及资金⑤综合经济效益,保证企业盈利第二章1.手糊成型:又称接触成型。
是用纤维增强材料和树脂胶液在模具上铺敷成型,室温(或加热),无压(或低压)条件下固化,脱模成制品的工艺方法。
手糊成型按成型固化压力可分为两类:接触压和低压(接触压以上)。
前者为手糊成型,喷射成型。
后者包括对模成型,真空成型,袋压成型,热压釜成型,树脂传递模塑(RTM)和反应注射模塑(RIM)成型。
2.聚合物基体的选择:能配置成粘度适当的胶液,适宜手糊成型的胶液粘度为200-500厘泊聚合物集体包括不饱和聚酯树脂,环氧树脂和辅助材料。
其中,辅助材料包括稀释剂(分为活性稀释剂和非活性稀释剂),填料(在糊制垂直或倾斜面层时,为避免“流胶”,可在树脂中加入少量活性SiO2处变剂),色料。
先进复合材料主要制造工艺和专用设备中国航空工业第一集团公司科技发展部 郝建伟中国航空工业发展研究中心 陈亚莉先进复合材料具有轻质、高强度、高模量、抗疲劳、耐腐蚀、可设计、成型工艺性好和成本低等特点,是理想的航空结构材料,在航空产品上得到了广泛应用,已成为新一代飞机机体的主体结构材料。
复合材料先进技术的成熟使其性能最优和低成本成为可能,从而大大推动了复合材料在飞机上的应用。
一些大的飞机制造商在飞机设计制造中,正逐步减少传统金属加工的比例,优先发展复合材料制造。
本文旨在介绍在复合材料制造过程中所涉及到的主要工艺和先进专用设备。
复合材料在飞机上的应用随着复合材料制造技术的发展,复合材料在飞机上的用量和应用部位已经成为衡量飞机结构先进性的重要标志之一。
复合材料在飞机上的应用趋势有如下几点:(1)复合材料在飞机上的用量日益增多。
复合材料的用量通常用其所占飞机机体结构重量的百分比来表示,世界上各大航空制造公司在复合材料用量方面都呈现增长的趋势。
最有代表性的是空客公司的A380客机和后续的A350飞机以及波音公司的B787飞机。
A380上复合材料用量约30t。
B787复合材料用量达到50%。
而A350飞机复合材料用量更是达到了创纪录的52%。
复合材料在军机和直升机上的用量也有同样的增长趋势,近几年得到迅速发展的无人机更是将复合材料用量推向更高水平。
(2)应用部位由次承力结构向主承力结构发展。
最初采用复合材料制造的是飞机的舱门、整流罩、安定面等次承力结构。
目前,复合材料已经广泛应用于机身、机翼等主承力结构。
主承载部位大量应用复合材料使飞机的性能得到大幅度提升,由此带来的经济效益非常显著,也推动了复合材料的发展。
(3)在复杂外形结构上的应用愈来愈广泛。
飞机上用复合材料制造的复杂曲面制件也越来越多,如A380和B787飞机上的机身段,球面后压力隔框等,均采用纤维铺放技术和树脂膜渗透(RFI)工艺制造。
(4)复合材料构件的复杂性大幅度增加,大型整体、共固化成型成为主流。
热固性复合材料与热塑性复合材料1热固性树脂基复合材料热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在许多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。
典型的热固性树脂复合材料分为以下几种:(1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西方化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。
其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。
在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。
使酚醛树脂复合材料在其应用领域得到大力发展。
(2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两方面的改性研究,一方面是改善湿热性能提高其使用温度;另一方面则是提高韧性,进而提高复合材料的损伤容限。
含有环氧树脂所制备的复合材料己经大力应用到机翼、机身等大型主承力构件上。
(3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。
(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。
其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。
所以在航天航空领域得到了大力的发展和运用。
2热塑性树脂基复合材料热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。
在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。
复合材料成型设备工作流程复合材料是由两种或两种以上的不同材料经过加工组合而成的材料,具有优异的力学性能和物理化学性能。
为了制造出高质量的复合材料制品,需要使用专门的成型设备。
本文将详细介绍复合材料成型设备的工作流程。
一、材料准备在进行复合材料成型之前,需要准备好所需的原材料。
通常,复合材料由树脂基体和增强材料组成。
树脂基体可以选择环氧树脂、聚酯树脂等,而增强材料可以选择玻璃纤维、碳纤维等。
在准备材料时,需要按照一定比例配制好树脂基体和增强材料,并确保它们的质量符合要求。
二、材料预处理在将材料投入成型设备之前,需要对其进行预处理。
其中一个重要的预处理步骤是表面处理。
通过去除材料表面的污物和氧化物,可以提高复合材料的粘结强度。
此外,还需要将材料切割成合适的形状和尺寸,以便后续的成型工艺。
三、成型设备成型设备是制造复合材料制品的核心工具。
常见的成型设备包括压力机、注塑机、模压机等。
这些设备根据不同的工艺要求和制品尺寸,采用不同的操作方式和工作原理。
压力机是一种常用的成型设备,广泛应用于复合材料的压制和硬化过程。
通过施加压力和热量,使树脂基体在增强材料的作用下流动并凝固,最终形成所需的产品形状。
压力机通常包括加热系统、压力系统和控制系统等组成部分。
2. 注塑机注塑机主要用于制造复合材料中的塑料制品。
通过将预先加热熔化的树脂与增强材料混合,并注入模具中,可以获得具有复杂形状的制品。
注塑机具有自动化程度高、生产效率高等优点。
3. 模压机模压机是一种使用模具进行成型的设备。
材料在高温和高压的环境下,通过模具的压制作用,形成所需的产品形状。
模压机可适用于复合材料中的热固性树脂和热塑性树脂的成型。
四、成型工艺成型工艺是指在成型设备中进行的具体操作步骤和参数设置。
不同的复合材料和制品要求不同的成型工艺。
以下为一般常见的成型工艺流程。
1. 模具准备根据产品设计要求,选择合适的模具,并对模具进行表面处理,以免对成品产生不良影响。
热塑性复合材料研究及其在航空领域中的应用郭云竹【摘要】本文介绍了热塑性复合材料的分类与组成,并简述了短纤维粒料(SFT)、长纤维粒料(LFT)、玻璃纤维毡增强热塑性片材(GMT)、织物预浸料和单向连续纤维增强热塑预浸料(CFRTP)的各自优点,连续纤维增强热塑性树脂的预浸料的主流制备工艺.结合高性能热塑性复合材料在国外航空领域中的应用,展望了其在我国的发展方向.【期刊名称】《纤维复合材料》【年(卷),期】2016(033)003【总页数】4页(P20-23)【关键词】热塑性复合材料;SFT;LFT;GMT;CFRTP;粉末法;熔融法;混纤法;薄膜层叠法;溶剂法【作者】郭云竹【作者单位】哈尔滨玻璃钢研究院,哈尔滨150036【正文语种】中文热塑性复合材料由不连续/连续纤维增强(如碳纤维、玻璃纤维或芳纶纤维)在结构热塑性聚合物(如聚酰胺(PA)、聚苯硫醚(PPS)、聚醚醚酮(PEEK))中组成。
热塑性聚合物的热结构具有可逆性,当温度高于其玻璃转变温度时软化,而当温度低于该温度时固化。
热塑性复合材料的优点包括:质量轻、成本低、高比强度和硬度、增强震动阻尼和声音衰减、增强冲击损伤容限(动态能量吸收)、设计自由度高、能够模塑成型复杂几何形状和结构、优良的剪切和断裂强度、可调的导热性、可回收性、具有电磁屏蔽能力、恶劣环境中的坚固/耐久性以及对环境无害性。
对于热塑性复合材料的分类,一般是按有效纤维长度定义的。
热塑性复合材料分为短纤维粒料(SFT)、长纤维粒料(LFT)、玻璃纤维毡增强热塑性片材(GMT)、织物预浸料和单向连续纤维增强热塑预浸料(CFRTP)[1]。
LFT(Long Fiber Reinforced Thermoplastics)广义上是指所有长玻璃纤维增强的热塑性塑料,狭义上指挤出复合的热塑性复合材料粒料或片材,粒料可以注塑成型制品,片材可以模压成型制品。
与传统的短纤维增强粒料相比,长纤维增强热塑性复合材料在结构上有着显著不同:长纤维粒料中,纤维在树脂基体中沿轴向平行排列和分散,纤维长度等于粒料长度,且被树脂充分浸渍;而短纤维粒料内,纤维无序地分散于基体当中,其长度远小于粒料的长度且不均匀。
成型工艺复合材料成型工艺是复合材料工业的发展基础和条件。
随着复合材料应用领域的拓宽,复合材料工业得到迅速发镇,其老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产,如:(1)手糊成型工艺--湿法铺层成型法;(2)喷射成型工艺;(3)树脂传递模塑成型技术(RTM技术);(4)袋压法(压力袋法)成型;(5)真空袋压成型;(6)热压罐成型技术;(7)液压釜法成型技术;(8)热膨胀模塑法成型技术;(9)夹层结构成型技术;(10)模压料生产工艺;(11)ZMC模压料注射技术;(12)模压成型工艺;(13)层合板生产技术;(14)卷制管成型技术;(15)纤维缠绕制品成型技术;(16)连续制板生产工艺;(17)浇铸成型技术;(18)拉挤成型工艺;(19)连续缠绕制管工艺;(20)编织复合材料制造技术;(21)热塑性片状模塑料制造技术及冷模冲压成型工艺;(22)注射成型工艺;(23)挤出成型工艺;(24)离心浇铸制管成型工艺;(25)其它成型技术。
视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。
复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点:(1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。
材料的性能必须根据制品的使用要求进行设计,因此在造反材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。
(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此,用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。
一、接触低压成型工艺接触低压成型工艺的特点是以手工铺放增强材料,浸清树脂,或用简单的工具辅助铺放增强材料和树脂。
复合材料成型工艺方法及优缺点分析
张小溪
【期刊名称】《科技与企业》
【年(卷),期】2014(000)018
【摘要】复合材料工业的基础和条件是复合材料成型工艺,复合材料应用的进一步拓宽,将使复合材料工业进入一个崭新的阶段。
热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称Fiber Rinforced Thermo Plastics(简称FRTP)。
热固性复合材料是指在受热或其他条件下能固化或具有不溶(熔)特性的复合材料。
由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。
复合成型工艺优点很突出,近十年在我国得到了快速发展但未能有重大突破,与其他发达国家相比还有距离。
【总页数】1页(P165-165)
【作者】张小溪
【作者单位】中国航空工业集团公司济南特种结构研究所 250023
【正文语种】中文
【相关文献】
1.复合材料小尺寸螺栓的成型工艺方法探讨
2.复合材料成型工艺方法的模糊综合评判
3.大型飞机复合材料结构相关成型工艺方法评述
4.复合材料成型工艺方法的研讨
5.复合材料尾梁蜂窝区避免凹陷成型工艺方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。
热塑性复合材料成型工艺热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP(Fiber Rinforced Thermo Plastics)。
由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。
从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。
(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。
热塑性复合材料的特殊性能如下:(1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。
它能够以较小的单位质量获得更高的机械强度。
一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。
(2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。
由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。
(3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。
尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。
聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。
热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。
其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。
(4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。