【5年高考3年模拟】(新课标版)2014年高考数学真题分类汇编 10.3 抛物线及其性质 文
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
2014届高三数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合11,2xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭3{|log 0}B x x =>,则()U A C B ⋂=A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥- 3. 下列函数中,满足22()[()]f x f x =的是A .()ln f x x =B .()|1|f x x =+C .3()f x x = D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“sin 2A >”的充要条件。
④命题 “00,0xx R e ∃∈≤”是真命题. 其中正确的命题的个数是A. 3B. 2C. 1D. 06. 定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3;将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6B.π3C.5π6D.2π37. 函数x x e x y e x+=-的一段图象是8. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩ 其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题:本大题共6小题,每小题5分,满分30分.9. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10. 已知1sin()33πα-=,则5cos()6πα-=_____________. 11. 曲线0,,2y y x y x ===-所围成的封闭图形的面积为 .12. 已知函数2()1,f x x mx =++若命题“000,()0x f x ∃><”为真,则m 的取值范围是___. 13. 设25a b m ==,且112a b+=,则m = _________. 14. 若关于x 的方程24xkx x =+有四个不同的实数解,则实数k 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 已知函数R x x x x f ∈--=,21cos 2sin 23)(2(I )求函数)(x f 的最小正周期;(II )确定函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的单调性并求在此区间上)(x f 的最小值.16.(本小题满分12分)已知函数f (x )=A sin ⎝⎛⎭⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.17. (本小题满分14分)已知等比数列{}n a 中,232a =,812a =,1n n a a +<. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n T a a a =++⋅⋅⋅+,求n T 的最大值及相应的n 值.18. (本小题满分14分)设二次函数2()(0)f x ax bx c a =++≠满足条件:(1)(1)(1)f x f x -+=--;(2)函数在y 轴上的截距为1,且3(1)()2f x f x x +-=+. (1)求()f x 的解析式;(2)若[,1],()x t t f x ∈+的最小值为()h t ,请写出()h t 的表达式; (3)若不等式()11()f x tx ππ->在[2,2]t ∈-时恒成立,求实数x 的取值范围.19.(本题满分14分)已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.20.(本小题满分14分)已知函数()ln f x x x a x =--,a ∈R .(Ⅰ)若2a =,求函数()f x 在区间[]1e ,上的最值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围. 注:e 是自然对数的底数2014届高三数学(理)试题数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合112xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,3{|log 0}B x x =>则()U A C B ⋂=( C )A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( A ) A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3. 下列函数中,满足22()[()]f x f x =的是 ( C ) A .()ln f x x =B .()|1|f x x =+C .3()f x x =D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 ( C ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。
2014年全国各地高考数学试题及解答分类汇编大全(08三角函数三角恒等变换)、选择题:考点;L 函数的求值.3. (2014福建文)将函数y =s in x 的图象向左平移 一个单位,得到函数y =f x 的函数图象,则2下列说法正确的是 ( )A. y f x 是奇函数B. y = f x 的周期是二C. 3y = f x 的图象关于直线x =—对称D. y = f x 的图象关于点i - —,0对称I 2 .丿 【答案】D【解析】将函数,二血盂的團象向左平移兰牛单位,学科■馮到函数^=sin (x + -) = oo S x I 222. (2014安徽理) 设函数 f (x)(xw :R)满足 f (x + 江)=f (x) +sinx.当0兰x c23叭则f ( )—( )61 爲1A.-B. 一C.0D.--22223兀 17兀23兀 11兀 11兀 17兀f(- —)二 f ( ) +sin -f( ) +sin +sin解析: 有题意 6 66 6 6 65兀 511兀 171111-f( )+si n -+si n +si=0 +— —— +—=—6 66 6 2 2 2 22$— ~ = k n +, k € Z ,即 X ^2 + ^8, " Z ,又 $ >0,所以 需n =.时,f(x)=0.1. (2014 对称,则安徽文)若将函数 :的最小正值是( A. — B. 8-C. 4f (x ) =sin2x • cos2x 的图像向右平移 「个单位,所得图像关于 y 轴 ) 3 二D.1. C [解析]方法一: sin 2x + n 4f(x)= \.;2sin 2x + 4的图像向右平移 0个单位,得到y=J 2± 1,即 sin 2 $ - — = ± ,-2©的图像,由所得图像关于y 轴对称,可知sin 才-2因为y- cos(-^)= 0- y = /1 X I的医:关于点f-y f1?' J对称* 选D4. (2014辽宁文、理)将函数y =3sin (2 x • ^)的图象向右平移 ?个单位长度,所得图象对应的 函数( )5. (2014全国大纲文)已知角的终边经过点(-4,3),则COS 〉=()43 34 A. - B. - C .D .5 555【答案】D 【解析】r 4试题分折;由题意可知v=3・” 一 • WiUAuos 4=—二-—故选r 5育网6. (2014 全国大纲理)设 a =sin33 ,b =cos55 ,c=tan35 ,贝U ( ) A . a b cB . b c aC . c b aD . cab【答案】c.【解析】T a - sin 33; b - cos 55°=™35^c = ten l - ^flJ ~ > sin35°..\ 0 a> 扛故选 C. cos 35° 【肴点】1 ■三角函数基本关系式(商关系 Z 二角函数的匸调性.7.(2014全国新课标I 文)若tan 一「:• 0, A. sinx 、0 B . cosx 、0【答案】:C正确的结论只有sin 2- 0.圆O 的半径为1,A 是圆上的定点, ,过点P 作直线OA 的垂线,垂足为 距离表示为x 的函数f (x ),则y= f (x )在[0,二]上的图像大致为A .在区间[12 .Ji]上单调递减 B .在区间 C .在区间[-,]上单调递减6 3 【答案】B 【解析】n扌巴 y = 3s in( 2x+ —) = 3sin 2(x+3n n n n nD .在区间 [一,上单调递增12 12[-…「]上单调递增6 3n 的周期T = 人2第选B冗一个增区间为卜4-彳 --n ];右移丿后,4 62C. sin 2一:八 0D. cos2x【解析】:由ta n - 0可得:k —: k—(k Z),故2^ 22 k 二二(k Z),28. (2014全国新课标I 理)如图, 边为射线OA ,终边为射线OPP 是圆上的动点,角 M ,将点M 到直线 x 的始 OP 的.I H=cos : =sin I - 丿 12位 71Q 31.,即2,选B2 2【解析】:由y =cosx 是偶函数可知y 二cos 2x = cos2x ,最小正周期为二,即①正确; 】最小正周期为二,即③正6JI11. (2014陕西文)函数f (x )二COS (2x •)的最小正周期是( )4A. B.二 C.2二D.42【答案】 B2 n 2 n【解析】;T= 二 =n ,.••选B2 | 2Rt. QMP 中, =cosxs in x1=—sin 2x , 21f (x) =— sin 2x2/Ty> A /p0』9. (2014全国新课标I 理)设圧三R nA 32【答案】:E【解析】:••• tan :■1 亠 sin(0,?) —(0--),且 七…占,则2 2 2sin" = “引“卩 sin a cos P = cosa + cosa sin PCOS J cos :'H A JI兀,_—::::• —— :::—,0 ::: — - :■ 10.(2014全国新课标I 文 —兀③ y = cos (2x),④ y 6 A.①②③ B.①③④【答案】:A)在函数① y = cos 12x |,② y =| cos x |JI-tan (2x-)中,最小正周期为 二的所有函数为4 C.②④D.①③y =| cosx |的最小正周期也是■:,即②也正确;y=cosl2x •—确;y 七怙-―)的最小正周期为^-,即④不正确.4即正确答案为①②③,【解析】:如图:OM 字M MD= =OP 过 M 作 MD 丄OP 于D ,贝y PM= sinx , OM=COSX , cosx 対in x1D在12. (2014陕西理)函数f(X)=COS(2x —)的最小正周期是()6A. —B.二C.2 二D.4':2【答案】B【解析】;T = 2 n= 2 n= n,A选B|s I 213、(2014四川文)为了得到函数y二si n(x,1)的图象,只需把函数y二si nx的图象上所有的点()A、向左平行移动1个单位长度B、向右平行移动1个单位长度C、向左平行移动二个单位长度D、向右平行移动二个单位长度3、解:•••由y=sinx到y=sin (x+1 ),只是横坐标由x变为x+1 ,•••要得到函数y=sin (x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A14. (2014四川理)为了得到函数y=sin(2x 7)的图象,只需把函数y=sin 2x的图象上所有的占八、、1 1A•向左平行移动1个单位长度B.向右平行移动'个单位长度2 2C.向左平行移动1个单位长度 D .向右平行移动1个单位长度【答案】A1【解析】因为y =sin(2x 1^sin[2(x •)],故可由函数y二sin 2x的图象上所有的点向左平2行移动1个单位长度得到215. (2014天津文)已知函数f(x) = 3 sin ■ x cos x^ 0), R.在曲线y=f(x)与直线y =1的交点中,若相邻交点距离的最小值为",则f (x)的最小正周期为()3兀2兀A. B. C.二D. 2■:2 3【答案】C【解析】T f (x )= 2sin +— | = 1 ,• sin x +—| = 一,• co x1+ —= 一+ 2k^ , e Z 或I 6丿I 6丿2 6 6兀5兀2兀•冬:一——:2k/:,k^ Z,则• ■ X2 -为 2 k2 -心二,又•••相邻交点距离的最小值6 6 3为,•• - 2, T 二二.316. (2014浙江文、理)为了得到函数y二sin 3x • cos3x的图象,可以将函数y - 2sin3x的图象()。
§10.6 圆锥曲线的综合问题考点一定值与最值问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案 A2.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是( )A.5B.+C.7+D.6答案 D3.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.D.答案 B4.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O 的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由得A1,由得A2.同理可得B1,B2.所以==2p1,==2p2,故=,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此=.又由(1)中的=知=.故=.5.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l 与椭圆C 只有一个公共点P,且点P 在第一象限.(1)已知直线l 的斜率为k,用a,b,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a-b.解析 (1)设直线l 的方程为y=kx+m(k<0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx+a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为.又点P 在第一象限,故点P 的坐标为P.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x+ky=0,所以点P 到直线l 1的距离d=,整理得d=.因为a 2k 2+≥2ab,所以≤=a -b,当且仅当k 2=时等号成立.所以,点P 到直线l 1的距离的最大值为a-b.6.(2014湖南,21,13分)如图,O 为坐标原点,椭圆C 1:+=1(a>b>0)的左、右焦点分别为F 1、F 2,离心率为e 1;双曲线C 2:-=1的左、右焦点分别为F 3、F 4,离心率为e 2,已知e 1e 2=,且|F 2F 4|=-1.(1)求C 1,C 2的方程;(2)过F 1作C 1的不垂直于y 轴的弦AB,M 为AB 的中点,当直线OM 与C 2交于P,Q 两点时,求四边形APBQ 面积的最小值.解析 (1)因为e1e 2=,所以·=,即a 4-b 4=a 4,因此a 2=2b 2,从而F 2(b,0),F 4(b,0),于是b-b=|F 2F 4|=-1,所以b=1,所以a 2=2.故C 1,C 2的方程分别为+y 2=1,-y 2=1.(2)因为AB 不垂直于y 轴,且过点F 1(-1,0),故可设直线AB 的方程为x=my-1.由得(m 2+2)y 2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2 .而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.7.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值. 所以当最小时,T点的坐标是(-3,1)或(-3,-1).考点二存在性问题。
2014高考数学新课标试卷精校版(含答案)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|230}A x x x =--≥,{|22}B x x =-≤<,则AB = A.[2-,1]- B.[1-,2) C.[1-,1] D.[1,2) 2.32(1)(1)i i +-= A.1i + B.1i - C.1i -+ D.1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A.()()f x g x 是偶函数B.|()|()f x g x 是奇函数C.()|()|f x g x 是奇函数D.|()()|f x g x 是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为 A.3 B.3 C.3m D.3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率 A.18 B.38 C.58 D.786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,]π上的图象大致为A. B.C. D.7.执行下图的程序框图,若输入的a 、b 、k 分别为1、2、3,则输出的M =A.203B.165C.72D.158 8.设(0α∈,)2π,(0β∈,)2π,且1sin tan cos βαβ+=,则 A.32παβ-= B.22παβ-= C.32παβ+= D.22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(x ∀,)y D ∈,22x y +≥-;2p :(x ∃,)y D ∈,22x y +≥; 3P :(x ∀,)y D ∈,23x y +≤;4p :(x ∃,)y D ∈,21x y +≤-.其中真命题是A.2p ,3pB.1p ,4pC.1p ,2pD.1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF = A.72 B.3 C.52D.2 11.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为A.(2,)+∞B.(1,)+∞C.(-∞,2)-D.(-∞,1)-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.62B.6C.42D.4二、填空题:本大题共四小题,每小题5分。
(完整)2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2014年高考数学文科(高考真题+模拟新题)分类汇编:三角函数(解析版)的全部内容。
数学C单元三角函数C1 角的概念及任意角的三角函数2.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( )A.45B。
错误!C.-错误! D.-错误!2.D [解析]根据题意,cos α=错误!=-错误!。
C2 同角三角函数的基本关系式与诱导公式18.,,[2014·福建卷]已知函数f(x)=2cos x(sin x+cos x).(1)求f错误!的值;(2)求函数f(x)的最小正周期及单调递增区间.18.解:方法一:(1)f错误!=2cos错误!错误!=-2cos错误!错误!=2.(2)因为f(x)=2sin x cos x+2cos2x=sin 2x+cos 2x+1=错误!sin错误!+1,所以T=错误!=π,故函数f(x)的最小正周期为π.由2kπ-错误!≤2x+错误!≤2kπ+错误!,k∈Z,得kπ-错误!≤x≤kπ+错误!,k∈Z。
所以f(x)的单调递增区间为错误!,k∈Z。
方法二:f(x)=2sin x cos x+2cos2x=sin 2x+cos 2x+1=错误!sin错误!+1。
(1)f错误!=错误!sin错误!+1=错误!sin错误!+1=2。
第十五章几何证明选讲考点一相似三角形的判定与性质1.(2013某某,15,5分)(几何证明选讲选做题)如图,在矩形ABCD中,AB=,BC=3,BE⊥AC,垂足为E,则ED=.答案2.(2013某某,15B,5分)(几何证明选做题)如图,AB与CD相交于点E,过E作BC的平行线与AD的延长线交于点P,已知∠A=∠C,PD=2DA=2,则PE=.答案3.(2013某某,22,10分)选修4—1:几何证明选讲如图,AB为☉O直径,直线CD与☉O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,连结AE,BE.证明:(1)∠FEB=∠CEB;(2)EF2=AD·BC.证明(1)由直线CD与☉O相切,得∠CEB=∠EAB.由AB为☉O的直径,得AE⊥EB.从而∠EAB+∠EBF=;又EF⊥AB,得∠FEB+∠EBF=,从而∠FEB=∠EAB.故∠FEB=∠CEB.(4分)(2)由BC⊥CE,EF⊥AB,∠FEB=∠CEB,BE是公共边,得Rt△BCE≌Rt△BFE,所以BC=BF.类似可证:Rt△ADE≌Rt△AFE,得AD=AF.又在Rt△AEB中,EF⊥AB,故EF2=AF·BF,所以EF2=AD·BC.(10分)考点二直线与圆的位置关系4.(2013某某,13,5分)如图,在圆内接梯形ABCD中,AB∥DC.过点A作圆的切线与CB的延长线交于点E.若AB=AD=5,BE=4,则弦BD的长为.答案5.(2013课标全国Ⅰ,22,10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.解析(1)连结DE,交BC于点G.由弦切角定理得∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)由(1)知∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=.设DE的中点为O,连结BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于.6.(2013课标全国Ⅱ,22,10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.解析(1)因为CD为△ABC外接圆的切线,所以∠DCB=∠A,由题设知=,故△CDB∽△AEF,所以∠DBC=∠EFA.因为B,E,F,C四点共圆,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圆的直径.(2)连结CE,因为∠CBE=90°,所以过B,E,F,C四点的圆的直径为CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2.而DC2=DB·DA=3DB2,故过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值为.。
§5.3 解三角形考点一正弦、余弦定理1.(2014课标Ⅰ,16,5分)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sin A-sin B)=(c-b)sin C,则△ABC面积的最大值为.答案2.(2014某某,12,5分)在△ABC中,角A,B,C所对应的边分别为a,b,c.已知bcos C+ccos B=2b,则=.答案 23.(2014某某,12,4分)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于.答案 24.(2014某某,12,5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=a,2sinB=3sin C,则cos A的值为.答案-5.(2014某某,14,5分)若△ABC的内角满足sin A+sin B=2sin C,则cos C的最小值是.答案6.(2014某某,17,12分)在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知·=2,cos B=,b=3.求:(1)a和c的值;(2)cos(B-C)的值.解析(1)由·=2得c·acos B=2,又cos B=,所以ac=6.由余弦定理,得a2+c2=b2+2accos B.又b=3,所以a2+c2=9+2×2=13.解得a=2,c=3或a=3,c=2.因a>c,所以a=3,c=2.(2)在△ABC中,sin B===,由正弦定理,得sin C=sin B=×=.因a=b>c,所以C为锐角,因此cos C===.于是cos(B-C)=cos Bcos C+sin Bsin C=×+×=.7.(2014某某,18,12分)如图,在平面四边形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的长.解析(1)在△ADC中,由余弦定理,得cos∠CAD===.(2)设∠BAC=α,则α=∠BAD-∠CAD.因为cos∠CAD=,cos∠BAD=-,所以sin∠CAD===,sin∠BAD===.于是sin α=sin(∠BAD-∠CAD)=sin∠BADcos∠CAD-cos∠BADsin∠CAD=×-×=.在△ABC中,由正弦定理,得=,故BC===3.考点二解三角形及其综合应用8.(2014课标Ⅱ,4,5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=( )A.5B.C.2D.1答案 B9.(2014某某,4,5分)在△ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则△ABC的面积是( )A.3B.C.D.3答案 C10.(2014某某,10,5分)已知△ABC的内角A,B,C满足sin 2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,则下列不等式一定成立的是( ) A.bc(b+c)>8 B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24答案 A11.(2014某某,12,5分)在△ABC中,已知·=tan A,当A=时,△ABC的面积为.答案12.(2014,15,13分)如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.解析(1)在△ADC中,因为cos∠ADC=,所以sin∠ADC=.所以s in∠BAD=sin(∠ADC-∠B)=sin∠ADCcos B-cos∠ADCsin B=×-×=.(2)在△ABD中,由正弦定理得BD===3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×=49.所以AC=7.13.(2014某某,16,12分)△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,求cos B的最小值.解析(1)∵a,b,c成等差数列,∴a+c=2b.由正弦定理得sin A+sin C=2sin B.∵sin B=sin[π-(A+C)]=sin(A+C),∴sin A+sin C=2sin(A+C).(2)∵a,b,c成等比数列,∴b2=ac.由余弦定理得cos B==≥=,当且仅当a=c时等号成立.∴cos B的最小值为.14.(2014某某,16,12分)设△ABC的内角A,B,C所对边的长分别是a,b,c,且b=3,c=1,A=2B.(1)求a的值;(2)求sin的值.解析(1)因为A=2B,所以sin A=sin 2B=2sin Bcos B.由正、余弦定理得a=2b·.因为b=3,c=1,所以a2=12,a=2.(2)由余弦定理得cos A===-.由于0<A<π,所以sin A===.故sin=sin Acos+cos Asin=×+×=.15.(2014某某,18,14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sin Acos A-sin Bcos B.(1)求角C的大小;(2)若sin A=,求△ABC的面积.解析(1)由题意得-=sin 2A-sin 2B,即sin 2A-cos 2A=sin 2B-cos 2B,sin=sin.由a≠b,得A≠B,又A+B∈(0,π),得2A-+2B-=π,即A+B=,所以C=.(2)由c=,sin A=,=,得a=,由a<c,得A<C.从而cos A=,故sin B=sin(A+C)=sin Acos C+cos Asin C=,所以,△ABC的面积为S=acsin B=.16.(2014大纲全国,17,10分)△AB C的内角A、B、C的对边分别为a、b、c,已知3acos C=2ccos A,tan A=,求B.解析由题设和正弦定理得3sin Acos C=2sin Ccos A.故3tan Acos C=2sin C,因为tan A=,所以cos C=2sin C,tan C=.(6分)所以tan B=tan[180°-(A+C)]=-tan(A+C)=(8分)=-1,即B=135°.(10分)。
第十四章推理与证明考点一合情推理与演绎推理1.(2014,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人答案 B2.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.答案 A3.(2014某某,14,5分)观察分析下表中的数据:多面体面数(F) 顶点数(V) 棱数(E) 三棱柱 5 6 9五棱锥 6 6 10立方体 6 8 12猜想一般凸多面体中F,V,E所满足的等式是.答案F+V-E=24.(2014,20,13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P':(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)解析(1)T 1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.考点二直接证明与间接证明5.(2014某某,4,5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A考点三数学归纳法6.(2014某某,21,13分)设实数c>0,整数p>1,n∈N*.(1)证明:当x>-1且x≠0时,(1+x)p>1+px;(2)数列{a n}满足a1>,a n+1=a n+.证明:a n>a n+1>.解析(1)证明:用数学归纳法证明:①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.所以p=k+1时,原不等式也成立.综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.(2)证法一:先用数学归纳法证明a n>.①当n=1时,由题设a1>知a n>成立.②假设n=k(k≥1,k∈N*)时,不等式a k>成立.由a n+1=a n+易知a n>0,n∈N*.当n=k+1时,=+=1+.由a k>>0得-1<-<<0.由(1)中的结论得=>1+p·=.因此>c,即a k+1>.所以n=k+1时,不等式a n>也成立.综合①②可得,对一切正整数n,不等式a n>均成立.再由=1+可得<1,即a n+1<a n.综上所述,a n>a n+1>,n∈N*.证法二:设f(x)=x+x1-p,x≥,则x p≥c,并且f '(x)=+(1-p)x-p=>0,x>.由此可得, f(x)在[,+∞)上单调递增.因而,当x>时, f(x)>f()=,①当n=1时,由a1>>0,即>c可知a2=a1+=a1<a1,并且a2=f(a1)>,从而a1>a2>.故当n=1时,不等式a n>a n+1>成立.②假设n=k(k≥1,k∈N*)时,不等式a k>a k+1>成立,则当n=k+1时, f(a k)>f(a k+1)>f(),即有a k+1>a k+2>.所以n=k+1时,原不等式也成立.综合①②可得,对一切正整数n,不等式a n>a n+1>均成立.7.(2014某某,21,14分)设函数f(x)=ln(1+x),g(x)=xf '(x),x≥0,其中f '(x)是f(x)的导函数.(1)令g1(x)=g(x),g n+1(x)=g(g n(x)),n∈N+,求g n(x)的表达式;(2)若f(x)≥ag(x)恒成立,某某数a的取值X围;(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.解析由题设得,g(x)=(x≥0).(1)由已知,g1(x)=,g2(x)=g(g1(x))==,g3(x)=,…,可得g n(x)=.下面用数学归纳法证明.①当n=1时,g1(x)=,结论成立.②假设n=k时结论成立,即g k(x)=.那么,当n=k+1时,g k+1(x)=g(g k(x))===,即结论成立.由①②可知,结论对n∈N+成立.(2)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)-(x≥0),即φ'(x)=-=,当a≤1时,φ'(x)≥0(仅当x=0,a=1时等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立,∴a≤1时,ln(1+x)≥恒成立(仅当x=0时等号成立).当a>1时,对x∈(0,a-1]有φ'(x)<0,∴φ(x)在(0,a-1]上单调递减,∴φ(a-1)<φ(0)=0.即a>1时,存在x>0,使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,a的取值X围是(-∞,1].(3)由题设知g(1)+g(2)+…+g(n)=++…+,n-f(n)=n-ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n-ln(n+1).证明如下:证法一:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则<ln.下面用数学归纳法证明.①当n=1时,<ln 2,结论成立.②假设当n=k时结论成立,即++…+<ln(k+1).那么,当n=k+1时,++…++<ln(k+1)+<ln(k+1)+ln=ln(k+2),即结论成立.由①②可知,结论对n∈N+成立.证法二:上述不等式等价于++…+<ln(n+1),在(2)中取a=1,可得ln(1+x)>,x>0.令x=,n∈N+,则ln>.故有ln 2-ln 1>,ln 3-ln 2>,……ln(n+1)-ln n>,上述各式相加可得ln(n+1)>++…+.结论得证.证法三:如图,dx是由曲线y=,x=n及x轴所围成的曲边梯形的面积,而++…+是图中所示各矩形的面积和,∴++…+>dx=dx=n-ln(n+1),结论得证.8.(2014某某,23,10分)已知函数f0(x)=(x>0),设f n(x)为f n-1(x)的导数,n∈N*.(1)求2f1+f2的值;(2)证明:对任意的n∈N*,等式=都成立.解析(1)由已知,得f1(x)=f '0(x)='=-,于是f2(x)=f '1(x)='-'=--+,所以f1=-, f2=-+. 故2f1+f2=-1.(2)证明:由已知,得xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf '0(x)=cos x,即f0(x)+xf1(x)=cos x=sin,类似可得2f1(x)+xf2(x)=-sin x=sin(x+π),3f2(x)+xf3(x)=-cos x=sin,4f3(x)+xf4(x)=sin x=sin(x+2π).下面用数学归纳法证明等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.(i)当n=1时,由上可知等式成立.(ii)假设当n=k时等式成立,即kf k-1(x)+xf k(x)=sin.因为[kf k-1(x)+xf k(x)]'=kf 'k-1(x)+f k(x)+xf 'k(x)=(k+1)f k(x)+xf k+1(x),'=cos·'=sin,所以(k+1)f k(x)+xf k+1(x)=sin.因此当n=k+1时,等式也成立.综合(i),(ii)可知等式nf n-1(x)+xf n(x)=sin对所有的n∈N*都成立.令x=,可得nf n-1+f n=sin(n∈N*).所以=(n∈N*).9.(2014某某,22,12分)设a1=1,a n+1=+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论. 解析(1)解法一:a 2=2,a3=+1.再由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=+1(n∈N*).解法二:a2=2,a3=+1,可写为a1=+1,a2=+1,a3=+1.因此猜想a n=+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即a k=+1,则a k+1=+1=+1=+1.这就是说,当n=k+1时结论成立.所以a n=+1(n∈N*).(2)解法一:设f(x)=-1,则a n+1=f(a n).令c=f(c),即c=-1,解得c=.下用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=-1,所以a2<<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=.解法二:设f(x)=-1,则a n+1=f(a n).先证:0≤a n≤1(n∈N*).①当n=1时,结论明显成立.假设n=k时结论成立,即0≤a k≤1.易知f(x)在(-∞,1]上为减函数,从而0=f(1)≤f(a k)≤f(0)=-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立.再证:a2n<a2n+1(n∈N*).②当n=1时,a2=f(1)=0,a3=f(a2)=f(0)=-1,有a2<a3,即n=1时②成立. 假设n=k时,结论成立,即a2k<a2k+1.由①及f(x)在(-∞,1]上为减函数,得a2k+1=f(a2k)>f(a2k+1)=a2k+2,a2(k+1)=f(a2k+1)<f(a2k+2)=a2(k+1)+1.这就是说,当n=k+1时②成立.所以②对一切n∈N*成立.由②得a2n<-1,即(a2n+1)2<-2a2n+2,因此a2n<.③又由①、②及f(x)在(-∞,1]上为减函数得f(a2n)>f(a2n+1),即a2n+1>a2n+2,所以a2n+1>-1,解得a2n+1>.④综上,由②、③、④知存在c=使a2n<c<a2n+1对一切n∈N*成立.。
§8.4 直线、平面垂直的判定和性质考点垂直的判定与性质1.(2014某某,7,5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定答案 D2.(2014课标Ⅰ,19,12分)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A-A1B1-C1的余弦值.解析(1)连结BC1,交B1C于点O,连结AO.因为侧面BB1C1C为菱形,所以B1C⊥BC1,且O为B1C 及BC1的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO⊂平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O为B1C的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两互相垂直.以O为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系O-xyz. 因为∠CBB1=60°,所以△CBB1为等边三角形,又AB=BC,则A,B(1,0,0),B1,C.=,==,==.设n=(x,y,z)是平面AA1B1的法向量,则即所以可取n=(1,,).设m是平面A1B1C1的法向量,则同理可取m=(1,-,).则cos<n,m>==.所以二面角A-A1B1-C1的余弦值为.3.(2014某某,17,13分)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD 折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.解析(1)证明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.(2)过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,∴AB⊥BE,AB⊥BD.以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量为n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量为n=(1,-1,1).设直线AD与平面MBC所成角为θ,则sin θ=|cos<n,>|==,即直线AD与平面MBC所成角的正弦值为.4.(2014某某,18,13分)如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:C F⊥平面ADF;(2)求二面角D-AF-E的余弦值.解析(1)证明:∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,AF∩AD=A,∴PC⊥平面ADF,即CF⊥平面ADF.(2)解法一:设AB=1,则Rt△PDC中,CD=1,∵∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,∴CF=,又FE∥CD,∴==,∴DE=,同理,EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E,F,P(,0,0),C(0,1,0).设m=(x,y,z)是平面AEF的法向量,则又∴令x=4,得z=,故m=(4,0,),由(1)知平面ADF的一个法向量为=(-,1,0),设二面角D-AF-E的平面角为θ,可知θ为锐角, cos θ=|cos<m,>|===,故二面角D-AF-E的余弦值为.解法二:设AB=1,∵CF⊥平面ADF,∴CF⊥DF.∴在△CFD中,DF=,∵CD⊥AD,CD⊥PD,∴CD⊥平面ADE.又∵EF∥CD,∴EF⊥平面ADE.∴EF⊥AE,∴在△DEF中,DE=,EF=,在△ADE中,AE=,在△ADF中,AF=.由V A-DEF=·S△ADE·EF=·S△ADF·h E-ADF,解得h E-ADF=,设△AEF的边AF上的高为h,由S△AEF=·EF·AE=·AF·h,解得h=×,设二面角D-AF-E的平面角为θ.则sin θ==××=,∴cos θ=.5.(2014某某,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点.(1)求证:EF⊥BC;(2)求二面角E-BF-C的正弦值.解析(1)证法一:过E作EO⊥BC,垂足为O,连OF.图1由△ABC≌△DBC可证出△EOC≌△FOC.所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,因此BC⊥面EFO.又EF⊂面EFO,所以EF⊥BC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图2所示空间直角坐标系,易得B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0),因而E,F,所以,=,=(0,2,0),因此·=0.从而⊥,所以EF⊥BC.图2(2)解法一:在图1中,过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG⊥BF.因此∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BC·cos 30°=,由△BGO∽△BFC知,OG=·FC=,因此tan∠EGO==2,从而sin∠EGO=,即二面角E-BF-C的正弦值为.解法二:在图2中,平面BFC的一个法向量为n1=(0,0,1).设平面BEF的法向量为n2=(x,y,z),又=,=,由得其中一个n2=(1,-,1).设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cos θ=|cos<n1,n2>|==,因此sin θ==,即所求二面角的正弦值为.6.(2014某某,19,12分)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1-OB1-D的余弦值.解析(1)证明:因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD,因为CC1∥DD1,所以CC1⊥BD,而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C,故O1O⊥底面ABCD,(2)解法一:如图,过O1作O1H⊥OB1于H,连结HC1.由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1,进而OB1⊥C1H,故∠C1HO1是二面角C1-OB1-D的平面角,不妨设AB=2,因为∠CBA=60°,所以OB=,OC=1,OB1=.在Rt△OO1B1中,易知O1H==2,而O1C1=1,于是C1H===.故cos∠C1HO1===.即二面角C1-OB1-D的余弦值为.解法二:因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥B D,又由(1)知O1O⊥底面ABCD,从而OB、OC、OO1两两垂直.如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz,不妨设AB=2,因为∠CBA=60°,所以OB=,OC=1,于是相关各点的坐标为O(0,0,0),B1(,0,2),C1(0,1,2).易知,n1=(0,1,0)是平面BDD1B1的一个法向量.设n2=(x,y,z)是平面OB1C1的法向量,则即取z=-,则x=2,y=2,所以n2=(2,2,-),设二面角C1-OB1-D的大小为θ,易知θ是锐角,于是cos θ=|cos<n1,n2>|===.故二面角C1-OB1-D的余弦值为.7.(2014某某,19,12分)如图,四棱锥P-ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.(1)求证:AB⊥PD;(2)若∠BPC=90°,PB=,PC=2,问AB为何值时,四棱锥P-ABCD的体积最大?并求此时平面BPC 与平面DPC夹角的余弦值.解析(1)证明:ABCD为矩形,故AB⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以A B⊥平面PAD,故AB⊥PD.(2)过P作AD的垂线,垂足为O,过O作BC的垂线,垂足为G,连结PG.故PO⊥平面ABCD,BC⊥平面POG,BC⊥PG.在Rt△BPC中,PG=,GC=,BG=.设AB=m,则OP==,故四棱锥P-ABCD的体积V=··m·=.因为m==,故当m=,即AB=时,四棱锥P-ABCD的体积最大.此时,建立如图所示的坐标系,各点的坐标为O(0,0,0),B,C,D,P.故=,=(0,,0),=.设平面BPC的法向量为n1=(x,y,1),则由n1⊥,n1⊥得解得x=1,y=0,n1=(1,0,1).同理可求出平面DPC的法向量为n2=.从而平面BPC与平面DPC夹角θ的余弦值为cos θ===.8.(2014某某,20,15分)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小.解析(1)证明:在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2,得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE.又DE⊥DC,从而DE⊥平面ACD.(2)解法一:作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连结BG,由(1)知DE⊥AD,则FG⊥AD.所以∠BFG是二面角B-AD-E的平面角.在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB.由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=.在Rt△AED中,由ED=1,AD=,得AE=.在Rt△ABD中,由BD=,AB=2,AD=,得BF=,AF=AD.从而GF=.在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BC=.在△BFG中,cos∠BFG==.所以,∠BFG=,即二面角B-AD-E的大小是.解法二:以D为原点,分别以射线DE,DC为x轴,y轴的正半轴,建立空间直角坐标系D-xyz,如图所示.由题意知各点坐标如下:D(0,0,0),E(1,0,0),C(0,2,0),A(0,2,),B(1,1,0). 设平面ADE的法向量为m=(x1,y1,z1),平面ABD的法向量为n=(x2,y2,z2),可算得=(0,-2,-),=(1,-2,-),=(1,1,0),由即可取m=(0,1,-).由即可取n=(1,-1,).于是|cos<m,n>|===,由题意可知,所求二面角是锐角,故二面角B-AD-E的大小是.。
10.2双曲线及其性质考点一双曲线的定义和标准方程1.(2014天津,6,5分)已知双曲线x 2a -y2b=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.x 25-y220=1 B.x220-y25=1C.3x 225-3y2100=1 D.3x2100-3y225=1答案A2.(2014江西,9,5分)过双曲线C:x 2a2-y2b2=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为()A.x 24-y212=1 B.x27-y29=1 C.x28-y28=1 D.x212-y24=1答案A3.(2014北京,10,5分)设双曲线C的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C的方程为.答案x2-y2=1考点二双曲线的性质4.(2014课标Ⅰ,4,5分)已知双曲线x 2a -y23=1(a>0)的离心率为2,则a=()A.2B.62C.52D.1答案D5.(2014重庆,8,5分)设F1,F2分别为双曲线x 2a2-y2b2=1(a>0,b>0)的左,右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为() A.2 B.15 C.4 D.17答案D6.(2014湖北,8,5分)设a,b是关于t的方程t2cosθ+tsinθ=0的两个不等实根,则过A(a,a2),B(b,b2)两点的直线与双曲线x 2co s2θ-y2sin2θ=1的公共点的个数为()A.0B.1C.2D.3答案A7.(2014广东,8,5分)若实数k满足0<k<5,则曲线x 216-y25-k=1与曲线x216-k-y25=1的()A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等答案D8.(2014大纲全国,11,5分)双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为3,则C的焦距等于() A.2 B.2 C.4 D.4答案C9.(2014山东,15,5分)已知双曲线x 2a2-y2b2=1(a>0,b>0)的焦距为2c,右顶点为A,抛物线x2=2py(p>0)的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为.答案x±y=010.(2014四川,11,5分)双曲线x 24-y2=1的离心率等于.答案5211.(2014浙江,17,4分)设直线x-3y+m=0(m≠0)与双曲线x 2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于点A,B,若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.答案52。
10.3抛物线及其性质
考点一抛物线的定义和标准方程
1.(2014课标Ⅰ,10,5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则
x0=( )
A.1
B.2
C.4
D.8
答案 A
2.(2014湖南,14,5分)平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围
是.
答案(-∞,-1)∪(1,+∞)
3.(2014福建,21,12分)已知曲线Γ上的点到点F(0,1)的距离比它到直线y=-3的距离小2.
(1)求曲线Γ的方程;
(2)曲线Γ在点P处的切线l与x轴交于点A,直线y=3分别与直线l及y轴交于点M,N.以MN为直径作圆C,过点A作圆C的切线,切点为B.试探究:当点P在曲线Γ上运动(点P与原点不重合)时,线段AB的长度是否发生变化?证明你的结论.
解析(1)解法一:设S(x,y)为曲线Γ上任意一点,
依题意,点S到F(0,1)的距离与它到直线y=-1的距离相等,
所以曲线Γ是以点F(0,1)为焦点、直线y=-1为准线的抛物线,所以曲线Γ的方程为x2=4y.
解法二:设S(x,y)为曲线Γ上任意一点,
则|y-(-3)|-=2,
依题意,知点S(x,y)只能在直线y=-3的上方,所以y>-3,
所以=y+1,
化简得,曲线Γ的方程为x2=4y.
(2)当点P在曲线Γ上运动时,线段AB的长度不变.证明如下:
由(1)知抛物线Γ的方程为y=x2,
设P(x0,y0)(x0≠0),则y0=,
由y'=x,得切线l的斜率k=y'=x0,
所以切线l的方程为y-y0=x0(x-x0),即y=x0x-.
由得A.
由得M.
又N(0,3),所以圆心C,
半径r=|MN|=,
|AB|=
==.
所以点P在曲线Γ上运动时,线段AB的长度不变.
考点二抛物线的性质
4.(2014安徽,3,5分)抛物线y=x2的准线方程是( )
A.y=-1
B.y=-2
C.x=-1
D.x=-2
答案 A
5.(2014课标Ⅱ,10,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,则|AB|=( )
A. B.6 C.12 D.7
答案 C
6.(2014辽宁,8,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,记C的焦点为F,则直线AF的斜率为( )
A.-
B.-1
C.-
D.-
答案 C
7.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,²=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )
A.2
B.3
C.
D.
答案 B
8.(2014陕西,11,5分)抛物线y2=4x的准线方程为.
答案x=-1
9.(2014浙江,22,14分)已知△ABP的三个顶点都在抛物线C:x2=4y上,F为抛物线C的焦点,点M为AB的中点,=3.
(1)若||=3,求点M的坐标;
(2)求△ABP面积的最大值.
解析(1)由题意知焦点F(0,1),准线方程为y=-1.
设P(x0,y0),由抛物线定义知|PF|=y0+1,得到y0=2,
所以P(2,2)或P(-2,2).
由=3,分别得M或M.
(2)设直线AB的方程为y=kx+m,点A(x1,y1),B(x2,y2),P(x0,y0).
由得x2-4kx-4m=0,
于是Δ=16k2+16m>0,x1+x2=4k,x1x2=-4m,
所以AB中点M的坐标为(2k,2k2+m).
由=3,得(-x0,1-y0)=3(2k,2k2+m-1),
所以由=4y0得k2=-m+.
由Δ>0,k2≥0,得-<m≤.
又因为|AB|=4²,
点F(0,1)到直线AB的距离为d=,
所以S△ABP=4S△ABF=8|m-1|=.
记f(m)=3m3-5m2+m+1.
令f '(m)=9m2-10m+1=0,解得m1=,m2=1.
可得f(m)在上是增函数,在上是减函数,在上是增函数.
又f=>f,
所以,当m=时, f(m)取到最大值,此时k=±.
所以,△ABP面积的最大值为.。