当前位置:文档之家› 20CrMnTiH淬透性

20CrMnTiH淬透性

20CrMnTiH淬透性
20CrMnTiH淬透性

中国齿轮用钢合金化体系的选用及淬透能力的构成

常曙光

中国齿轮专业协会专家委

一.齿轮制造对齿轮用钢合金化体系及淬透能力构成的要求1.保证齿轮有高的抗弯曲疲劳性能

(1)足够的抗弯强度:齿轮用钢合金化体系的构成应当与各种齿轮心部的冷却速度相匹配;保证各种齿轮都能有理想的心部硬度。

(2)低的氧含量(脆性夹渣物):疲劳裂纹源数量少。

(3)齿轮心部的塑韧性高,缺口敏感性低:疲劳裂纹扩张速度慢。

2.保证齿轮有高的接触疲劳性能

(1) 齿轮热处理后渗层的非马组织不高

(2)齿轮用钢合金化体系的构成应当与各种齿轮渗层的冷却速度相匹配;

保证各种齿轮热处理后渗层的残余奥氏体含量适中

(3)齿轮热处理后渗层的马氏体组织不粗

(4)齿轮热处理后渗层的碳化物弥散分布或没有碳化物析出

3.保证齿轮的加工精度

(1)齿轮的热处理变形波动幅度小:变形对钢的成分波动和齿轮热处理冷速的波动敏感度不高。

(2)齿轮热处理变形量小

4.保证齿轮有良好的切削性能

5.齿轮渗碳后,能采用直接淬火工艺

6.保证齿轮钢材具有价格竞争优势

二.国内外齿轮用钢合金化体系及淬透能力构成的现状

齿轮的抗弯曲疲劳能力、抗接触疲劳能力、齿轮的啮合精度三大要素,决定了齿轮的使用寿命。齿轮用钢合金化体系与淬透能力的构成,是决定三大要素水

平高低,最重要的先决条件。因此,揭示与分析国内外齿轮用钢合金化体系与淬透能力的构成,十分重要。

1.美国

钢号合金化体系保障齿轮心部34~40HRC的淬透能力

SAE1522H Mn J3.5

SAE4118H Mn-Cr-Mo J3.5

SAE8617H Cr-Mn-Ni-Mo J4.0

SAE4620H Ni-Mo J4.5

SAE5120H Mn-Cr J4.5

SAE1524H Mn J4.8

SAE4720H Ci-Ni-Mo J5.0

SAE8620H Cr-Mn-Ni-Mo J5.5

SAE4815H Ni-Mo J6.0

SAE8720H Cr-Mn-Ni-Mo J6.0

SAE8622H Cr-Mn-Ni-Mo J6.4

SAE4320H Cr-Ni-Mo J6.5

SAE4817H Ni-Mo J7.5

SAE8822H Cr-Mn-Ni-Mo J8.0

SAE4820H Ni-Mo J9.5

SAE4820H(上) Ni-Mo J15.0

22CrNiMoH Cr-Mn-Ni-Mo J15.0

SAE9310H Cr-Mn-Ni-Mo 注解

SAE94B17H Cr-Mn-Ni-Mo-B J15.0

2.欧洲

钢号合金化体系保障齿轮心部34~40HRC的淬透能力16MnCr5H Mn-Cr J6.5

25MnCr5H Mn-Cr J5.0

ZF6 Mn-Cr-(B) J5.0

20MoCr4 Cr-Mo J5.0

28MnCr5H Mn-Cr J7.0

ZF7 Mn-Cr-(B) J7.5

20MnCr5H Mn-Cr J9.0

20CD4 Cr-Mo J9.0

19CN5H Cr-Ni J9.0

ZF7BH Mn-Cr-(B) J10.0

15CrNi6H Cr-Ni J11.0

21NiCrMo5H Cr-Mn-Ni-Mo J11.0

27MnCr5H Mn-Cr J15.0

15CrNi6H(上) Cr-Ni J15.0

21NiCrMo5H(上) Cr-Mn-Ni-Mo J15.0

27CD4 Cr-Mo J15.0

30CD4 Cr-Mo J21.0

17NiCrMo6H Cr-Mn-Ni-Mo J25.0

18NiCrMo6H Cr-Mn-Ni-Mo J40.0

18CrNi8H Cr-Ni J50.0

3.日本

钢号合金化体系保障齿轮心部34~40HRC的淬透能力SNC415H Ni-Cr J3.5

SMn420H Mn J3.7

SCr415H Cr J4.0

SCM415H Cr-Mo J4.0

SNCM220H Cr-Ni-Mo J5.0

SCM418H Cr-Mo J5.5

SCr420H Cr J6.0

SMnC420H Cr-Mn J6.0

SNCM420H Ci-Ni-Mo J6.5

SMn433H Mn J7.0

SCM420H Cr-Mo J7.0

SCM822H(下) Cr-Mo J9.5

SNC815H Ni-Cr J10.0

SCr430H Cr J11.0

SCM822H Cr-Mo J12.0

SCM822H(上) Cr-Mo J15.0

SNC631H Ni-Cr J35.0

4.前苏联

钢号合金化体系保障齿轮心部34~40HRC的淬透能力15Г Mn J3

12XH2 Cr-Ni J3.0

15H2M Ni-Mo J3.0

20Г Mn J4

20XH Cr-Ni J4.5

12XH3 Cr-Ni J5.0

18XГT Cr-Mn-Ti J6.0

18XГ Cr-Mn J7.0

15XГH2T Cr-Mn-Ni-Ti J7.5

20XH2M Cr-Ni-Mo J8.0

25XГT Cr-Mn-Ti J11.0

20XH3 Cr-Ni J11.0

12X2H4 Cr-Ni J14.0

25XГH M Cr-Mn-Ni-Mo J15

20XГHTP Cr-Mn-Ni-Ti-B J18.0

25XM Cr-Mn-Mo J21.0

20XГP Cr-Mn-B J22.0

27XГP Cr-Mn-B J29.0

14X2H3M Cr-Ni-Mo J36.0

20X2H4 Cr-Ni J45.0

18X2H4M Cr-Ni-Mo >J50.0

5.中国

目前,我国齿轮用钢的合金化体系,涵盖了世界各国的合金钢体系;是苏、美、日、德、英、法、意、以及中国自主创新合金化体系的总和。

三.中国在齿轮用钢合金化体系和淬透能力构成方面的探索

1.中国合金化体系的选用

从美、日、欧、苏齿轮用钢合金化体系看出:美国主要是Cr-Ni-Mo系;日本主要是Cr-Mo和Cr-Ni-Mo系,其中Cr-Mo比例更大一些;欧洲国家中:德、

意、奥三国的变速箱齿轮用钢主要是Mn-Cr系,ZF公司的ZF6、ZF7、ZF7B实际

上也是Mn-Cr系,其中的B元素是用于降低钢中的N,提高钢的韧性,对提高淬

透性不起作用;法国变速箱用钢是Cr-Mo系。欧洲各国驱动桥齿轮用钢:全部用

Cr-Ni-Mo系。前苏联变速箱齿轮用钢是Cr-Ni 、Cr-Mn-Ti 、Cr-Ni-Mo,其中

Cr-Mn-Ti占主要地位;驱动桥齿轮用钢是Cr-Ni-Mo-Ti 、Cr-Ni系,其中主要

用Cr-Ni系。综上所述:除德、意、奥、苏变速箱用钢是Cr-Mn-Ti或Cr-Mn

外,其它全部齿轮用钢都含Ni 、Mo元素。

为什么Ni 、Mo元素在齿轮钢的合金化体系中占有如此重要的位置?为什么德、意、奥、苏变速箱用钢采用Cr-Mn系;驱动桥齿轮用Cr-Ni-Mo系?Ni 、

Mo合金元素具有很强的抗氧化能力,Cr元素次之,Mn元素抗氧化能力弱,Si 元素最弱。如果渗碳炉中氧势比较高,在高温渗碳的过程中,氧原子通过晶界扩散到齿轮的表面,将使易氧化的合金元素变成氧化物,丧失合金化的能力,降低渗碳层的淬透性;齿轮淬火后,表面非马组织超标,接触疲劳性能变坏。为提高齿轮的接触疲劳寿命,世界各国都在不断提升渗碳炉的设备能力,降低炉中的氧势;目前,氮甲醇高温渗碳炉,真空(低压)高温渗碳炉的使用已相当普及,炉中氧势极低。另一方面,在齿轮钢成分设计中,提高抗氧化的Ni 、Mo元素含量。德国为降低钢材的采购成本,将Mn-Cr系齿轮钢中Si元素限止在0.12%下,用在变速箱齿轮。驱动桥齿轮渗碳的温度高,时间长,内氧化比较严重,仍采用Cr-Mo和Cr-Ni-Mo系齿轮钢。

从1980年到2008年,我国一汽大众轿车、上海大众轿车、奥地利斯泰尔重载车变速箱、以及天津德国-荷兰(SEW)公司的工业减速机,大量使用Mn-Cr 系齿轮钢。工业实践证明:在现有的渗碳设备条件下,变速箱用钢既便不使用Ni 、Mo元素,也可以将齿轮渗碳层的非马组织控制在合格的范围内。为了降低钢材的采购成本,我国的变速箱可以采用Mn-Cr系齿轮钢。可是,在驱动桥齿轮也能用Mn-Cr系吗?如果能用,将为解决我国重载驱动桥齿轮生产成本过高,找到一条摆脱困境的出路。我国用17Cr2Mn2TiH钢取代高Ni 、Mo齿轮钢,用在8~16吨车驱动桥齿轮,已取得初步成功;EQ153 N2B驱动桥齿轮的非马组织,能控制在合格范围内;台架寿命达到40万次以上,达到国外Cr-Mo和Cr-Ni-Mo 系齿轮的水平(日产柴标准:输出30000Nm,10万次合格)。解决驱动桥齿轮渗层淬透性降低问题的方法是将Si元素限止在0.12%以下,提高Mn-Cr元素含量,将内氧化丧失的合金量补上。齿轮合金量提高之后,由内氧化引起的渗层淬透性降低,非马组织超标的问题可以解决,但会导至齿轮心部淬火硬度过高,热后变形过大;在合金成分的设计中,将钢的含碳量从0.22%降到0.17%,能解决硬度高、变形大问题。合金量提高,碳含量降低的17Cr2Mn2TiH钢齿轮,在普通的滴注式气氛炉中,渗碳工艺同现有的SCM822H钢基本相同。在氧势极低的渗碳炉中,由于齿轮表面内氧化较轻,齿轮表层的合金元素损失不大,渗层淬透性可能过剩;或当齿轮的模数小,齿轮渗层的冷却速度过快时;会引起齿轮渗碳层残余奥氏体超标;针对这种问题,采用适当降低渗碳扩散期碳势的方法,能将残余奥氏体控制在合格范围内。不需要采用高温渗碳-空冷-回火-低温淬火工艺。用抗氧化能力较差的Mn-Cr合金元素,通过提高含量的方法,克服内氧化引起的非马组织超标,是我国的创新;已获取国家发明专利。

渗层马氏体针的粗细程度,是影响齿轮接触疲劳寿命的另一重要因素。渗层马氏体针的粗细程度主要取决于齿轮钢的晶粒长大倾向。晶粒长大倾向取决于钢中难溶化合物质点的种类和数量。美、日、德、英、法、意等国的齿轮钢,全

靠钢中的氮化铝细化晶粒。为了增加氮化铝的数量,提高细化晶粒的效果,国外普遍将钢中的氮含量从0.007%提高到0.012~0.018%,氮含量的提高,降低齿轮心部的塑、韧性;提高疲劳裂纹扩张速度;但是,细化晶粒的效果并不理想,远远赶不上Ti(NC) 质点。国外重载驱动桥齿轮渗碳热处理,多采用二次加热淬火或马鞍形淬火工艺;用再结晶的办法解决渗层晶粒粗化问题。我国选用Mn-Cr-Ti系齿轮钢,不提高钢中的氮含量,用微量Ti(NC) 达到细化晶粒的目的,能采用渗碳后直接淬火,简化了齿轮的渗碳热处理工艺。国内外有不少学者认为,方块型的Ti(NC)质点作为疲劳源,降低齿轮的疲劳寿命;但是,至今没有看到有说服力的实验数据,能证明Ti(NC)降低齿轮的疲劳寿命,比方块型的氮化铝质点更为严重。

在吸收、消化美、日、德、英、法、意、苏等国齿轮钢合金体系之后,逐步形成我国的Cr-Mn-Ti齿轮钢合金化体系。这个体系,与美、日、德、英、法、意、苏等国的Cr-Mo和Cr-Ni-Mo系相比,不含Ni-Mo元素;钢材的采购成本大大降低。与德、意、奥的Mn-Cr系齿轮钢相比,用Ti(NC) 细化晶粒的效果更好,渗碳工艺更加简单。与前苏联的Cr-Mn-Ti齿轮钢相比,淬透能力构成的覆盖面更大;能扩大应用到冷速最快的同步器齿轮,也能应用到冷速最慢的重载驱动桥齿轮。

2.重载驱动桥齿轮用钢的研制

前苏联的18CrMnTiH钢,保障齿轮心部34~40HRC的淬透能力为J6;之后,中国变化为20CrMnTiH的淬透能力为J7.5;8~16吨重载工程车驱动桥齿心部的淬火冷却速度为J10~J25.0。其中,主动齿为J15~J25,被动齿为J10~J15。显然,20CrMnTiH钢的淬透能力,不能满足重载驱动桥齿的需要;80年代,一汽用20CrMnTiH生产8吨车驱动桥齿,因心部硬度太低,发生断齿事故。同样,将苏联的20CrNi3H(淬透能力为J11)钢用于16吨车的锥齿轮时(冷速为J25),同样是因为心部硬度太低,23次台架寿命试验,台架寿命(输出55000NM扭距,400000万次)的合格率只有25%,失效形式全部是锥齿轮断齿。为满足重载驱动桥齿的需要,中国将20CrMnTiH的淬透能力延伸到J12;子钢号名称定为20CrMnTiH5,用于8吨车的被动齿;用淬透能力为J15的17Cr2Mn2TiH1钢生产EQ153(8吨)驱动桥锥齿轮,台架寿命(输出30000NM,10万次合格)达到40万次,符合日产柴QC/T533-1999标准要求,与日本SCM822H钢水平相当。但是,钢材的采购成本降低了36%。在国内,双骏、汇锋汽车齿轮厂已开始用17Cr2Mn2TiH1钢代替SCM822H钢,生产模数为8.784~12.357的锥齿轮。株齿、綦齿、东风汽车公司正在进行工艺试验,预计明年可以投入应用。目前,正准备用淬透能力为J25的17Cr2Mn2TiH2钢代替20CrNi3H生产模数为13.25的锥齿轮,

用17Cr2Mn2TiH1钢,代替日本的SCM822H钢生产盆桥齿。如果台架寿命能达到要求,锥齿轮用钢材的采购成本将降低70%;锥齿轮渗碳工艺将由高温渗碳-空冷-回火-低温淬火,简化为渗碳后直接淬火。

3.同步器齿轮用钢的研制

同步器齿心部的淬火冷却速度为J2.5~J6.5;其中:采用压淬工艺的齿套,齿轮心部冷速为J6.5;采用谷套配淬工艺,模数大于2.5的同步器齿,齿轮心部冷速为J6.5;采用谷套配淬工艺,模数小于2.5的同步器齿,齿轮心部冷速为J4.5;采用单件自由淬工艺的小模数同步器齿谷、齿套,齿轮心部冷速为J2.5;采用单件自由淬工艺的大模数同步器齿谷、齿套,齿轮心部冷速为J4.2。国外齿轮钢的淬透能力在J3~J6的钢种很多;不存在齿轮心部硬度过高,齿轮变形过大的问题。但是,对于淬透能力为J4.5以下的齿轮钢,因为钢的淬透能力过低,齿胚正火硬度过低,切削性能无法满足要求,常有矛刺、掉肉现象。国内同步器齿轮的生产,除国外图纸要求用低淬透性钢外,多采用淬透能力为J7.5的20CrMnTiH钢。由于淬透能力过高,普遍存在严重变形问题。天海汽车齿轮厂将20CrMnTiH钢的淬透能力降低到J6,解决了冷却速度为J6.5的大模数同步器齿,采用谷套配淬工艺的变形问题。用淬透能力为J5的国标20CrMo钢生产小模数的同步器齿,解决了谷套配淬工艺、冷却速度为J4.5的同步器齿的变形问题。将20CrMnTiH钢的淬透能力降低到J3.4,用于五十铃1/2当同步器齿套自由淬火,解决了冷却速度为J2.5的小模数同步器齿轮,采用单件自由淬工艺的变形问题。但是,淬透能力为J3.4的20CrMnTiH钢,和国外存在的问题一样,碰到了切削性能不能满足要求的问题。因此,解决过薄同步器齿套热后变形,多采用渗碳后二次压淬工艺;每件齿套增加了2.5~4.5元的制造成本。针对这个问题,我国研制出淬透能力为J3的26CrMnTiH1钢,适用于冷速在J2.5,采用单件自由淬工艺的同步器齿;研制出淬透能力为J4.5的26CrMnTiH2钢,适用于谷套配淬工艺的小模数同步器齿。既减小同步器齿单件自由淬火的热后变形,又解决了切削性能问题;获取国家发明专利。淬透能力为J6的20CrMnTiH1钢,只能适用于大模数同步器齿的谷套配淬工艺或压淬工艺;当大模数同步器齿采用单件自由淬火工艺时,因心部冷速变快(J4.2),齿套会严重变形;应该改用淬透能力为J4.5的26CrMnTiH2钢。20CrH 、15CrMoH 、16CrMnTiH钢的淬透能力虽然与26CrMnTiH2钢相当,但是,切削性能不好,易产生毛刺、掉肉。

4.内在质量的控制

国家科委从“6·5”开始,连续组织“7·5“、“8·5”、“9·5”科技攻关;完成了齿轮钢的淬透性预报及成分微调工艺研究,齿轮钢的精炼工艺研究,齿轮钢的连铸工艺研究。使我国齿轮钢的内在质量达到国外先进水平。这主要表

现在:钢中的氧含量能降到15ppm和20ppm以下,钢中的疲劳裂纹源(脆性夹渣)大大减少。钢的淬透性带宽能压缩到5HRC和7HRC宽,齿轮热后变形的稳定性大大提高。

承担国家科技攻关任务的是大冶特钢、抚顺特钢、北京科技大、北京钢研总院。但是,科技成果扩散的速度很快。目前,国内的骨干特钢厂上海第五特钢、兴橙特钢、本溪特钢、都能按B类标准供货。首特钢、莱芜特钢、部分产品能按B类标准供货。中国齿协为推动B类齿轮钢材的供应、采购,从2001年开始,按B类标准对钢厂进行质量认证,对齿轮厂的采购行为进行规范。国家科委、中国齿协的这些努力,为我国齿轮行业进入国际市场奠定了坚实的基础。

5.CrMnTi系齿轮钢淬透能力的构成与齿轮心部冷却速度的匹配:

钢号合金化体系保障齿轮心部34~40HRC的淬透能力

26CrMnTiH1 Cr-Mn-Ti J3.0

26CrMnTiH2 Cr-Mn-Ti J4.5

16CrMnTiH Cr-Mn-Ti J4.5

20CrMnTiH1 Cr-Mn-Ti J6.0

20CrMnTiH2 Cr-Mn-Ti J6.8

20CrMnTiH3 Cr-Mn-Ti J7.5

20CrMnTiH4 Cr-Mn-Ti J9.5

20CrMnTiH5 Cr-Mn-Ti J12.0

17Cr2Mn2TiH1 Cr-Mn-Ti J15.0

17Cr2Mn2TiH2 Cr-Mn-Ti J25.0

我国齿轮行业车辆齿轮钢采购标准CGMA001-2004中其它钢号的淬透能力、合金化体系如下:

钢号合金化体系保障齿轮心部34~40HRC的淬透能力

16MnCr5H Mn-Cr J6.5

20MnCr5H Mn-Cr J9.0

25MnCr5H Mn-Cr J5.0

28MnCr5H Mn-Cr J7.0

16CrMnBH Cr-Mn-B J6.5

18CrMnBH Cr-Mn-B J9.0

17CrMnBH Cr-Mn-B J10.0

17Cr2Ni2H Cr-Ni J12.0

16CrNiH Cr-Ni J7.0

19CrNiH Cr-Ni J9.5

17Ni2Cr2MoH Cr-Mn-Ni-Mo J25.0

20NiCrMoH1 Cr-Mn-Ni-Mo J5.0

20NiCrMoH2 Cr-Mn-Ni-Mo J6.0

15CrMoH Cr-Mo J4.0

20CrMoH Cr-Mo J6.0

22CrMoH Cr-Mo J15.0

20CrH Cr J3.5

我国同步器齿轮淬火时,心部的冷却速度为J2.5~J6.5;变速箱齿轮的冷速为J6~J12;中、轻型驱动桥齿轮的冷速为J6.5~J15.0;重载驱动桥齿轮的冷速为J12.0~J25.0;我国原来的20CrMnTiH钢,淬透能力的构成为J6.8~J9.5;只能部分覆盖变速箱齿、模数不大的驱动桥齿;为满足同步器齿冷速快的需求,将钢的淬透能力延伸到J6.0-J4.5-J3.0;为满足重载驱动桥齿冷速慢的需求,将钢的淬透能力延伸到J12.0-J15.0-J25.0;形成了我国的的Cr-Mn-Ti体系。这个体系的淬透能力,能够与各种齿轮心部的冷却速度相匹配。在齿轮设计时,在齿轮应用过程中发生重大质量问题时;都会面临一个齿轮用钢种的选择问题。只有钢材的淬透能力与齿轮心部的冷却速度正确匹配时,才能够得到最好的啮合、最低的噪音、最高的使用寿命。要实现正确的匹配,首先,齿轮钢淬透能力的构成,应当有足够的覆盖面,有合适与渐变的台阶;有足够的选择余地。从上述CrMnTi 系齿轮钢淬透能力的构成与国外齿轮钢的构成对比看出:我国自主开发的齿轮钢合金化体系的构成,从覆盖面与渐变的台节两方面都与之相当。在准确测算齿轮

心部的冷却速度之后,根据测算的J点,能选择到淬透能力最适用的钢种。四.齿轮啮合精度与使用寿命

齿轮的使用寿命与国外的差距,主要表现在重载驱动桥齿轮。国外的重载驱动桥齿轮是耐用件。我国是易损件,一辆车每年更换5~6套。影响齿轮使用寿命的因素很多。齿轮的接触疲劳、弯曲疲劳、齿轮的接触区大小、齿厚分配、齿轮的重叠系数、驱动桥的装配精度等众多因素都影响使用寿命。但是,哪些是使用寿命低下的关键影响因素?

武汉双骏汽车齿轮厂用17Cr2Mn2TiH1钢生产EQ153(8吨)驱动桥锥齿轮、盆桥齿,首次台架寿命:输出30000NM,15~16万次;调整接触区大小、齿厚分配、重叠系数之后,达到40万次,台架寿命提高2.5倍以上,远远超过日本的SCM822H钢。使用20CrNi3H生产16吨车的锥齿轮,用SCM822H钢生产盆桥齿,台架寿命考核:输出扭距55000NM,平均输出寿命为2.85万次。调整接触区大小、齿厚分配、重叠系数之后,尽管锥齿轮心部硬度仍然偏低;输出还是达到6~20万次,台架寿命提高近4倍。这两个典型实例,齿轮材料、热处理工艺均没有任何调整,仅仅调整齿轮的接触区大小、齿厚分配、重叠系数,就取得显著效果。可见,提高驱动桥齿的啮合精度、驱动桥的装配精度,是提高我国重载驱动桥使用寿命的重要途径。我国经过四轮国家科技攻关,不论是钢的品种,钢的内在质量,都已与日、美、欧国家的水平相当。为提高齿轮的啮合精度奠定了基础。根据齿轮特定的淬火冷却速度,正确选择齿轮钢材的淬透性区间,或正确选择与冷却速度相匹配的钢种;在齿轮热加工时,尽量减小淬火冷却速度的离散度;在机加工时,严格控制工装、及每道工序的加工精度。严格控制桥的装配精度。我国重载驱动桥的使用寿命,一定能达到国外的先进水平。

我国机械行业与冶金行业通力合作,经过近30年对国外齿轮用钢的引进、应用、吸收、消化;逐步形成具有中国特色,具有自主知识产权的齿轮用钢合金化体系。这个体系,其内在质量、淬透能力的构成、使用寿命与国外相当;但是,工艺更加简化,钢材的采购成本大幅度降低。逐步完善、推广应用这个体系,必将大大提高我国齿轮零件在国际市场中的竞争能力。

建筑材料计算公式

建筑材料计算公式12墙一个平方需要64块标准砖 18墙一个平方需要96块标准砖 24墙一个平方需要128块标准砖 37墙一个平方需为192块标准砖 49墙一个平方需为256块标准砖 计算公式: 单位立方米240墙砖用量1/(0.24*0.12*0.6) 单位立方米370墙砖用量1/(0.37*0.12*0.6) 空心24墙一个平方需要80多块标准砖 一个土建工程师应掌握的数据(转) 一、普通住宅建筑混凝土用量和用钢量: 1、多层砌体住宅: 钢筋30KG/m2 碌0.3 — 0.33m3/m2 2、多层框架 钢筋38— 42KG/m2 碌0.33 — 0.35m3/m2 3、小高层11—12层 钢筋50— 52KG/m2

碌0.35m3/m2 4、高层17-18层 钢筋54— 60KG/m2 碌0.36m3/m2 5、高层30层H=94米 钢筋65— 75KG/m2 碌0.42 — 0.47m3/m2 6、高层酒店式公寓28层H=90米 钢筋65— 70KG/m2 碌0.38 — 0.42m3/m2 7、别墅混凝土用量和用钢量介于多层砌体住宅和高层11 —12层之间以上数据按抗震7度区规则结构设计 二、普通多层住宅楼施工预算经济指标 1、室外门窗(不包括单元门、防盗门)面积占建筑面积0.20 — 0.24 2、模版面积占建筑面积2.2左右 3、室外抹灰面积占建筑面积0.4左右 4、室内抹灰面积占建筑面积3.8 三、施工功效 1、一个抹灰工一天抹灰在35平米 2、一个砖工一天砌红砖1000—1800块

3、一个砖工一天砌空心砖800—1000块 4、瓷砖15平米 5、刮大白第一遍300平米/天,第二遍180平米/天,第三遍压光90 平米/天 四、基础数据 1、混凝土重量2500KG/m3 2、钢筋每延米重量0.00617*d*d 3、干砂子重量1500KG/m3湿砂重量1700KG/m3 4、石子重量2200KG/m3 5、一立方米红砖525块左右(分墙厚) 6、一立方米空心砖175块左右 7、筛一方干净砂需1.3方普通砂 一点不同观点: 1、一般多层砌体住宅:钢筋25-30KG/m2其中经济适用房为 16--18KG/m2. 2、一般多层砌体住宅,室外抹灰面积占建筑面积0.5--0.7。 3、一般多层砌体住宅,模版面积占建筑面积 1.3--2.2 ,根据现浇板 多少、柱密度变化很大。 4、一个砖工一天砌240 砖墙1000—1800 块,370 或500 墙2000--3000 块。

钢材理论重量计算办法

钢材理论重量计算办法 钢材理论重量计算的计量单位为公斤( kg )。 其基本公式为: W (重量, kg ) = F (断面积 mm2 )× L (长度, m )×ρ(密度, g/cm3 )× 1/1000 钢的密度为: 7.85g/cm3 ,各种钢材理论重量计算公式如下: 名称(单位)计算公式符号意义计算举例 圆钢盘条 (kg/m) W= 0.006165 ×d 2 d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m) W= 0.00617 ×d 2 d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 方钢 (kg/m) W= 0.00785 ×a 2 a= 边宽mm 边宽20 mm 的方钢,求每m 重量。每m 重量= 0.00785 ×202=3.14kg 扁钢 (kg/m) W= 0.00785 ×b ×d b= 边宽mm d= 厚mm 边宽40 mm ,厚5mm 的扁钢,求每m 重量。每m 重量= 0.00785 ×40 ×5= 1.57kg 六角钢 (kg/m) W= 0.006798 ×s 2 s= 对边距离mm 对边距离50 mm 的六角钢,求每m 重量。每m 重量= 0.006798 ×502=17kg 八角钢 (kg/m) W= 0.0065 ×s 2 s= 对边距离mm 对边距离80 mm 的八角钢,求每m 重量。每m 重量= 0.0065 ×802=41.62kg 等边角钢 (kg/m) W= 0.00785 ×[d (2b – d )+0.215 (R2 – 2r 2 )] b= 边宽 d= 边厚 R= 内弧半径 r= 端弧半径求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg 不等边角钢 (kg/m) W= 0.00785 ×[d (B+b – d )+0.215 (R2 – 2 r 2 )] B= 长边宽 b= 短边宽 d= 边厚 R= 内弧半径 r= 端弧半径求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(30+20 –4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.46kg 槽钢 (kg/m) W=0.00785 ×[hd+2t (b – d )+0.349 (R2 – r 2 )] h= 高 b= 腿长 d= 腰厚 t= 平均腿厚

建筑材料计算公式47516

1、密度:材料在绝对密实状态下,单位体积的质量,称为材料的密度。 ρ——材料的密度(g/cm3或kg/m3)m——材料的质量(g或kg) V——材料在绝对密实状态下的体积(cm3或m3)计算式:ρ=m/V 2、表观密度:工程中常用的散粒状材料,如混凝土用砂、石子等,因孔隙很少,可不比磨 成细粉,直接用排水法测得颗粒体积(包括材料的密实体积和闭口孔隙体积,但不包括开口孔隙体积),称为绝对密实体积的近似值。 ρ’——材料的表观密度(g/cm3或kg/m3) m——材料在干燥状态下的质量(g或kg) V’——材料在自然状态下不含开口孔隙的体积(cm3或m3) 计算式:p’=m/V’ 3、体积密度:材料在自然状态下,单位体积的质量,称为材料的体积密度。 ρ0——材料的体积密度(g/cm3或kg/m3)m——材料在干燥状态下的质量(g或kg) V0——材料在自然状态下的体积(包括材料内部封闭孔隙和开口孔隙的体积)(cm3或m3)计算式:ρ0=m/V0 4、堆积密度:散粒材料或粉末状、颗粒状材料在堆积状态下,单位体积的质量。 ρ’0——材料的堆积密度(g/cm3或kg/m3) m——材料在干燥状态下的质量(g或kg)计算式:ρ’0=m/ V’0 V’0——材料的堆积体积(cm3或m3) 5、密实度:密实度是只材料体积内被固体物质所充实的程度。(用D表示) 计算式:D=V/V0*100%=ρ0/ρ*100% 6、空隙率:空隙率是指材料体积内,孔隙体积占材料在自然状态下总体积的百分率。(用P

表示) 计算式:P={(V0-V)/V}*100%=(1-ρ0/ρ)*100% 密实度于空隙率的关系为:P+D=1 7、填充率:填充率是只散粒材料的堆积体积中,被其颗粒所填充的程度。(用D’表示) 计算式:D’=V’/V’0*100%=ρ’0/ρ’*100% 8、空隙率:空隙率是只散粒材料的堆积体积中,颗粒之间的空隙体积占材料堆积体积的百 分率(用P’表示) 计算式:P’={(V’0-V’)/V’0}*100%=(1-ρ’0/ρ’)*100% 9、吸水性:材料在水中吸收水分的性质,称为吸水性。溪水性的大小用吸水率表示,吸水 率分为质量吸水率W质和体积吸水率W吸两种。(下为质量吸水率) W质——材料的质量吸水率(%)m湿——材料吸水饱和后的质量(g) m干——材料干燥状态下的质量(g)计算式:W质= (m湿-m干)/m干*100% 体积吸水率:W体——材料的体积吸水率(%)m湿——材料吸水饱和后的质量(g)m干——材料在干燥状态下的质量V0——干燥材料自然状态下的体积(cm3)ρh2o——水的密度(g/cm3)计算式:W体=(m湿-m干)/V0*(1/ρh2o)*100% 质量吸水率和体积吸水率的关系为:W体=W质*ρh2o 10、吸湿性:材料在空气中吸收水分的性质,称为吸湿性。(用含水率W含表示) W含——材料的含水率(%)m含——材料汗水时的质量(g) m干——材料干燥时的质量(g)计算式:W含=(m含-m干)/m干*100% 11、耐水性:材料长期在饱和水的作用下不破坏、其强度也不显著降低的性质,称为材料 的耐水性。 K软——材料的软化系数f饱——材料在吸水饱和状态下的抗压强度,Mpa

钢的淬透性曲线的测定

钢的淬透性曲线的测定 一、实验目的与要求 1.建立淬透性的概念,熟悉测定结构钢淬透性的方法。 2.了解淬透性及淬透性曲线在热处理工艺上的一些应用。 二、实验设备及材料 1. 设备:箱式电阻加热炉;端淬装置。 2. 材料:45钢和40Cr钢制成的标准端淬试样若干个。 三、实验原理 所谓钢的淬透性,是指钢在淬火时获得马氏体的能力。它是钢材本身固有的一个属性。 淬透性的大小是用淬透层深度来表示的。从理论上讲,淬透性应以全部马氏体(或含少量残余奥氏体)组织的深度来定。但实际土,要用测硬度的办法来确定这一深度很困难。因为当马氏体组织中含有少量非马氏体组织时,在硬度值上并无明显变化。只有当钢中含有50%马氏体组织时,硬度才会发生明显变化,且在宏观腐蚀时,此区域又是白亮层与未硬化区的分界,容易确认。因此,在实践中人为地把工件表面到半马氏体组织的深度作为淬透层深度。半马氏体组织的硬度主要取决于钢的含碳量。图1-3表明了含碳量与半马氏体组织硬度的关系。 钢的淬透性的大小对其热处理后的机械性能有很大的影响,对合理选材及正确制定热处理工艺都是十分重要的。 影响钢的淬透性的因素很多,如钢的化学成分、奥氏体化温度及钢的原始组织等。 应当指出,钢的淬透性与淬硬性是两个不同的概念。淬硬性是指钢淬火后获得马氏体的最大硬度值,与钢的含碳量有关,含磷量高,淬硬性相应就好。 四、实验内容及步骤 一)内容:45钢末端淬透性实验。 试样按GB225-63中规定了试样的形状和尺寸 (见图3-1)。

图3-1 端淬试验原理图 二)步骤: 1. 将试样按热处理工艺规范进行加热并保温后,迅速从炉中取出,放在顶端淬火器上(见图2-1)。同时打开喷水阀门进行喷水,喷水时间不应少于10分钟,水温应保持在10—30℃,自由水柱高度以65mm 为准 2. 淬火后将试样圆柱表面相对称的两侧各磨去0.4mm 的深度,以得到两个相互平行的平面。磨制过程中要进行冷却,以免试样产生回火而影响硬度的测量。 3. 用洛氏硬度计从试样末端起每隔1.5mm 测其硬度值。当硬度值下降趋于平稳时,可每隔3mm 测量一次。一般约测到40—50mm 处 4. 根据实验测得的数据,绘制硬度值(纵坐标)与水冷端距离(横坐标) 曲线,即钢的淬透性曲线,如图3-2所示。由于材料的化学成分有一定的波动,硬度值也在一定范围内变化,因此淬透性曲线通常为淬透性带。 至水冷端距离:mm 含碳量:% 图3-2 淬透性曲线 图 3-3 含碳量与半马氏体硬度的关系 钢的淬透性以“d HRC J ”表示。其中J 表示末端淬透性试验,d 表示距试样末端的距离,HRC 是指在距离d 处所测得的硬度值(即指该钢的半马氏体硬度)。末端淬火实验测得的淬透性曲线并不能直接用来确定钢的临界直径。而临界直径又是衡量钢的淬透性的重要标准。为此,还需借助其它图表进行换算。 5. 根据实验测得的d 值,再利用图3-4,查出钢的实际淬火临界直径D 临。 图3-4是圆棒700oC 时,在水中和油中淬火时,其截面不同位置与端淬距离的关系图。

各种材料计算公式

各种材料计算公式 地砖 规格:1000*1000、800*800、600*600、500*500、400*400、300*300、200*200、100*100 粗略计算法:用砖数量=房间面积/一块地砖的面积*1.1 精确计算法:用砖数量=(房间面积/砖长)*(房间宽度/砖宽)*1.1 例:房间长5米,宽3米,砖规格400X400 用砖数量 =(15米/0.4米)*(3米/0.4米)*1.1=104块 实木地板 常用规格:900*90、750*90、600*90 粗略计算法:使用地板块数=房间面积/一块地板的面积*1.08 精确计算法:使用地板块数=(房间长度/地板长度)*(房间宽度/地板宽度)*1.08 例:长5米,宽3米,地板规格750*90 用板数量=(5米/0.75米)*(3米/0.09米)*1.08=239块 注:实木地板在铺装中通常有8%的损耗 复合地板 常见规格:1.2米*0.19米 粗略计算法:地板块数=房间面积/一块地板面积*1.05 精确计算法:地板块数=(房间长度/地板长度)*(房间宽度/地板宽度)*1.05 例:长5米,宽3米 用板数量=(5米/1.2米)*(3米/0.19米)*1.05米约=70块 注:通常有3%--5%的损耗按面积算千万不要忽视! 涂料 规格:5升、15升 家装常用5升,5升涂料刷面积为35平方米(涂2面) 计算方法:墙面面积=(长+宽)*2*层高

顶面面积=长*宽、地面面积=长*宽 总使用桶数=(墙面面积+顶面积+地面面积)/35平方米 例:长5米,宽3米 墙面积=(5米+3米)*2*2.85平方米=45.6平方米 顶面面积=5米*3米=15平方米 地面面积=5米*3米=15平方米 涂料量=(45.6+15+15)平方米/35平方米=75.6平方米/35平方米=2桶 注:以上只是理论上涂刷量,因在施工中要加入适量清水,所以以上用量只是最低涂刷量 墙纸 规格:每卷长10米,宽0.53米 计算方法:墙纸总面积=地面面积*3 (地面积=长*宽) 墙纸的卷数=墙纸总面积/(0.53米*10米) 常见墙纸规格为每卷长10m,宽0.53m。 粗略计算方法:墙纸的总面积=地面面积×3,墙纸的卷数=墙纸的总面积÷(0.53×10)精确的计算方法:使用的分量数=墙纸总长度÷房间实际高度, 使用单位的总量数=房间的周长÷墙纸的宽度, 使用墙纸的卷数=使用单位的总量数÷使用单位的分量数 因为墙纸规格固定,因此在计算它的用量时,要注意墙纸的实际使用长度,通常要以房间的实际高度减去踢脚板以及顶线的高度。 另外房间的门、窗面积也要在使用的分量中减去。这种计算方法适用于素色或细碎花的墙纸。墙纸的拼贴要考虑对花,图案越大,损耗越大,因此要比实际用量多买10%左右。 隔墙、吊顶 常用的隔墙吊顶有哪些? 隔墙:玻璃(多与铝合金型材塑钢型材组成固定隔断、推拉隔断)石膏板、轻质砖、玻璃砖(价格高)木材、各种板材。常用柜子、鱼缸、屏风

装修费用的一些计算公式

装修费用的一些计算公式 Prepared on 22 November 2020

1、地面砖用量:(注一般不同房型损耗率不同大约1-5%) 每百米用量=100/[(块料长+灰缝宽)×(块料宽+灰缝宽)]×(1+损耗率) 例如选用复古地砖规格为×,拼缝宽为,损耗率为1%,100平方米需用块数为: 100平方米用量=100/[(+)×(+)×(1+)约等于401块 地砖总价=地砖数×地砖单价 3、顶棚用量: 顶棚板用量=(长-屏蔽长)×(宽-屏蔽宽) 例如以净尺寸面积计算出PVC塑料天棚的用量。PVC塑胶板的单价是元每平方米,屏蔽长、宽均为,天棚长为3M,宽为,用量如下:顶棚板用量=(3-)×(-)约等于每平方米 3、包门用量: 包门材料用量=门外框长×门外框宽 例如(如图)用复合木板包门,门外框长、宽为,则其材料用量如下: 包门材料用量=×=平方米 4、壁纸用量: 壁纸用量=(高-屏蔽长)×(宽-屏蔽宽)×壁数-门面积-窗面积

例如(如图)墙面以净尺寸面积计算,屏蔽为24CM,墙高、宽 5M,门面积为平方米,窗面积为平方米,则用量如下: 壁纸用量=[(-)×(5-)]×4--约等于平方米 以上是部分用料量的计算,依逐个将各部分装修用料量乘以各自单价后累加,就得出了装修工程的总材料费用。 5、地板用量:(实木) 纵向用量=房间长度/地砖长度 横向用量=房间宽度/地砖宽度 如遇除不尽,要用进位法,不可四舍五入,但纵向则不到半块算半块,超过半块算一块。 地板总价=总用量×单价 地板损耗=地板面积-住房面积 地板损耗率=地板损耗/住房面积 注:一般地板损耗率不大于5% 6、贴墙材料用量 贴墙材料的花色品种确定后,可根据居室面积大小合理地计算用料尺寸,考虑到施工时可能的损耗,可比实际用量多买5%左右。计算贴墙材料的方法有两种: 1.以公式计算,即将房间的面积乘以,其积就是贴墙用料数。如20平方米房间用料为20×=50m。还有一个较为精确的公式:S=(L/M + 1)(H + h) + C/M

建筑材料计算公式

地砖: 规格(单位:mm):1000*1000、800*800、600*600、500*500、400*400、300*300、200*200、100*100。 粗略计算方:用砖数量=房间面积/一块地砖的面积*1.1 。 精确计算方:用砖数量=(房间长/砖长)*(房间宽度/砖宽度)*1.1 。例:房间长5米,宽3米,地砖规格400*400 用砖数量=(5m/0.4m)*(3m/0.4m)*1.1=104块。 实木地板: 常用规格:900*90、750*90、600*90 粗略计算方:使用地板块数=房间面积/一块地砖的面积*1.08。 精确计算方:使用地板块数=(房间长/砖长)*(房间宽度/地板宽度)*1.08 。 例:房间长5米,宽3米,地砖规格750*90 用砖数量=(5m/0.75m)*(3m/0.09m)*1.08=239块。 复合地板 常见规格:1.2米*0.19米 粗略计算法:地板块数=房间面积/一块地板面积*1.05 精确计算法:地板块数=(房间长度/地板长度)*(房间宽度/地板宽度)*1.05 例:长5米,宽3米 用板数量=(5米/1.2米)*(3米/0.19米)*1.05米约=70块 注:通常有3%--5%的损耗按面积算千万不要忽视! 涂料

规格:5升、15升 家装常用5升,5升涂料刷面积为35平方米(涂2面) 计算方法:墙面面积=(长+宽)*2*层高 顶面面积=长*宽、地面面积=长*宽 总使用桶数=(墙面面积+顶面积+地面面积)/35平方米 例:长5米,宽3米 墙面积=(5米+3米)*2*2.85平方米=45.6平方米 顶面面积=5米*3米=15平方米 地面面积=5米*3米=15平方米 涂料量=(45.6+15+15)平方米/35平方米=75.6平方米/35平方米=2桶 注:以上只是理论上涂刷量,因在施工中要加入适量清水,所以以上用量只是最低涂刷量 墙纸 规格:每卷长10米,宽0.53米 计算方法:墙纸总面积=地面面积*3 (地面积=长*宽) 墙纸的卷数=墙纸总面积/(0.53米*10米) 常见墙纸规格为每卷长10m,宽0.53m。 粗略计算方法:墙纸的总面积=地面面积×3,墙纸的卷数=墙纸的总面积÷(0.53×10) 精确的计算方法:使用的分量数=墙纸总长度÷房间实际高度, 使用单位的总量数=房间的周长÷墙纸的宽度, 使用墙纸的卷数=使用单位的总量数÷使用单位的分量数 因为墙纸规格固定,因此在计算它的用量时,要注意墙纸的实际使用长度,通常要以房间的实际高度减去踢脚板以及顶线的高度。

钢的淬透性测定

实验一:钢的淬透性测定 实验学时:3 实验类型:综合性实验 实验要求:必修 一、实验目的 (一)掌握钢的淬透性的实验方法,重点末端淬火法。 (二)了解化学成分、奥氏体化温度及晶粒度对钢的淬透性的影响。 二、实验内容、实验原理、方法和手段 (一)淬透性的概念及其影响因素 在实际生产中,零件一般通过淬火得到马氏体,以提高机械性能。钢的淬透性是指钢经奥氏体化后在一定冷却条件下淬火时获得马氏体组织的能力。常用淬透性曲线、淬硬层深度或临界淬透直径来表示。淬透性与淬硬性不同,它是淬硬层深度的尺度而不是获得的最大的硬度值。它决定淬火后从表面到心部硬度分布的情况。一般规定“由钢的表面至内部马氏体占50%(其余的50%为珠光体类型组织)的组织处的距离”为淬硬层深度。淬硬层越深,就表明该钢的淬透性越好。如果淬硬层尝试达到心部,则表明该钢全部淬透。 影响淬透性的因素很多,最主要的是钢的化学成分,其次为奥氏体化温度、晶粒度等等。钢的淬透性与过冷奥氏体稳定性有密切的关系。当奥氏体向珠光体转变的速度越慢,也就是等温转变开始曲线越向右移,钢的淬透性越大,反之就越小,可见影响淬透性的因素与影响奥氏体等温转变的因素是相同的。 溶入奥氏体的大多数合金元素除Co以外,都增加过冷奥氏体的稳定性,使曲线右移,降低临界冷却速度,提高钢的淬透性。 钢中含碳量对临界冷却速度的影响为:亚共析钢随含碳量的增加,临界冷却速度降低,淬透性增加;过共析钢随含碳量的增加,临界冷却速度增高,淬透性下降。含碳量超过1.2%~1.3%时,淬透性明显降低。 (二)淬透性的测定方法 淬透性的测定可以大致分为计算法和实验法两类。目前使用的方法还是实验法,它主要是通过测定标准试样来评价钢的淬透性。具体的试验方法有多种,现将其中通常采用的四种方法概述如下。

矩形钢管重量计算公式

矩形钢管重量计算公式·矩形管的焊接工艺 矩形管规格表 矩形钢管理论重量计算方法:(边长+边长)×2×壁厚×0.00785×长度 执行标准: GB/T3094-2000 (国标) 冷压异型钢管 GB/T6728-2002 (国标) 结构用冷弯空心型钢 ASTM A500 (美标)结构用碳素钢冷成型圆截面和异形截面焊接钢管和无缝钢管EN10219-1-2006(欧标) 非合金及细晶粒的冷成型焊接空心结构型材 JIS G 3466 (日标) 一般构造用角型钢管 产品材质:Q235、Q345(16Mn)、20#、合金钢、不锈钢。 产品用途:机械设备、太阳能设备、钢结构用,汽车部件、桥梁地桩、护栏、船舶内部结构用。

(40+20)×2×1.5×0.00785×1=1.413 (60+40)×2×2×0.00785×1=3.14 (长+宽)×2÷(3.14-厚度)×厚度×0.02466= kg/m 圆管重量-矩形管计算公式-规格 2010-08-10 23:00:31| 分类:钢管知识| 标签:|字号大中小订阅 圆管重量计算公式 公式:kg/m = (Od - Wt) * Wt * 0.02466 其中Od是外径Wt是壁厚 kg/m=(钢管外径-钢管壁厚)*钢管壁厚*0.02466 od代表钢管外径,wt代表壁厚 2.方管和矩形管重量计算公式 a.方管:公式:kg/m = (Oc - 4Wt) * Wt * 0.00785 其中:Oc是外周长,Wt是壁厚;正方形Oc=4*a 长方形Oc=2a+2b a,b是边长 Kg/m=(外周长-4边壁厚之和)*壁厚*0.00785 Kg/m=(Oc=2a+2b)-壁厚之和)*壁厚*0.00785 矩形钢管理论重量计算公式 公式:kg/m = (Oc - 4Wt) * Wt * 0.00785 其中:Oc是外周长,Wt是壁厚;正方形Oc=4*a 长方形Oc=2a+2b a,b是边长 镀锌管理论重量计算公式 镀锌钢管重量公式:[(外径-壁厚)*壁厚]*0.02466=kg/米(每米的重量) ◆焊管 普通镀锌焊管1.2寸重量为3.13kg/m,1.5寸重量为3.84kg/m;

不锈钢理论重量计算公式(所有钢材)

不锈钢理论重量计算公式(所有钢材) 角钢:每米重量=0.00785*(边宽+边宽-边厚)*边厚圆钢:每米重量=0.00617*直径*直径(螺纹钢和圆钢相同)扁钢:每米重量=0.00785*厚度*边宽 管材:每米重量=0.0246615*壁厚*(外径-壁厚)板材:每米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚)紫铜管:每米重量=0.02796*壁厚*(外径-壁厚) 铝花纹板:每平方米重量=2.96*厚度 有色金属比重:紫铜板8.9黄铜板8.5锌板7.2铅板11.37 有色金属板材的计算公式为:每平方米重量=比重*厚度 不锈钢板理论重量计算公式 钢品理论重量重量(kg )=厚度(mm )×宽度(mm )×长度(mm )×密度值密度钢种 7.93 201,202,301,302,304,304L,305,321 7.75 405,410,420 7.98 309S,310S,316S,316L,347 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢元棒,钢丝,理论计算公式 ★ 直径×直径×0.00609=kg/m(适用于410 420 420j2 430 431)例如:¢50 50×50×0.00609=15.23K g/米 ★直径×直径×0.00623=kg/m(适用于301 303 304 316 316L 321)例如:¢50 50×50×0.00623=15.575Kg/米 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢型材,理论计算公式◆六角棒对边×对边×0.0069=Kg/米◆方棒边宽×边宽×0.00793=Kg/米 --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 不锈钢管,理论计算公式 ○(外径-壁厚)×壁厚×0.02491=Kg/米例如¢57×3.5 (57- 3.5)×3.5×0.02491= 4.66Kg/米

完整的装修材料计算公式定理

最全的装修材料计算公式 涂料乳胶漆 涂料乳胶漆的包装基本分为5升和15升两种规格。 以家庭中常用的5升容量为例,5升的理论涂刷面积为两遍35 m2o 粗略计算方法:地面面积*2.5/35=使用桶数 精确计算方法:(长+宽)*2*房高=墙面面积 长*宽=顶面面积 (墙面面积+顶面面积-门窗面积)/35=使用桶数。以长5m、宽3m高 2.9m的房间为例,室内的墙,顶涂刷面积计算如下: 墙面面积:(5m+3m )*2*2.9m=46.4 m2 顶面面积:(5m*3m )=15 m2 涂料量:(46.4+15 )/35 m2 =1.7 桶复合地板 理:air式澤面

粗略的计算方法: 地面面积/ (1.2m*0.19 )*105% (其中5%为损耗量)=地板块数精确的计算方法: (房间长度/板长)* (房间宽度/板宽)=地板块数 以长5m,宽4m的房间,选用900*90*0.18m 规格地板为例: 房间5m/1.2m=5 块房间宽4m/0.19m=22 块 长5块*宽22块=用板总量110块 tips : 复合木地板在铺装中会有3%-5%的损耗,如果以面积计算,千万不要忽视 这部份用量实木地板

常见规格有900*90*18mm 750*90*18mm , 600*90*18mm 粗略的计算方法: 房间面积/地板面积*1.08 (其中8%为损耗量)=使用地板块数 精确的计算方法: (房间长/地板长)* (房间宽/地板宽)=使用地板块数 以长8CM,宽5M的房间,用900*90*0.18m 规格地板为例,房间长8m/ 板长0.9m=9块。房间宽5m/板宽0.09m=56块。长9块*宽56块=用板总量504块tips : 实木地板铺装中通常要有5%-8%的损耗,在计算中要考虑进去 地砖

金属材料计算公式

角钢,扁钢,钢管,板材,管材,弯头理论重量计算公式 一,,弯头重量计算公式 圆环体积=2X3.14X3.14(r^2)R r--圆环圆半径 R--圆环回转半径 中空管圆环体积=2X3.14X3.14((r^2)-(r''^2))R r''--圆环内圆半径 90,60,45度的弯头(肘管)体积分别是对应中空管圆环体积的1/4、1/6、1/8。 钢的密度工程上计算重量时按7.85公斤/立方分米,密度*体积=重量(质量)。 1、180°弯头按表2倍计算,45°按1/2计算; 2、R1.0DN弯头重量按表2/3计算; 3、表中未列出壁厚的重量,可取与之相近的两个重量计算平均值; 4、90°弯头计算公式; 0.0387*S(D-S)R/1000 式中 S=壁厚mm D=外径mm R= 弯曲半径mm 二,以下是焊接弯头的计算公式 1.外径-壁厚X壁厚X0.0387X弯曲半径÷1000, =90°弯头的理论重量 举例:426*1090°R=1.5D的 (426-10)*10*0.387*R600÷1000=96.59Kg 180°弯头按表2倍计算,45°按1/2计算; 2..(外径-壁厚)X壁厚X0.02466XR倍数X1.57X公称通径=90°弯头的理论重量 举例:举例:426*1090°R=1.5D的 (426-10)*10*0.02466*1.5D*1.57*400=96.6Kg 180°弯头按表2倍计算,45°按1/2计算。 三、圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 圆钢重量(公斤)=0.00617×直径×直径×长度 方钢重量(公斤)=0.00785×边宽×边宽×长度 六角钢重量(公斤)=0.0068×对边宽×对边宽×长度 八角钢重量(公斤)=0.0065×对边宽×对边宽×长度 螺纹钢重量(公斤)=0.00617×计算直径×计算直径×长度 角钢重量(公斤)=0.00785×(边宽边宽-边厚)×边厚×长度 扁钢重量(公斤)=0.00785×厚度×边宽×长度 钢管重量(公斤)=0.02466×壁厚×(外径-壁厚)×长度 不锈钢管:(外径-壁厚)×壁厚×0.02491=公斤/米 板材:每米重量=7.85*厚度 黄铜管:每米重量=0.02670*壁厚*(外径-壁厚)

装修材料的计算方法

装修材料的计算方法 一、骨架用料核算 1、吊架轻钢龙骨 1)吊顶龙骨架:主龙骨+副龙骨=M 单位:米 损耗: 3% M总=1.03M 2)辅件:吊件——用于悬吊主龙骨 挂件——用于将副龙骨与主龙骨挂接 接插件——用于副龙骨接头处的挂接 连接件——用于主龙骨接头处的连接 上人主龙骨吊件:每米 1~1.5件 不上人主龙骨吊件:每米 0.5~1件 副龙骨挂件:挂件数量=副龙骨总数(m)×1.3/2 接插件:接插件=副龙骨总数(m)/吊顶框架分格边长 3)吊件材料: a、标准吊析 b、自制吊件:吊杆材料、吊点铁杆、射钉或膨胀螺栓、吊杆螺母。 a)上人龙骨架的吊杆用φ8左右的钢条,并在吊杆的一端做一

段长为30mm的螺纹。 b)不上人龙骨可用10#镀锌铁丝做吊杆。 c)吊杆、吊点铁件的数量等于吊顶吊点数,或略多。 d)射钉、膨胀螺栓和吊杆螺母数量是吊点的两倍。 4)其它材料 油漆是吊件、吊杆防锈材料,可按每公斤油漆涂刷100㎡来计。 每公斤防锈漆需配半公斤松节水和0.25公斤棉维丝。 2、隔墙龙骨架材料 沿顶、沿地和加强龙骨,竖向龙骨、横撑龙骨和配件。 墙高小于3.2m的间隔墙,常采用截取竖向龙骨来取代加强和横撑龙骨,以减少所需龙骨的品种。 采用自攻螺钉、电焊、铆接的方式减少配件的品种。 1)沿顶沿地龙骨 (隔墙长度×2+门窗框数量)×1.05 2)竖向龙骨 a、隔墙面积小,实数竖向龙骨数量×隔墙高度 b、隔墙面积≥200㎡ a)按图纸上每米隔墙中竖向龙骨的根数乘上隔墙总长度,得出总根数。

b)隔墙高度乘上竖向龙骨总根数,得出总长度。 M总=M墙×G根×M高×1.05 (m×根/m×m) 3)辅助材料 平头自攻螺钉、膨胀螺栓、水泥钉、电焊条、铝平头抽芯铆钉等紧固件,以及固定门框用的铁脚件。 a)平头自攻螺钉常用M4×20或M5×20,用量 1kg/100㎡。 b)膨胀螺栓和水泥钉主要用来固定沿地、沿顶或沿墙龙骨,可按每米隔墙4只。 c)铝平头抽芯铆钉主要用来铆接一些特殊部位,100只/100㎡。 d)电焊条主要用于轻钢龙骨连接处的点焊,0.25kg/100㎡。 3、铝合金吊顶架材料核算 1)主材:L型墙侧边龙骨,T型主骨和T型横撑龙骨组合成型 a、侧边龙骨按天花周边长度计算。通风口,灯槽。 b、有主龙骨、横撑龙骨之分的吊顶,先数有多少条主龙骨,再乘以每条长度,横撑龙骨数量同主龙骨。 c、没有主次龙骨之分的龙骨,计算每平方米吊顶有几米铝龙骨,乘以吊顶总面积。 通常1.2m×0.6m的长方框结构的吊顶,每平方米需3.4m铝合金龙骨,0.6m×0.6m的方框结构的吊顶,每平方米需4.5m的铝合金龙骨。

淬透性测定方法(精)

职业教育材料成型与控制技术专业教学资源库金属材料与热处理课程 淬透性的测定方法 主讲教师:雷伟斌 西安航空职业技术学院

淬透性的测定方法 一、末端淬火法 简称端淬试验,是目前国内外应用最广泛的淬透性评定方法,其主要特点是方法简便、应用范围广,可用于测定碳素钢、合金结构钢、弹簧钢、轴承钢、合金工具钢等的淬透性。端淬试验所用试样为 25×100 mm 的圆柱形试样,将试样加热奥氏体化后放到端淬试验台上对其下端喷水冷却(图1a )。喷水柱自由高度为65 mm ,喷水管口距试样末端为12.5 mm ,水温为10-30 C 。待试样全部冷透后,将试样沿轴线方向在相对180的 两边各磨去0.2~0.5 mm 的深度,获得两个互相平行的平面,然后从距水冷端1.5 mm 处沿轴线测定洛氏硬度值,当硬度下降缓慢时可以每隔3 mm 测一次硬度。将测定结果绘成硬度分布曲线,即钢的淬透性曲线(图1b )。钢的淬透性以J d HRC 来表示,d 为至水冷端的距离,HRC 为在该处测定的硬度值。如J 640,表示距水冷端6 mm 处试样的硬度值为40 HRC 。由于钢中成分波动,所以每一种钢的淬透性曲线上都有一个波动范围,称为淬透性带。 钢的顶端淬火淬透性曲线并不能直接表示出可以淬透的工件直径,还 图1 端淬试验与淬透性曲线 a)试样与装置 b)淬透性曲线

需借助其他图表进行换算。 二、临界直径法 如果试样中心硬度高于(等于)半马氏体区硬度,就可以认为试样被淬透。则用上述U 曲线法评定时,总可以找到在一定的淬火介质中冷却时能够淬透(达到半马氏体区硬度)的临界直径。小于此直径时全部可以淬透,而大于此直径时就不能淬透。这个临界直径用D 0表示。相同淬火介质中的D 0值,就可以表示不同钢种的淬透性。 显然,钢种及淬火介质不同,D 0也不同。为了排除冷却条件的影响,根据传热方程的解,建立了理想临界直径D 0的概念。假设淬火介质的淬冷烈度H 为无穷大,即试样淬入冷却介质时其表面温度可立即冷却到淬火介质的温度,此时所能淬透(形成50%马氏体)的最大直径称为理想临界直径D i 。D i 取决于钢的成分,而与试样尺寸及冷却介质无关,它是反映钢淬透性的基本判据。该数值在工程应用时作为基本换算量,从而使各种淬透性评定方法之间,以及不同淬火介质中淬火后的临界直径之间建立起一定的关系。图2是理想临界直径D i 与一定淬火介质中淬火时的临界直径D 0之间的换算图表。例如,已知某种钢的理想临界直径D i 为50mm ,如换算成在油淬(淬冷烈度H =0.4)时的临界直径D 0,可从H =0.4时所对应的坐标上查出D 0为20 mm 。 1.6 2.0 i n m 4 5 0.40 0.80 H 值 10.0 5.0 2.0 1.0

板簧计算

汽车平衡悬架钢板弹簧设 计 东风德纳车桥有限公司 2005年9月15日

一、 钢板弹簧作用和特点 a. 结构简单,制造、维修方便; b. 弹性元件作用; c. 导向作用; d. 传递侧向、纵向力和力矩的作用; e. 多片弹簧片间摩擦还起系统阻尼作用; f. 在车架或车身上两点支承,受力合理; g. 可实现变刚度特性; h. 相比螺旋弹簧和扭杆弹簧而言,单位质量的储能量较小,在同样的使用条件下,钢板弹簧要重一些。 二、 钢板弹簧的种类、材料热处理及弹簧表面强化 1. 目前,汽车上使用的钢板弹簧常见的有以下几种: 1) 普通多片钢板弹簧; 2) 少片变截面钢板弹簧; 3) 两级变刚度复式钢板弹簧; 4) 渐变刚度钢板弹簧 2. 钢板弹簧材料的一般要求 钢板弹簧与其它弹性元件一样,弹簧使用寿命与材料及制造工艺有很大关系,因此选用弹簧材料时应考虑以下几个方面因素 1) 弹性极限 弹簧在弹性极限范围内变形时,希望弹簧储存的弹性变形能要大,而弹簧在单位中单位体积内储存的弹性变形能是与材料的弹性极限平方成正比,而与弹性模量与反比,因此从提高材料贮存的弹性变形能角度看,希望提高材料的弹性极限。一般说材料抗拉强度高,弹性极限也高。弹性极限与材料的化学成分和金相组织有较大关系,在弹簧钢中如果提高碳、硅、锰元素含量,可以提高材料弹性极限。弹簧采用中温回火处理,能够得到具有较高弹性极限的回火屈氏体组织。 2) 弹性模量 弹性模量有两种,即拉伸弹性模量E 和剪切弹性模量G 。材料弹性模量愈小,材料变形和贮存的弹性变形能愈大。从这个角度看,国外采用了弹性模量较低的增强树脂材料弹簧(FRP 弹簧)。 3) 疲劳强度 由于弹簧多在交变载荷下工作,所以要求材料应有较高的疲劳极限,疲劳强度与材料抗拉强度b 和屈服强度s σ成正比,因此为了提高弹簧的疲劳强度,应设法提高材料的抗拉强度b σ和屈服强度与抗拉强度之比(b s σσ)。 4) 淬透性 对于断面较厚的或变截面钢板弹簧,希望用淬透性较好的材料。材料如不能淬透,淬火组织中将含有较多的非马氏体组织,使淬火后硬度降低。虽然可以通过降低回火温度来达到所需要的硬度,但其机械性能较差。为保证材料在整个截面内具有相同的机械性能,要求淬火时不仅表面而且心部也能淬透,且淬火后表面硬度和心部硬度相差不能太大。 综上所述,汽车钢板弹簧材料应具有较高的抗拉强度、屈服极限、疲劳强度及一定冲击韧性。此外要求材料具有良好的淬透性,热处理不易脱碳等性能。 3. 钢板弹簧材料 目前国内使用最多的弹簧钢板材料是钢Mn Si -,如Mn Si 260和MnA Si 260该钢种

建筑材料计算公式

建筑材料计算公式 This model paper was revised by LINDA on December 15, 2012.

建筑材料计算公式12墙一个平方需要64块标准砖 18墙一个平方需要96块标准砖 24墙一个平方需要128块标准砖 37墙一个平方需为192块标准砖 49墙一个平方需为256块标准砖 计算公式: 单位立方米240墙砖用量1/** 单位立方米370墙砖用量1/** 空心24墙一个平方需要80多块标准砖 一个土建工程师应掌握的数据(转) 一、普通住宅建筑混凝土用量和用钢量: 1、多层砌体住宅: 钢筋30KG/m2 砼—m2 2、多层框架

钢筋38—42KG/m2 砼—m2 3、小高层11—12层 钢筋50—52KG/m2 砼m2 4、高层17—18层 钢筋54—60KG/m2 砼m2 5、高层30层H=94米 钢筋65—75KG/m2 砼—m2 6、高层酒店式公寓28层H=90米 钢筋65—70KG/m2 砼—m2 7、别墅混凝土用量和用钢量介于多层砌体住宅和高层11—12层之间以上数据按抗震7度区规则结构设计

二、普通多层住宅楼施工预算经济指标 1、室外门窗(不包括单元门、防盗门)面积占建筑面积— 2、模版面积占建筑面积左右 3、室外抹灰面积占建筑面积左右 4、室内抹灰面积占建筑面积 三、施工功效 1、一个抹灰工一天抹灰在35平米 2、一个砖工一天砌红砖1000—1800块 3、一个砖工一天砌空心砖800—1000块 4、瓷砖15平米 5、刮大白第一遍300平米/天,第二遍180平米/天,第三遍压光90平米/天 四、基础数据 1、混凝土重量2500KG/m3 2、钢筋每延米重量*d*d 3、干砂子重量1500KG/m3,湿砂重量1700KG/m3 4、石子重量2200KG/m3

热处理参数确定(调质)

部份材料热处理方法 一、45 钢调质: 1. 正常情况下加热温度在 810~840℃之间: 只要充分奥氏体化,加热温度越低越好。 2. 冷却中应注意的问题: 热处理生产中最重要的一环就是冷却,很多热处理缺陷都产生在冷却中。如:开裂、硬度不足、变形超差、局部有软点等等。 ⑴出炉时不要慌忙,有时为怕不能淬硬而手忙脚乱。只要不低于Ar3,是不会析出铁素体而影响表面硬度的。 ⑵水温在冷却中相当重要,要严格控制水温不要超过 30℃,若超过 30℃,析出铁素体将是不可避免的,任你此后将工件冷透,硬度很难高于 300HB。因此要严格控制水温不要超过 30℃。 ⑶工件入水后要不停的在水中移动,以快速破裂蒸汽膜而提高 500℃以上的冷却速度,从而避免析出铁素体或珠光体,进而影响工件最终硬度。 ⑷为避免复杂工件开裂,温度低于 300℃以下可以出水空冷一会再水冷,当工件温度不超过 150℃出水回火。 3. 严格按 45 钢的回火温度回火: 一般取中偏下的回火温度,按 HRC=62-T×T/9000 进行计算,并结合每台炉子自身温差及淬火情况进行适当调整。 4. 其它注意事项: ⑴对于小件,特别是 30mm 以下的工件,要注意淬裂的问题。45 钢仍然可能开裂,在硬度要求不太高时,可以选择油淬。 ⑵除严格按规定的温度回火外,应根据实际淬火情况调整回火参数。 ⑶对于批量较大且要求硬度较高的小件,要特别注意在水中的搅动问题,以增加冷却能力。否则,返工不可避免。 ⑷选择合适的电炉,确保加热时间不可过长,长时间加热并不利于提高工件硬度。 二、合金结构钢调质: 1. 合金结构钢调质: 可以参照上面的要求。应注意的是:由于加入合金元素,C 曲线不同程度右移,甚至改变了形状;提高了珠光体的稳定性,提高了钢的淬透性和淬硬性,淬裂倾向增加。因此,对相同含碳量来说,各临界点有所升高,加热温度要略高一些,保温时间要适当延长,便于合金碳化物的分解;淬火冷却时要适当缩短水冷时间,增加空冷时间,从而避免开裂。 由于钢中添加了合金元素,提高了钢的抗回火稳定性能,相同含碳量合金钢的回火温度比碳钢高。 2. 回火硬度计算公式: 回火硬度计算公式是经过大量试验数据,进行回归计算的结果,使用中不能无限扩展,比如:40Cr 的公式HRC=75-3T/40,不能理解为淬火后不回火的硬度为 75HRC。在淬火时要保证工件淬火质量,回火时间充分。 常用材料淬火加热温度及回火硬度计算公式 材料加热温度℃硬度计算公式材料加热温度℃硬度计算公式 45 820~840 HRC=62-T2 /9000 60Si2Mn 850~880 HRC=68-T2 /11250 35 850~870 65Mn 790~820 HRC=74-3T/40 40Cr 830~850 HRC=75-3T/40 T8 780~810 HRC=78-T/80 35CrMo 840~860 同 40Cr T10 780~810 42CrMo 820~840 T12 770~800 HRC=72.5-T/16 GCr15 830~850 HB=733-2T/3 5CrMnMo 830~860 HRC=69-3T/50 9SiCr 860~880 20CrMnMo 860~890 注:正常加热淬火按公式计算回火温度,并根据各炉况进行适当调整。

相关主题
文本预览
相关文档 最新文档