火电厂烟气NOx控制技术分析及脱硝技术比较
- 格式:pdf
- 大小:147.98 KB
- 文档页数:2
火电厂烟气脱硝技术介绍据统计,我国大气污染物中NOx 60 %来自于煤的燃烧, 其中, 火电厂发电用煤又占了全国燃煤的70%。
2000 年我国火电厂氮氧化物排放量控制在500万t 左右,按照目前的排放控制水平,到2020 年,氮氧化物排放量将达到1 000 万t 以上。
面对严峻的环保形势,我国于1991 年制定了第一部《火电厂污染物排放标准》,在此后的12 年间,历经两次修订(1996 版和2003 版) ,排放标准日益严格。
2004 年,国家允许的氮氧化物最高排放浓度(标准状态,下文称为标) 为450 mg/ m3 (V daf > 20 %) 。
此排放限值已接近于目前炉内低氮燃烧技术所能达到的最高水平,若要进一步降低NOx 的排放浓度,只有安装烟气脱硝系统。
1 脱硝技术概况1.1 NOx 的形成机理NOx 是NO 和NO2 的统称,燃煤电厂烟气中的NOx 主要是煤燃烧产生的。
通常,燃烧生成的NOx 由超过90 %的NO 和小于10 %的NO2 组成。
依据氮氧化物生成机理,可分为热力型、燃料型和快速型NOx 3类,其中快速型NOx 生成量很少,可以忽略不计。
热力型NOx 是指当炉膛温度在1 350 ℃以上时,空气中的氮气在高温下被氧化生成NOx ,当温度足够高时,热力型NOx 可达20 %。
燃料型NOx 指的是燃料中的有机氮化物在燃烧过程中生成的NOx ,其生成量主要取决于空气燃料的混合比。
燃料型NOx 约占NOx 总生成量的75%~90%。
1.2 低NOx 燃烧技术对应NOx 的两种主要生成机理,炉内脱硝技术主要从两方面入手降低NOx 生成:(1) 降低炉内燃烧温度以减少热力型NOx 生成; (2) 营造煤粉着火区域的还原性气氛以减少燃料型NOx 生成。
在具体的应用上,往往是两种技术的综合,既降低燃烧温度,又降低着火区域的氧气浓度。
低NOx 燃烧技术主要包括低氧燃烧、分级燃烧、烟气再循环、采用低NOx 燃烧器等。
浅谈火电厂氮氧化物排放的控制措施火电厂作为我国电力供应的重要组成部分,是主要的氮氧化物(NOx)排放源之一。
氮氧化物的排放对大气环境造成严重污染,对人体健康和生态系统产生危害。
控制火电厂的氮氧化物排放是保护环境和促进可持续发展的重要措施之一。
本文就火电厂氮氧化物排放的控制措施进行浅谈。
一、煤炭质量控制煤炭是火电厂的主要燃料,燃烧过程中产生大量的氮氧化物。
提高煤炭质量是控制氮氧化物排放的有效手段之一。
高品质的煤炭燃烧所产生的氮氧化物排放量较低。
要加强对煤炭质量的管理,合理选择煤种、控制水分和灰分含量,降低硫和氮等元素的含量,提高煤炭的燃烧效率,减少氮氧化物的生成。
二、燃烧控制技术燃烧是火电厂氮氧化物排放的主要来源之一。
控制燃烧过程,限制氮氧化物的生成和排放是关键。
主要采取以下技术措施:1. 高效燃烧器的应用:高效燃烧器具有优化燃烧室形态和内部气流动态的特点,可提高煤炭燃烧的效率,减少氮氧化物的生成。
2. 燃烧过程调控:合理控制燃烧过程,降低煤粉的燃烧温度和燃烧时间,减少氮氧化物的生成。
3. 脱硝技术:通过在燃烧过程中加入适量的氨水或尿素溶液,使氮氧化物与氨水中的氨发生反应,生成氮和水,达到减少氮氧化物排放的目的。
三、烟气脱硝技术烟气脱硝技术是火电厂控制氮氧化物排放的主要手段之一。
目前主要采用的烟气脱硝技术有选择性催化还原法(SCR)和选择性非催化还原法(SNCR)。
1. SCR技术:SCR技术采用催化剂催化还原烟气中的氮氧化物。
烟气经过催化层时,氮氧化物与氨反应生成氮和水。
SCR技术具有脱硝效率高、氨逃逸少等优点,但投资和运行成本较高。
四、尾气处理技术尾气处理是对火电厂氮氧化物排放进行控制的最后一道防线。
常用的尾气处理技术包括干法和湿法除尘技术。
1. 干法除尘:干法除尘通过机械分离的方式,将烟气中的颗粒物沉积下来。
干法除尘技术具有结构简单、投资和运行成本低等优点。
2. 湿法除尘:湿法除尘通过喷淋液将烟气中的颗粒物捕集下来。
混合SNCR/SCR烟气脱硝技术引言烟气中的氮氧化物(NOx)是一类对大气环境具有严重危害的化学物质。
煤炭和石油的燃烧过程中产生的NOx排放量高,对空气质量和人类健康造成威胁。
为了控制烟气中的NOx排放,研发了多种不同的脱硝技术。
其中混合SNCR/SCR烟气脱硝技术是一种高效且经济的方法。
本文将介绍混合SNCR/SCR烟气脱硝技术的原理、应用和优势。
混合SNCR/SCR烟气脱硝技术的原理混合SNCR/SCR烟气脱硝技术是一种结合了选择性催化还原(SCR)和选择性非催化还原(SNCR)的方法。
具体原理如下:1.SNCR:选择性非催化还原是利用还原剂(例如氨水、尿素溶液)在高温下与NOx反应生成氮气和水。
这种反应过程发生在燃烧室或锅炉的燃烧区域中,通过调节还原剂的喷射位置和流量,可以实现对烟气中NOx的脱硝效果。
2.SCR:选择性催化还原是利用SCR催化剂(通常为氨基催化剂)在低温下催化氨和NOx之间的反应。
这种反应需要在还原剂(氨水、尿素溶液)的存在下进行,并且必须在一定的温度范围内才能实现高效的脱硝效果。
SCR 催化剂通常被放置在锅炉尾部或烟囱内的催化反应器中,烟气经过催化剂层时,NOx与氨发生反应生成氮气和水。
混合SNCR/SCR烟气脱硝技术是将SNCR和SCR两种脱硝方法结合起来,既能在高温区域降低NOx排放,又能在低温区域进一步脱硝,达到更高的脱硝效率。
混合SNCR/SCR烟气脱硝技术的应用混合SNCR/SCR烟气脱硝技术主要应用于煤炭和石油燃烧等高温烟气脱硝领域。
以下是一些典型的应用案例:1.火电厂:混合SNCR/SCR烟气脱硝技术在火电厂的锅炉烟气处理中得到广泛应用。
通过在燃烧过程中添加适量的还原剂和催化剂,可以降低烟气中的NOx排放量,符合环保要求。
2.钢铁工业:钢铁生产过程中产生的高温烟气中含有大量的NOx,采用混合SNCR/SCR烟气脱硝技术可以有效地降低NOx排放,保护环境和工人的健康。
浅谈火电厂氮氧化物排放的控制措施火电厂是我国能源结构中重要的能源供应来源之一,然而火电厂的运行和排放也带来了环境污染问题。
氮氧化物(NOx)是火电厂排放的主要污染物之一,对大气环境和人体健康都造成了严重的影响。
火电厂必须采取控制措施来减少氮氧化物的排放。
一、改进燃烧技术:燃烧过程是氮氧化物排放的主要来源。
通过改进燃烧技术,可以减少氮氧化物的生成。
比如采用低氮燃烧技术,通过优化燃烧风量、燃烧温度和燃料供应方式等方式,减少废气中的氮氧化物含量。
二、燃烧过程中添加催化剂:在燃烧过程中添加催化剂可以有效地降低氮氧化物的生成。
常用的催化剂有氨水(NH3)、尿素(CO(NH2)2)等。
催化剂通过与氮氧化物发生化学反应,将其转化为无害的氮(N2)和水(H2O),从而达到降低氮氧化物排放的目的。
三、安装烟气脱硝装置:烟气脱硝是一种常用的氮氧化物控制技术。
脱硝装置可以通过将燃烧过程中产生的氮氧化物与氨水等还原剂进行反应,使其转化为无害的氮和水。
常见的烟气脱硝技术包括选择性催化还原(SCR)和选择性非催化还原(SNCR)等。
四、提高能源利用效率:火电厂的能源利用效率越高,其排放的氮氧化物数量就越少。
提高火电厂的能源利用效率,减少能源的浪费,可以有效地降低氮氧化物的排放。
五、加强管理和监控:火电厂应建立科学的排放监测系统,实时监测和记录氮氧化物的排放情况。
并制定严格的排放标准,加强对火电厂的排放管理,确保排放符合环保要求。
加强对火电厂人员的培训和教育,提高员工的环保意识和技能水平。
火电厂氮氧化物排放的控制措施包括改进燃烧技术、燃烧过程中添加催化剂、安装烟气脱硝装置、提高能源利用效率以及加强管理和监控等。
这些措施的实施可以有效地减少氮氧化物的排放,保护环境,改善大气质量,推动可持续能源的发展。
烟气脱硝技术国内外发展对比研究烟气脱硝技术是控制大气污染物排放的重要手段之一,对于降低燃煤、燃油等工业过程中产生的氮氧化物(NOx)排放有着重要作用。
在国内外,各个国家和地区都在积极推行烟气脱硝技术,通过削减大气污染物排放,实现环境保护和可持续发展。
本文旨在比较国内外烟气脱硝技术的发展现状与趋势,为我国烟气脱硝技术的进一步发展提供参考。
目前,国内外的烟气脱硝技术主要包括选择性催化还原技术(SCR)、选择性非催化还原技术(SNCR)、吸收剂直接注射技术(DSI)以及直接脱硝(DeNOx)等几种主要技术。
这些技术的应用取决于不同的燃烧设备和废气排放特点,同时也受到法规政策、环保要求和经济成本等因素的影响。
从国外发展来看,欧洲是烟气脱硝技术的领先者之一。
欧洲重视氮氧化物的减排问题,为减少燃煤电厂的NOx排放,推广了SCR技术。
该技术主要通过催化反应,在高温条件下,将烟气中的NOx还原为氮气和水,可降低70%以上的NOx排放。
欧洲在SCR技术的应用和推广方面取得了显著成绩,并在技术研发方面不断创新。
与此同时,美国也是烟气脱硝技术的重要应用国家。
美国的烟气脱硝技术主要集中在非催化还原技术(SNCR)以及吸收剂直接注射技术(DSI)。
SNCR技术通过在高温氮氧化物的反应区通过非催化反应直接还原为氮气和水,DSI则是将氨溶液或脱硝剂直接喷雾入炉膛与氮氧化物发生反应。
这两种技术克服了SCR技术一些运维难题,可以广泛适用于不同类型的燃烧设备。
与发达国家相比,我国在烟气脱硝技术的发展方面相对滞后。
起初,我国主要采用低氨催化剂和补充燃料SNCR技术用于燃煤电厂的脱硝,该技术成本低、投资小,但效率较低。
随着环境保护要求的提高和技术进步,我国开始广泛应用SCR技术,提高了脱硝效率。
然而,SCR技术操作复杂、投资大,同时催化剂的选择和运维也面临着挑战。
为了解决我国烟气脱硝技术面临的问题,国内科研院所、环保企业以及高校积极开展烟气脱硝技术的研发和创新。
火电厂烟气脱硝原理
烟气脱硝是火电厂排放控制中的重要环节,它的原理是利用化学方法去除烟气中的氮氧化物(NOx)。
NOx是一种对环境和人体健康有害的气体,因此火电厂需要采取措施来减少其排放。
火电厂烟气脱硝的原理主要包括选择性催化还原(SCR)和非选择性催化还原(SNCR)两种方法。
其中SCR是目前应用最为广泛的一种技术。
SCR技术是通过在烟气中喷射氨水或尿素溶液,将NOx与氨发生反应,生成无害的氮气和水蒸气。
这种反应需要在催化剂的作用下进行,常用的催化剂包括钒、钛或钨等金属氧化物。
在SCR脱硝系统中,烟气经过预处理后,与氨水或尿素溶液在催化剂的作用下发生反应,从而达到脱硝的目的。
另一种脱硝方法是SNCR,它是通过在烟气中喷射氨水或尿素溶液,利用高温下的非选择性催化还原反应将NOx还原为氮气和水蒸气。
相比于SCR,SNCR技术更适用于低温烟气,但其脱硝效率相对较低。
无论是SCR还是SNCR,烟气脱硝技术都可以有效地减少火电厂排放的NOx,降低对环境和人体健康的影响。
然而,脱硝过程中也会产生一定量的氨气,因此需要对氨气进行后处理,以确保对环境的影响最小化。
总的来说,火电厂烟气脱硝技术是一项重要的环保措施,通过采用适当的脱硝方法,可以有效地减少NOx的排放,保护环境和人类健康。
随着技术的不断进步,相信烟气脱硝技术将会在未来得到更广泛的应用和发展。
垃圾焚烧发电烟气中NOX污染控制技术垃圾焚烧技术由于其自身特点,有望成为未来中国城市垃圾处置的主要方式。
而焚烧烟气中NoX的处理,则是垃圾焚烧技术得以广泛应用的重要前提。
目前处理NoX的方法为SNCR和低温SCR。
SNCR将复原剂直接喷入炉膛内,易操作,脱硝效率较低。
低温SCR采用低温低尘布置,能耗小,硫酸氢铁的生成制约了低温催化剂的广泛应用。
需进一步研发在低温时抗硫性能较好的催化剂,工程中优化反应器和脱硫工艺的设计,以减少硫酸氢铁的生成,增加催化剂在线加热装置,延长催化剂的寿命。
目前,“垃圾堆成山”已经成为我国很多地方急需要解决的问题,城市垃圾在其巨大存有量的同时,每年还以两位数的速率增长。
目前常用的城市生活垃圾处理方法包括卫生填埋、堆肥和焚烧。
卫生填埋技术的基建和维护费用较低,但垃圾减容效果差,占地面积大;堆肥对垃圾种类要求严格,加之我国垃圾分类制度尚不完善,制约了其广泛应用;垃圾焚烧有着占地面积小、减量化等优点,尤其适合中国,尤其是国内大中型城市,但垃圾焚烧后的烟气带来的二次污染问题目前尚未完全解决。
垃圾焚烧烟气的污染物控制,能否满足GB18485-20**《生活垃圾焚烧污染控制标准》或EU2000/76/EC标准中规定的污染物排放限值要求,成为该技术趋于成熟并得到有效应用的重要标志。
垃圾焚烧尾气中含有HCESOx.NOx,粉尘、二恶英和重金属等污染物,目前已建成的垃圾焚烧炉普遍采用的烟气净化工艺流程为:锅炉尾气出口+半干法+干法+布袋除尘器+SCR,对于环保要求比较高的厂区会增加SNCR脱硝和湿法脱酸,消石灰被用作脱酸工艺半干法+干法的吸收剂。
近年来,为了后续SCR工艺的有效运行和降低S02的排放浓度,也有采用NaHC03作为脱酸的吸收剂。
采用活性炭吸附二恶英和重金属,采用布袋除尘器去除粉尘,采用SNCR和SCR联合去除NOx。
故各工艺的高效运行是垃圾焚烧技术得以广泛应用技术前提。
20**年、20**年和20**年中国城市建设统计年鉴报告显示,20**年、20**年和20**年我国用于生活垃圾处理的卫生填埋、堆肥和焚烧的总厂数和垃圾处理总量如下表1所示:表1中国城市垃圾处理处置方法和处理能力变化趋势从表中数据可以看出,20**年,集中处理率约为65.7%;按处理量统计,填埋、堆肥和焚烧处理比例分别占85.6%.L3%和15.2%;20**年,集中处理率约为84.9%;按处理量统计,填埋、堆肥和焚烧处理比例分别占72.4%、2.7%和24.7%o20**年,集中处理率约为95.09%;按处理量统计,填埋、堆肥和焚烧处理比例分别占66.9%、L64%和26.9%肥年内,填埋减少了1.87个百分点,堆肥增加了0.34个百分点,焚烧处理增加了1L7个百分点,20**年相比于20**年,堆肥处理量和厂数都呈现出下降趋势。
关于火电厂锅炉脱硫脱硝及烟气除尘的技术分析摘要:近年来,我国环境污染问题日益凸显,尤其是大气环境污染。
大气污染物主要来源于工业废气,火电厂污染物排放,硫氮氧化物含量不断增加,严重破坏生态环境。
火电厂提出了脱硫脱硝与烟气除尘技术,有效减少了大气污染物排放量,减轻大气环境污染。
为了进一步提升火电厂排污技术,结合技术特点与发展现状,本文对火电厂锅炉脱硫脱硝及烟气除尘技术进行探究,并提出创新展望及发展建议。
关键词:火电厂、脱硫脱硝、烟气除尘引言:国内外,煤炭资源需求量越来越大,中国作为资源大国,也不可忽视资源短缺问题。
国际上,坚持可持续发展理念,走可持续发展道路,环境保护意识深入人心。
火电厂应用火力发电,电力供应又以火力发电为主,燃烧消耗大量煤炭资源,直接排放到大气中,破坏大气层。
因此,尽可能的减小污染物排放量,提升煤炭资源利用率,对火电厂锅炉脱硫脱硝及烟气除尘技术不断优化改进,切实降低污染物排放量。
一、火电厂锅炉脱硫脱硝及烟气除尘技术的发展现状国家加大控制环境污染,企业不断加强环保力度,控制污染物排放量,锅炉脱硫脱硝及烟气除尘技术是时代遗留的产物,利用自身优势与特性,在火电厂锅炉环节发展已经较为成熟。
但在经济发展过程中,各行各业煤炭能源需求量不断增加,与节能减排发展要求存在矛盾,有些企业不但没有降低污染物排放量,反而产生更多污染有害气体,这与可持续发展战略相违背,不利于今后长远发展。
因此,在脱硫脱硝与烟气除尘技术上,要调整修改方案,改进设备,优化技术应用。
根据调查表明,脱硫脱硝及烟气除尘技术已经实现大部分电站企业的应用,改善了一些地区的大气污染问题,煤炭燃烧量有效降低。
相关技术人员监管脱硫脱硝情况,满足基本污染物排放要求,但吸收塔形式存在差异,脱硫脱硝效果不一,吸收塔无阻塞情况会导致资源浪费,增大原料消耗量,提高成本。
研究吸收塔反应原理,适当改进炉内空间结构,修正回流设备,易吸收塔为切入点增强除尘技术。