位错的基本类型和特征!
- 格式:docx
- 大小:206.03 KB
- 文档页数:8
2.2 位错的基本概念晶体中的线缺陷是各种类型的位错。
其特点是原子发生错排的范围,在一个方向上尺寸较大,而另外两个方向上尺寸较小,是一个直径为3—5个原子间距,长几百到几万个原子间距的管状原子畸变区。
虽然位错种类很多,但最简单,最基本的类型有两种:一种是刃型位错,另一种是螺型位错。
位错是一种极为重要的晶体缺陷,对金属强度、塑变、扩散、相变等影响显著。
一位错学说的产生位错:晶体中某处一列或若干列原子有规律的错排。
意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。
)人们很早就知道金属可以塑性变形,但对其机理不清楚。
在位错被提出之前,人们对晶体的塑性变形作了广泛的研究。
实验发现在塑性变形的晶体表面存在大量的台阶,因此,提出了塑性变形是通过晶体的滑移来实现的观点。
晶体的滑移过程如图1所示。
根据晶体塑性变形后台阶产生的方向,发现滑移总是沿着某些特定的晶面和晶体学方向进行的。
这些晶面被称为滑移面;晶体学方向被称为滑移方向。
一个滑移面和其面上的一个滑移方向组成一个滑移系。
当外界应力达到某一临界值时,滑移系才发生滑移,使晶体产生宏观的变形,将这个应力称之为临界切应力。
本世纪初到30年代,许多学者对晶体塑变做了不少实验工作。
1926年弗兰克尔利用理想晶体的模型,假定滑移时滑移面两侧晶体象刚体一样,所有原子τ=G/2π(G为切变模量),与实验结果相比相差3—4同步平移,并估算了理论切变强度mτ值也为G/30,仍与实测临个数量级,即使采用更完善一些的原子间作用力模型估算,m界切应力相差很大。
这一矛盾在很长一段时间难以解释。
1934年泰勒(G.I.Tayor),波朗依(M.Polanyi)和奥罗万(E.Orowan)三人几乎同时提出晶体中位错的概念。
泰勒把位错与晶体塑变的滑移联系起来,认为位错在切应力作用下发生运动,依靠位错的逐步传递完成了滑移过程,如图2。
与刚性滑移不同,位错的移动只需邻近原子作很小距离的弹性偏移就能实现,而晶体其他区域的原子仍处在正常位置,因此滑移所需的临界切应力大为减小。
第2章晶体缺陷晶体缺陷实际晶体中某些局部区域,原子排列是紊乱、不规则的,这些原子排列规则性受到严重破坏的区域统称为“晶体缺陷”。
晶体缺陷分类:1)点缺陷:如空位、间隙原子和置换原子等。
2)线缺陷:主要是位错。
3)面缺陷:如晶界、相界、层错和表面等。
2.1 点缺陷空位——晶体中某结点上的原子空缺了,则称为空位。
点缺陷的形成:肖特基空位:脱位原子迁移到晶体表面或者内表面的正常结点位置,从而使晶体内部留下空位,这样的空位称为肖特基(Schottky)空位。
(内部原子迁移到表面)肖特基(Schottky)空位弗仑克耳(Frenkel)空位弗仑克耳空位:脱位原子挤入点阵空隙,从而在晶体中形成数目相等的空位和间隙原子,称为弗仑克耳(Frenkel)空位。
(由正常位置迁移到间隙)外来原子:外来原子也可视为晶体的点缺陷,导致周围晶格的畸变。
外来原子挤入晶格间隙(间隙原子),或置换晶格中的某些结点(置换原子)。
空位的热力学分析:空位是由原子的热运动产生的,晶体中的原子以其平衡位置为中心不停地振动。
对于某单个原子而言,其振动能量也是瞬息万变的,在某瞬间原子的能量高到足以克服周围原子的束缚,离开其平衡位置从而形成空位。
空位是热力学稳定的缺陷点缺陷的平衡浓度系统自由能F=U- TS (U为内能,S为总熵值,T为绝对温度)平衡机理:实际上为两个矛盾因素的平衡a 点缺陷导致弹性畸变使晶体内能U增加,使自由能增加,降低热力学稳定性b 使晶体中原子排列混乱度增加,熵S增加,使自由能降低,增加降低热力学稳定性熵的变化包括两部分:①空位改变它周围原子的振动引起振动熵,Sf。
②空位在晶体点阵中的存在使体系的排列方式大大增加,出现许多不同的几何组态,使组态熵Sc增加。
空位浓度,是指晶体中空位总数和结点总数(原子总数)的比值。
随晶体中空位数目n的增多,自由能先逐渐降低,然后又逐渐增高,这样体系中在一定温度下存在一个平衡空位浓度,在平衡浓度下,体系的自由能最低。
位错的基本类型和特征位错的基本类型和特征什么是位错?位错(dislocation)是晶体中的一种结构缺陷,它代表了晶体中原子排列的变形和重组。
位错的存在对晶体的物理性质和机械性能具有重要影响。
位错的基本类型位错可以分为以下几个基本类型:1.直线位错:也称为边界位错(edge dislocation),可看作两个晶体之间的边界。
它是晶体中某个层面与其上方、下方的层面之间原子排列不一致所形成的。
2.螺旋位错:也称为线性位错(screw dislocation),是晶体中绕某一点形成螺旋状结构的位错。
它是由某一平面与其上方或下方的层面之间原子排列不一致所形成的。
3.混合位错:是直线位错和螺旋位错相互结合形成的位错。
位错的特征位错在晶体中具有以下特征:•位错存在与位错线(dislocation line)上,其形状可以是直线、螺旋状或弯曲的。
•位错的长度可以从纳米级到微米级,取决于材料的结晶度和应变状态。
•位错引入了局部应变场,使得晶体中原子间的距离发生变化。
•位错会导致局部应力场的形成,其中位错线附近有压应力和拉应力。
•位错可以移动和增殖,对物质的可塑性和断裂行为起重要作用。
位错的影响位错的存在对材料的性质和行为具有重要影响:•位错可以增加材料的塑性,使其具有更好的变形能力和可塑性。
•位错可以使材料的强度和硬度发生变化,影响其力学性能。
•位错还可以影响材料的电学、热学和光学性能,改变其导电性、热导率和光学吸收等特性。
•位错在材料的断裂行为中起重要作用,影响材料的断裂强度和断裂方式。
结论位错作为一种晶体中的结构缺陷,具有不可忽视的重要性。
通过研究位错的基本类型和特征,我们可以更好地理解材料的结构和性质,为材料的设计和应用提供更好的基础。
参考文献:1.Hirth, J. P., & Lothe, J. (1992). Theory of dislocations.Wiley.2.Hull, D., & Bacon, D. J. (2001). Introduction todislocations (Vol. 952). Butterworth-Heinemann.补充位错的性质和应用位错的形成原因位错的形成主要是由于晶体生长和形变过程中的原子排列不完美引起的。
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
第三章答案3-2略。
3-2试述位错的基本类型及其特点。
解:位错主要有两种:刃型位错和螺型位错。
刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。
螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。
3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料?解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。
由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。
3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些?解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。
2.<15%连续。
3.>40%不能形成固熔体。
(2)离子价:电价相同,形成连续固熔体。
(3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。
(4)场强因素。
(5)电负性:差值小,形成固熔体。
差值大形成化合物。
影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。
(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。
一般晶体中空隙愈大,结构愈疏松,易形成固溶体。
(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。
3-5试分析形成固溶体后对晶体性质的影响。
解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。
位错的基本类型和特征
晶体在不同的应力状态下,其滑移方式不同。
根据原子的滑移方向和位错线取向的几何特征不同,位错分为刃位错、螺位错和混合位错。
1. 刃位错
(1)形成及定义:
晶体在大于屈服值的切应力τ作用下,以ABCD面为滑移面发生滑移。
AD是晶体已滑移部分和未滑移部分的交线,犹如砍入晶体的一把刀的刀刃,即刃位错(或棱位错)。
刃型位错形成的原因:
晶体局部滑移造成的刃型位错
(2)几何特征:
位错线与原子滑移方向相垂直;滑移面上部位错线周围原子受压应力作用,原子间距小于正常晶格间距;滑移面下部位错线周围原子受拉应力作用,原子间距大于正常晶格间距。
刃型位错的分类:
分类:正刃位错,“┴”;负刃位错,“┬”。
符号中水平线代表滑移面,垂直线代表半个原子面。
(3)刃型位错的结构特征
①有一额外的半原子面,分正和负刃型位错;
②位错线可理解为是已滑移区与未滑移区的边界线,可是直线也可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③只能在同时包含有位错线和滑移矢量的滑移平面上滑移;
④位错周围点阵发生弹性畸变,有切应变,也有正应变;点阵畸变相对于多余半原子面是左右对称的,其程度随距位错线距离增大而减小。
就正刃型位错而言,上方受压,下方受拉。
⑤位错畸变区只有几个原子间距,是狭长的管道,故是线缺陷。
2. 螺位错
(1)形成及定义:
晶体在外加切应力τ作用下,沿ABCD面滑移,图中AD线为已滑移区与未滑移区的分界处。
由于位错线周围的一组原子面形成了一个连续的螺旋形坡面,形成螺位错。
晶体局部滑移造成的螺型位错
(2)几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
螺型位错的分类:有左、右旋之分。
它们之间符合左手、右手螺旋定则。
(3)结构特征
①螺型位错的结构特征无额外的半原子面,原子错排是轴对称的,分右旋和左旋螺型位错;
②螺型位错线与滑移矢量平行,故一定是直线,位错线移动方向与晶体滑移方向垂直;
③滑移面不是唯一的,包含螺型位错线的平面都可以作为它的滑移面;
④位错周围点阵也发生弹性畸变,但只有平行于位错线的切应变而无正应变,即不引起体积的膨胀和收缩;
⑤位错畸变区也是几个原子间距宽度,同样是线位错。
3.混合位错
在外力τ作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(伯氏矢量b),这样的位错称为混合位错。
如下图所示。
位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的,但位错线上各点的伯氏矢量相同,只是各点的刃型、螺型分量不同而已。
混合位错特征:混合位错可分为刃型分量和螺型分量,它们分别具有刃位错和螺位错的特征。
刃:ξ⊥b ;螺:ξ∥b (ξ为位错线正向)。
注意:位错线是已滑移区与未滑移区的边界线,所以一根位错线不能终止于晶体内部,而只能露头于晶体表面(包括晶界)。
若它终止于晶体内部,则必与其他位错线相连接,或在晶体内部形成封闭线。
形成封闭线的位错称为位错环。
位错环(dislocation loop)是一种典型的混合位错。
4. 位错类型的判定
本文来自“材子考研”。