位错的弹性性质-完整版
- 格式:pdf
- 大小:11.91 MB
- 文档页数:69
2.4 位错的弹性性质位错的弹性性质是位错理论的核心与基础。
它考虑的是位错在晶体中引起的畸变的分布及其能量变化。
处理位错的弹性性质有若干种方法,主要的有:连续介质方法、点阵离散方法等。
从理论发展和取得的效果来看,连续介质模型发展得比较成熟。
我们仅介绍位错连续介质模型考虑问题的方法和计算结果,详细的数学推导不作介绍,有兴趣的同学可进一步阅读教学参考书。
一、位错的连续介质模型早在1907年,伏特拉(Volterra)等在研究弹性体形变时,提出了连续介质模型。
位错理论提出来后,人们借用它来处理位错的长程弹性性质问题。
1.位错的连续介质模型基本思想将位错分为位错心和位错心以外两部分。
在位错中心附近,因为畸变严重,要直接考虑晶体结构和原子间的相互作用。
问题变得非常复杂,因而,在处理位错的能量分布时,将这一部分忽略。
在远离位错中心的区域,畸变较小,可视作弹性变形区,简化为连续介质。
用线性弹性理论处理。
即位错畸变能可以通过弹性应力场和应变的形式表达出来。
对此,我们仅作一般性的了解。
2.应力与应变的表示方法(1)应力分量如图1所示。
物体中任意一点可以抽象为一个小立方体,其应力状态可用9个应力分量描述。
它们是:图1 物体中一受力单元的应力分析σxx σxy σxzσyx σyy σyzσzx σzy σzz其中,角标的第一个符号表示应力作用面的外法线方向,第二个下标符号表示该应力的指向。
如σxy表示作用在与yoz坐标面平行的小平面上,而指向y方向的力,显而易见,它表示的是切应力分量。
同样的分析可以知道:σxx,σyy,σzz3个分量表示正应力分量,而其余6个分量全部是切应力分量。
平衡状态时,为了保持受力物体的刚性,作用力分量中只有6个是独立的,它们是:σxx,σyy,σzz,σxy,σxz和σyz,而σxy =σyx,σxz =σzx,σyz =σzy。
同样在柱面坐标系中,也有6个独立的应力分量:σrr,σθθ,σzz,σrθ,σrz,σθz。
第三节面缺陷Planar defects晶界孪晶界相界大角度晶界小角度晶界外表面内表面外表面:指固体材料与气体或液体的分界面。
它与摩擦、吸附、腐蚀、催化、光学、微电子等密切相关。
内界面:分为晶粒界面、亚晶界、孪晶界、层错、相界面等一、外表面Surface特点:外表面上的原子部分被其它原子包围,即相邻原子数比晶体内部少;表面成分与体内不一;表面层原子键与晶体内部不相等,能量高;表层点阵畸变等。
表面能:晶体表面单位面积自由能的增加,可理解为晶体表面产生单位面积新表面所作的功γ = dW/ds表面能与表面原子排列致密度相关,原子密排的表面具有最小的表面能;表面能与表面曲率相关,曲率大则表面能大;表面能对晶体生长、新相形成有重要作用。
二、晶界和亚晶界grain boundary and sub-grain boundary晶界Grain boundary:在多晶粒物质中,属于同一固相但位向不同的晶粒之间的界面称为晶界。
是只有几个原子间距宽度,从一个晶粒向另外一个晶粒过渡的,且具有一定程度原子错配的区域。
晶粒平均直径:0.015-0.25mm亚晶粒Sub-grain:一个晶粒中若干个位向稍有差异的晶粒;平均直径:0.001mm亚晶界Sub-grain boundary:相邻亚晶粒之间的界面晶界分类(根据相邻晶粒位相差)小角度晶界:(Low-angle grain boundary)相邻晶粒的位相差小于10º亚晶界一般为2º左右。
大角度晶界:(High-angle grain boundary)相邻晶粒的位相差大于10º大角度晶界小角度晶界相邻晶粒各转θ/2同号刃位错垂直排列相互垂直的两组刃位错垂直排列两组螺位错构成§θ<10°§由位错构成§位错密度↑——位向差↑——晶格畸变↑——晶界能↑位错密度——决定位向差与晶界能注:位错类型与排列方式——决定小角晶界的类型Ni3(Al-Ti)中的倾斜晶界——旋转10°——10°以上,一般在30°~40°重合点阵模型↓重合点阵+台阶模型↓重合点阵+台阶+小角晶界模型重合位置点阵模型Coincidence site lattice model当两个相邻晶粒的位相差为某一值时,若设想两晶粒的点阵彼此通过晶界向对方延伸,则其中一些原子将出现有规律的相互重合。
第五章位错的弹性性质绪论:⑴固体弹性理论主要是研究各向同性的连续固体在弹性变形(质点和对位移很小)时应力和应变分布。
⑵①如果某部分物体受的作用力是沿物体表面(界面)的外法线方向,它所产生的应力就是拉应力。
②如果作用力和物体表面的外法线方向相反,则此力为压力,它所产生的应力就是压应力。
③拉应力和压应力都和作用面垂直,统称为正应力 5.1⑴直角坐标表示:⑵极坐标表示:⑶平衡状态,有切应力互等定律。
否则六面体将发生转动。
⑷应变分量: ⑸应力与应变:5.1位错的应力场1.位错周围的弹性应力场弹性体假设模型:⑴晶体是完全弹性体;⑵ 晶体是各向同性的;⑶ 晶体中没有空隙,由连续介质组成。
2.螺位错的应力场⑴圆柱体的应力场与位错线在z 轴,对圆柱体上各点产生两种切应力 从这个圆柱体中取一个半径为r 的薄壁圆筒展开,便能看出在离开中θθτ=τzz心r 处的切应变为由于圆柱只在z 轴方向有位移,在xy 方向都没有位移,所以其他分量都为0:螺位错应力场的特点: 采用直角坐标: ①只有切应力分量(σθz 、σz θ),而无正应力。
②螺位错产生的切应力大小只与r 的大小有关,即只与离位错线的距 离成反比,而与θ、z 无关。
其应力场关于位错线是对称的。
3刃位错的应力场直角坐标表示:刃位错应力场的特点:①同时存在着正应力与切应力;②刃型位错的应力场,对称于多余半原子面;③滑移面上无正应力,只有切应力,且其切应力最大。
④正刃型位错的滑移面上侧,在x 方向的正应力为压应力; 滑移面下侧,在x 方向上的正应力为拉应力⑤半原子面上或与滑移面成45°的晶面上,无切应力。
5.2位错的弹性能⑴单位体积正应变能:2E 21V u ε= 单位体积切应变能:2G 21V u γ⋅=⑵单位长度螺位错的弹性应变能为:02s r Rln 4Gb L u U π==⑶单位长度刃位错的弹性应变能为:(取υ=1/3) r2b ⋅π⋅=γrGb G πγττθθ2z z =⋅==∴s U 23 s U 11U e =υ-=⑷混合位错的弹性能 : 其中:0.5≤α≤1 ⑸结论①总应变能U T =U 0+U el ②U T ∝b2,晶体中具有最小b 的位错最稳定b 大的位错有可能分解成b 小的位错,以降低系统的能量③螺位错比刃位错易形成。
第五章位错的弹性性质绪论:⑴固体弹性理论主要是研究各向同性的连续固体在弹性变形(质点和对位移很小)时应力和应变分布。
⑵①如果某部分物体受的作用力是沿物体表面(界面)的外法线方向,它所产生的应力就是拉应力。
②如果作用力和物体表面的外法线方向相反,则此力为压力,它所产生的应力就是压应力。
③拉应力和压应力都和作用面垂直,统称为正应力 5.1⑴直角坐标表示:⑵极坐标表示:⑶平衡状态,有切应力互等定律。
否则六面体将发生转动。
⑷应变分量: ⑸应力与应变:5.1位错的应力场1.位错周围的弹性应力场弹性体假设模型:⑴晶体是完全弹性体;⑵ 晶体是各向同性的;⑶ 晶体中没有空隙,由连续介质组成。
2.螺位错的应力场⑴圆柱体的应力场与位错线在z 轴,对圆柱体上各点产生两种切应力 从这个圆柱体中取一个半径为r 的薄壁圆筒展开,便能看出在离开中θθτ=τzz心r 处的切应变为由于圆柱只在z 轴方向有位移,在xy 方向都没有位移,所以其他分量都为0:螺位错应力场的特点: 采用直角坐标: ①只有切应力分量(σθz 、σz θ),而无正应力。
②螺位错产生的切应力大小只与r 的大小有关,即只与离位错线的距 离成反比,而与θ、z 无关。
其应力场关于位错线是对称的。
3刃位错的应力场直角坐标表示:刃位错应力场的特点:①同时存在着正应力与切应力;②刃型位错的应力场,对称于多余半原子面;③滑移面上无正应力,只有切应力,且其切应力最大。
④正刃型位错的滑移面上侧,在x 方向的正应力为压应力; 滑移面下侧,在x 方向上的正应力为拉应力⑤半原子面上或与滑移面成45°的晶面上,无切应力。
5.2位错的弹性能⑴单位体积正应变能:2E 21V u ε= 单位体积切应变能:2G 21V u γ⋅=⑵单位长度螺位错的弹性应变能为:02s r Rln 4Gb L u U π==⑶单位长度刃位错的弹性应变能为:(取υ=1/3) r2b ⋅π⋅=γrGb G πγττθθ2z z =⋅==∴s U 23 s U 11U e =υ-=⑷混合位错的弹性能 : 其中:0.5≤α≤1 ⑸结论①总应变能U T =U 0+U el ②U T ∝b2,晶体中具有最小b 的位错最稳定b 大的位错有可能分解成b 小的位错,以降低系统的能量③螺位错比刃位错易形成。