阳泉新景矿高煤级煤的孔隙结构分形特征
- 格式:docx
- 大小:38.17 KB
- 文档页数:4
阳泉矿区新景煤矿含水层分布特征
安润莲;李海珍;许保平
【期刊名称】《煤炭技术》
【年(卷),期】2000(19)6
【摘要】主要介绍了阳泉矿区新景矿含水层的岩性、分布、含水特征 ,渗透性能及矿井生产中可能出现的涌水现象 ,为矿井安全生产提供了防排水依据。
【总页数】2页(P37-38)
【关键词】含水层;裂隙水;含水性;煤矿;矿区;水文地质;承压水
【作者】安润莲;李海珍;许保平
【作者单位】阳泉煤炭专科学校;阳煤集团地测处
【正文语种】中文
【中图分类】P641.461
【相关文献】
1.阳泉新景煤矿煤层孔隙结构特征研究 [J], 张会青;李明;刘建伟
2.黄陵矿区主要含水层特征对煤矿采掘的影响 [J], 王瑶
3.鹤煤矿区二1煤层底板承压含水层赋存特征及防治技术 [J], 张杰
4.黔北矿区青龙煤矿瞬变电磁法在探查岩溶含水层特征中的应用 [J], 樊娟
5.典型华北型煤矿区主要充水含水层水文地球化学特征及控制因素 [J], 武亚遵;潘春芳;林云;曹飞龙;王子杰
因版权原因,仅展示原文概要,查看原文内容请购买。
深度研究报告:不同煤体结构煤的孔隙结构分形特征及其研究意义1. 研究目标本次研究旨在探究不同煤体结构的煤样中的孔隙结构分形特征,并分析其对煤体物理性质和工程应用的影响。
具体目标如下: - 分析不同煤体结构的孔隙结构特点;- 确定各种类型孔隙在不同类型煤中的分布特征; - 探讨孔隙结构分形特征与煤体物理性质之间的关系; - 提出针对不同孔隙结构的优化开采和利用方法。
2. 方法2.1 样品采集与制备从不同地质条件下采集具有代表性的不同类型(如无烟煤、焦化煤、褐煤等)的煤样。
将采集到的样品进行预处理,包括去除杂质、粉碎成合适粒度等。
2.2 孔隙结构表征选取合适的方法对样品中的孔隙结构进行表征,常用方法包括: - 红外光谱分析:通过红外光谱仪对煤样进行扫描,分析不同结构孔隙的红外吸收特征。
- 气体吸附法:利用比表面积仪、孔径分析仪等设备,测定煤样的比表面积、孔径分布等参数。
- 压汞法:利用压汞仪测定煤样的总孔隙体积、微孔和介孔的体积等。
2.3 分形分析采用分形理论对煤样中的孔隙结构进行分析,常用方法包括: - 盒计数法:根据盒计数法原理,通过对图像或数据进行盒子划分和统计,计算得到煤样中不同尺度下的盒数-边长关系曲线,并求取其斜率作为分形维数。
- 自相似法:通过对图像或数据进行幂律拟合,获得自相似维数和Hurst指数等参数。
2.4 数据处理与统计将实验获得的数据进行整理和处理,并运用适当的统计方法(如相关性分析、方差分析等)对结果进行验证和解释。
3. 发现3.1 孔隙结构特点通过对不同类型煤样的孔隙结构表征和分形分析,发现以下特点: - 不同类型煤样的孔隙结构存在明显差异,无烟煤中多为均匀排列的小孔隙,焦化煤中含有较多的微孔和介孔,褐煤中常见大孔隙和裂缝。
- 煤样中的孔隙结构具有分形特征,表现为自相似性和尺度效应。
不同类型煤样的分形维数存在差异。
3.2 孔隙结构与物理性质关系通过对数据处理与统计分析,得出以下结论: - 煤样中的比表面积与其孔隙结构分形维数呈负相关关系。
收稿日期:2022 02 06作者简介:高㊀明(1984-),男,山西阳泉人,工程师,从事瓦斯治理及绿色开采技术工作㊂doi:10.3969/j.issn.1005-2798.2022.08.010阳泉五矿15号煤层不同孔径的有效抽采半径对比研究高㊀明(潞安化工集团五矿,山西阳泉㊀045000)摘㊀要:针对阳泉五矿15号煤层瓦斯含量赋存差异性大㊁钻孔抽采不具备穿层钻孔施工且瓦斯衰减快等问题,文章采用理论计算㊁实验室试验和现场实测等综合研究方法,利用顺煤层快速施工钻孔流量法测定有效抽采半径,研究了不同孔径条件下不同孔距的瓦斯抽采规律,重点探究了不同孔径条件下不同孔距的抽采钻孔的极限预抽率,从而确定了不同孔径钻孔有效抽采半径与时间关系,对于类似条件下的矿井瓦斯抽采工作具有参考与借鉴意义㊂关键词:不同孔径;顺煤层施工;瓦斯抽采规律;极限预抽率;有效半径中图分类号:TD712.6㊀㊀㊀文献标识码:B㊀㊀㊀文章编号:1005 2798(2022)08 0035 07㊀㊀目前,抽采半径测定方法主要有瓦斯含量降低法㊁钻孔瓦斯流量法和瓦斯压力降低法[1-3]㊂瓦斯压力降低法由于封孔与钻孔技术弊端,难以准确掌握瓦斯的真实压力[4-6]㊂采用瓦斯含量法进行抽采半径考察时,需要测不同间距处的瓦斯含量,一旦实测瓦斯含量未降至临界值以下,含量取样孔将破坏考察条件,致使考察孔无法继续考察,该方法只需测含量数据,操作简单,但需要根据测定过程的实际情况随时调整布孔方案,同时含量测定数据间误差大㊁不确定性因素多㊂而钻孔瓦斯流量法操作相对简单㊁测试成功率高,大量抽采数据统计能降低单个数据测试偏差,考察出的半径更接近于现场抽采工程实际,因此,本次瓦斯抽采半径考察以钻孔瓦斯流量法确定15号煤层不同孔径90mm㊁113mm 和133mm 的有效抽采半径㊂钻孔瓦斯流量法通过单孔抽采时间与流量关系计算出瓦斯抽采累计量,根据其他参数总抽采量㊁瓦斯含量㊁有效抽采率之间的相互关系得到不同时间条件下的有效抽采孔距,此方法简单易操作,结果较为准确㊂1㊀试验工作面概况及钻孔布置概况1.1㊀试验工作面概况五矿该次15号煤层瓦斯抽采半径考察的试验巷道设在8408工作面回风巷㊂8408工作面东北部为矿界,东南部为8406工作面(已采),西南部及西北部为采区大巷㊂在8408工作面回风巷选取一段长250m 的巷道作为现场试验地点㊂8408回风巷为煤巷,该巷道设计长度为664m,巷道为矩形断面,巷道宽度为5.40m,巷道高度为4.05m,巷道断面积为21.87m 2.该工作面15号煤层整体为一轴向北东的向斜形态,煤层倾角3~11ʎ,平均约7ʎ,煤层总厚度6.2m.1.2㊀试验钻孔的布置在15号煤层8408工作面试验施工3种孔径(90mm㊁113mm 和133mm)考察钻孔,每种考察钻孔布置3组平行顺层钻孔,组间距为10m,每组钻孔数3个,钻孔间距分别设计为5.5m㊁6m㊁6.5m.试验钻孔长度在115~119m,开孔高度为1.5m,倾角为1~3ʎ(沿煤层倾角),保证上向孔,钻孔抽采管采用PVC 管,连接到抽采管路上,安装孔板流量计(或其他瓦斯抽采多参数计量装置)分别记录单孔的瓦斯流量㊁瓦斯浓度和负压,测定结果见表1,抽采半径考察钻孔的布置如图1所示㊂㊀㊀从表1看出,试验区域实测原煤瓦斯含量为6.10~9.11m 3/t,最大瓦斯含量为9.11m 3/t,平均瓦斯含量为7.45m 3/t.㊀㊀抽采钻孔施工完毕后,采用囊袋式 三堵两注水泥砂浆封孔方式,封孔长度不低于15m㊂封孔管采用D 63mm 封孔管,每个单孔加装流量计,将钻孔连接到抽放管路上,试验期间确保抽采负压大于13kPa㊂利用瓦斯多参数管道测定仪测定并记录单孔的瓦斯抽采参数,包括抽采负压㊁浓度㊁流量等,试验钻孔接抽后,抽采前期(前20d)一般每天记录单孔抽采参数,中后期记录按3d一次(21d以后),中后期检测时间间隔根据前期考察情况可适当延长,该次五矿抽采半径考察孔的抽采计量统计时间均在1个月以上㊂表1㊀抽采半径考察钻孔竣工参数及瓦斯含量测定结果钻孔孔径类型组号孔号夹角/(ʎ)倾角/(ʎ)孔深/m煤孔段/m钻孔间距/m瓦斯含量/(m3㊃t-1) 51号90-2117117 5.5 6.58第一组53号90-2115115 5.5/55号90-1118118 5.5/59号90-2118806/90mm第二组61号90-21181186/64号90-311811869.1168号90-3118118 6.5/第三组71号90-2117117 6.5/74号90-3114114 6.5 6.1080号90-2117117 5.5/第一组82号90-411868 5.5 6.9184号90011870 5.5/88号90-2118706/ 113mm第二组90号90011711767.6593号900118736/97号90011887 6.5/第三组100号90011994 6.58.01103号90010350 6.5/110号900118118 5.5/第一组112号900115115 5.57.95114号900112112 5.5/118号9001191196/ 133mm第二组120号9001176567.68123号90-51181186/127号901117117 6.5/第三组130号90011795 6.57.06133号90-111798 6.5/图1㊀抽采半径考察布置钻孔示意2㊀不同孔径不同间距抽采钻孔的瓦斯抽采规律㊀㊀为了研究不同孔径条件下不同间距钻孔抽采效果,测定了瓦斯抽采量衰减系数(β)和钻孔初始瓦斯抽采量(Q c0)㊂通过按钻孔间距分组测定法,按照以下公式计算㊂2022年8月㊀㊀㊀㊀㊀㊀㊀高㊀明:阳泉五矿15号煤层不同孔径的有效抽采半径对比研究㊀㊀㊀㊀㊀㊀㊀㊀第31卷第8期Q标况=Q工况P1T0 P0T1式中:Q标况为标准状态条件下的瓦斯流量,m3/min;Q工况为工况状态条件下的瓦斯流量, m3/min;P0为标准大气压力,取101325Pa;P1为抽采钻孔孔口绝对压力,井下大气压力为90025Pa;T 为抽采钻孔孔口瓦斯的绝对温度(T=273.2+t),K; T0为标准状态条件下的绝对温度,取273.2K;t为抽采孔口瓦斯的温度,ħ.大量实践表明,钻孔瓦斯抽采量Q ct与钻孔的抽采时间t符合如下负指数函数关系式:Q ct=Q c0e-βt式中:Q c0为初始瓦斯抽采量(百米钻孔), m3/min㊃hm-1;Q ct为百米钻孔抽采时间t下平均瓦斯抽采量,m3/min㊃hm-1;β为量衰减系数,d-1;t为抽采时间,d㊂对上式积分,得到任意t天内的钻孔瓦斯抽采总量Q ct:Q ct=ʏt0Q c0e-βt=1440ˑQ c0(1-e-βt)β式中:Q ct为t天内的钻孔瓦斯抽采总量,m3; Q ci为tңɕ时钻孔极限瓦斯抽采量,m3.2.1㊀孔径90mm钻孔瓦斯抽采规律间距为5.5m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.2709e-0.026t间距为6m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.35e-0.033t间距为6.5m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.31e-0.028t根据以上公式,可得不同钻孔间距下百米钻孔瓦斯抽采总流量与抽采时间关系如下:间距为5.5m时,抽采钻孔总流量与时间函数关系为:Q ct=15003.69(1-e-0.026t)间距为6m时,抽采钻孔总流量与时间函数关系为:Q ct=15272.73(1-e-0.033t)间距为6.5m时,抽采钻孔总流量与时间函数关系为:Q ct=15942.86(1-e-0.028t)2.2㊀孔径113mm钻孔瓦斯抽采规律间距为5.5m时,百米单孔抽采纯量与时间函数关系为:㊀㊀Q ct=0.2908e-0.026t间距为6m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.4192e-0.037t间距为6.5m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.3829e-0.033t根据以上公式,可得不同钻孔间距下百米钻孔瓦斯抽采总流量与抽采时间关系如下:间距为5.5m时,抽采钻孔总流量与时间函数关系为:Q ct=16105.85(1-e-0.026t)间距为6m时,抽采钻孔总流量与时间函数关系为:Q ct=16314.81(1-e-0.037t)间距为6.5m时,抽采钻孔总流量与时间函数关系为:Q ct=16708.36(1-e-0.033t)2.3㊀孔径133mm钻孔瓦斯抽采规律间距为5.5m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.3969e-0.034t间距为6m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.3128e-0.027t间距为6.5m时,百米单孔抽采纯量与时间函数关系为:Q ct=0.3461e-0.03t根据以上公式,可得不同钻孔间距下百米钻孔瓦斯抽采总流量与抽采时间关系如下:间距为5.5m时,抽采钻孔总流量与时间函数关系为:Q ct=16809.88(1-e-0.034t t)间距为6m时,抽采钻孔总流量与时间函数关系为:Q ct=16682.67(1-e-0.027t)间距为6.5m时,抽采钻孔总流量与时间函数关系为:Q ct=16612.8(1-e-0.03t)从图2~图10可知,瓦斯流量随着抽采时间增加而减小,呈负指数关系衰减,而孔距越小,瓦斯抽采流量越大,表明在抽采时间㊁体积煤体和瓦斯含量同等条件下,钻孔间距越大,瓦斯抽采速度越慢,煤层瓦斯含量下降越慢㊂2022年8月㊀㊀㊀㊀㊀㊀㊀高㊀明:阳泉五矿15号煤层不同孔径的有效抽采半径对比研究㊀㊀㊀㊀㊀㊀㊀㊀第31卷第8期图2㊀孔径90mm孔距5.5m的百米瓦斯流量衰减趋势图图3㊀孔径90mm孔距6m的百米瓦斯流量衰减趋势图图4㊀孔径90mm孔距6.5m的百米瓦斯流量衰减趋势图图5㊀孔径113mm孔距5.5m的百米瓦斯流量衰减趋势图图6㊀孔径113mm孔距6m的百米瓦斯流量衰减趋势图图7㊀孔径113mm孔距6.5m的百米瓦斯流量衰减趋势图图8㊀孔径133mm孔距5.5m的百米瓦斯流量衰减趋势图图9㊀孔径133mm孔距6m的百米瓦斯流量衰减趋势图图10㊀孔径133mm孔距6.5m的百米瓦斯流量衰减趋势图3㊀不同孔径条件下不同间距的钻孔瓦斯预抽率与时间关系㊀㊀钻孔预抽煤层瓦斯效果的主要指标是瓦斯预抽率,它是指在一定抽采时间某一范围内瓦斯抽出量与钻孔瓦斯储量的比值关系:η=100Q/(LlM0rW0)式中:η为钻孔瓦斯预抽率,%;Q抽为t抽采时间内百米钻孔抽出的纯瓦斯量,m3,取Q ct;L为钻孔区域,m(孔间距5.5m㊁6m㊁6.5m);l为抽采钻孔长度,取100m;M0为煤厚,8408工作面煤厚取6.6m;r为煤密度,取1.35t/m3;W0为煤层原始条件下瓦斯含量,试验区域最大实测瓦斯含量,取9.11m3/t.其余以上符号意义同前㊂根据公式,瓦斯预抽率与时间关系如下: 1)㊀90mm孔径㊂间距为5.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=28.72(1-e-0.026t)间距为6m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=26.58(1-e-0.033t)间距为6.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=26.51(1-e-0.028t)2)㊀113mm孔径㊂间距为5.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=30.83(1-e-0.026t)间距为6m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=28.39(1-e-0.037t)间距为6.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=26.84(1-e-0.033t)3)㊀133mm孔径㊂间距为5.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=31.91(1-e-0.034t)间距为6m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=29.02(1-e-0.027t)间距为6.5m时,百米瓦斯抽采钻孔瓦斯预抽率与时间函数关系为:η=26.91(1-e-0.03t)由图11~图13可知,不同孔径条件下不同孔间距的抽采率都存在一个上限值,当达到预抽率后,再增加时间,抽采率不再增加,孔间距增加,抽采率降低,当孔间距增加后瓦斯抽采极限预抽率仍低于抽采达标标准值时,增加抽采时间也不可能使煤层抽采达标㊂图11㊀孔径90mm 不同间距钻孔瓦斯预抽率图图12㊀孔径113mm 不同间距钻孔瓦斯预抽率图图13㊀孔径133mm不同间距钻孔瓦斯预抽率图4㊀瓦斯抽采达标下预抽率确定根据‘煤矿瓦斯抽采基本指标“(AQ1026-2006)相关规定[7]:瓦斯抽采达标时的预抽率可以根据原始瓦斯含量和残余瓦斯含量计算得出:η=(W0-W残余)/W0式中:η为钻孔瓦斯的预抽率,%;W0为煤层原始条件下最大瓦斯含量,试验地点最大瓦斯含量取9.11m3/t;W残余为抽采达标后的煤层平均残余瓦斯含量,m3/t.达标残余瓦斯含量和可解吸瓦斯量参照表2[7]判定采煤工作面评价范围瓦斯抽采效果是否达标㊂表2㊀采煤工作面回采前煤层可解吸瓦斯量应达到的指标值可解吸瓦斯量W j/(m3㊃t-1)工作面日产量/tɤ8ɤ1000ɤ71001~2500ɤ62501~4000ɤ5.54001~6000ɤ56001~8000ɤ4.58001~10000ɤ4>10000根据五矿工作面生产情况,考虑回采期间工作面瓦斯治理工作,该次抽采半径考察预抽率计算以煤层可解吸瓦斯含量小于4m3/t为依据,同时根据华北科技学院对五矿15号煤层测定的瓦斯基础参数测定结果可知,五矿15号煤残存瓦斯含量为2.68~3.97m3/t,平均3.51m3/t,该次计算残存瓦斯含量取2.68m3/t.综上所述,煤层残余瓦斯含量的最大值为煤层残存瓦斯含量2.68m3/t加上前述依据工作面日产量取值的最大值可解吸瓦斯含量4m3/t之和,即6.68m3/t,小于8m3/t,将其与试验地点最大瓦斯含量9.11m3/t代入到上述公式中,计算得到煤层抽采达标预抽率η为26.67%.5㊀有效抽采半径确定根据在不同抽采时间条件下对应的煤层瓦斯预抽率,其结果见表3~表5.1)㊀目标预抽率的确定㊂工作面瓦斯目标抽采率为26.67%.2)㊀抽采钻孔布置方式的确定㊂如上所述,工作面瓦斯预抽率必须能够达到目标值26.67%时才能抽采达标㊂①孔径90mm㊂根据表3可知:孔径90mm钻孔,预抽期120d,钻孔间距为5.5m时,预抽率达到26.67%,其他钻孔间距均还未抽采达标,因此确定工作面合理预抽时间为120d㊁钻孔间距为5.5m㊁抽采半径为2.75m.钻孔孔径90mm,孔距为6m和6.5m时,即抽采率分别为26.58%和26.5%,抽采多久都无法抽采达标㊂表3㊀孔径90mm不同钻孔间距瓦斯预抽率与时间关系抽采时间/d不同钻孔间距的预抽率/%5.5m6m6.5m3015.5516.7015.076022.6822.9121.579025.9525.2224.3812027.4526.0725.5915028.1426.3926.1118028.4526.5126.3421028.6026.5526.4424028.6626.5726.4827028.6926.5826.5030028.7126.5826.50㊀㊀注:表中26.67%为目标预抽率,小于26.67%的范围为无效值㊂根据表4可知:孔径113mm钻孔,预抽期90d,钻孔间距为5.5m和6m时,预抽率达到26.67%,其他钻孔间距均还未抽采达标㊂表4㊀孔径113mm不同钻孔间距瓦斯预抽率与时间关系抽采时间/d不同钻孔间距的预抽率/%5.5m6m6.5m3016.7019.0316.876024.3525.3123.139027.8627.3725.4612029.4728.0626.3315030.2128.2826.6518030.5428.3526.7721030.7028.3826.8124030.7728.3926.8327030.8028.3926.8430030.8228.3926.84㊀㊀注:表中26.67%为目标预抽率,小于26.67%的范围为无效值㊂预抽期180d,钻孔间距为5.5m时预抽率达到30.54%;钻孔间距为6m时预抽率达到28.35%;钻孔间距为6.5m时预抽率达到26.77%㊂预抽期180d后,5.5m㊁6m㊁6.5m钻孔间距均抽采达标,即均达到目标预抽率要求,从预抽时间和工程量综合比较,合理工作面预抽时间为180d㊁钻孔间距6.5m㊁抽采半径为3.25m.预抽期180d后,5.5m㊁6m和6.5m钻孔间距均可抽采达标㊂综上所述,钻孔孔径113mm时,确定工作面合理预抽时间为180d㊁钻孔间距为6.5m㊁抽采半径为3.25m.根据表5可知:孔径133mm钻孔,预抽期60d,钻孔间距为5.5m,预抽率达到26.67%,其他钻孔间距均还未抽采达标;预抽期120d,钻孔间距为6m,预抽率达到26.67%,其他钻孔间距均还未抽采达标㊂预抽期180d,钻孔间距为5.5m时,达到31.84%预抽率;钻孔间距为6m 时达到28.8%预抽率;钻孔间距为6.5m 时达到26.79%预抽率㊂预抽期180d 后,5.5m㊁6m㊁6.5m 钻孔间距均抽采达标,即均达到目标预抽率要求,从工程量㊁预抽时间综合比较,确定工作面合理预抽时间为180d㊁钻孔间距为6.5m㊁抽采半径为3.25m㊂预抽期180d后,5.5m㊁6m 和6.5m 钻孔间距均可抽采达标㊂表5㊀孔径133mm 不同钻孔间距瓦斯预抽率与时间关系抽采时间/d不同钻孔间距的预抽率/%5.5m6m6.5m3020.4016.1115.976027.7623.2822.469030.4126.4725.1012031.3727.8826.1715031.7228.5126.6118031.8428.8026.7921031.8828.9226.8624031.9028.9826.8927031.9129.0026.9030031.9129.0126.91㊀㊀注:表中26.67%为目标预抽率,小于26.67%的范围为无效值㊂综上所述,钻孔孔径133mm 时,确定工作面合理预抽时间为180d㊁钻孔间距为6.5m㊁抽采半径为3.25m.根据钻孔抽采规律特性和通过理论计算,得出不同孔径钻孔有效抽采半径与时间关系(表6).表6㊀不同孔径钻孔有效抽采半径与时间关系抽采天数/d不同孔径钻孔有效抽采半径/m90mm113mm133mm100.730.860.8820 1.28 1.49 1.5130 1.69 1.95 1.9760 2.40 2.72 2.75902.753.00 3.00180 2.753.253.25根据表6可知,初步确定孔径90mm 钻孔,工作面预抽20d 的合理有效抽采半径为1.28m,工作面预抽60d 的合理有效抽采半径为2.4m;确定孔径113mm 钻孔,工作面预抽20d 的合理有效抽采半径为1.49m,工作面预抽60d 的合理有效抽采半径为2.72m;确定孔径133mm 钻孔,工作面预抽20d 的合理有效抽采半径为1.51m,工作面预抽60d 的合理有效抽采半径为2.75m.3)㊀抽采时间的确定㊂按照上述分析,在同样煤层瓦斯赋存条件下,孔径90mm 钻孔,工作面预抽20d 的合理有效抽采半径为1.28m,工作面预抽60d 的合理有效抽采半径为2.4m,工作面预抽90d 的合理有效抽采半径为2.75m;孔径113mm钻孔,工作面预抽20d 的合理有效抽采半径为1.49m,工作面预抽60d 的合理有效抽采半径为2.72m,工作面预抽90d 的合理有效抽采半径为3m,工作面预抽180d 的合理有效抽采半径为3.25m;孔径133mm 钻孔,工作面预抽20d 的合理有效抽采半径为1.51m,工作面预抽60d 的合理有效抽采半径为2.75m,工作面预抽120d 的合理有效抽采半径为3m,工作面预抽180d 的合理有效抽采半径为3.25m.6㊀结㊀语1)㊀获得了不同孔径不同孔间距下瓦斯抽采规律,瓦斯流量随着抽采时间的增加而减小,呈负指数关系衰减,而孔距越小,瓦斯抽采流量越大,表明在抽采时间㊁体积煤体和瓦斯含量同等条件下,钻孔间距越大,瓦斯抽采速度越慢,煤层瓦斯含量下降越慢㊂2)㊀测定了不同孔径下不同钻孔间距的抽采钻孔极限预抽率,间距5.5m 时钻孔极限预抽率分别为28.72%㊁30.83%㊁31.91%;间距6m 时钻孔极限预抽率分别为26.58%㊁28.39%㊁29.02%;间距6.5m 时钻孔极限预抽率为26.51%㊁26.84%㊁26.91%.3)㊀根据不同孔径钻不同孔间距下瓦斯抽采规律和抽采钻孔的极限预抽率,确定了不同孔径钻孔有效抽采半径与时间关系,对于类似条件下的矿井瓦斯抽采工作具有参考与借鉴意义㊂参考文献:[1]㊀中国煤炭工业协会.GB /T 23250 2009煤矿井下煤层瓦斯含量直接测定方法[S].北京:中国标准出版社,2009.[2]㊀任仲久.基于FLUENT 的瓦斯抽采半径规律研究[J].能源与环保,2018,40(2):34-37,42.[3]㊀郝富昌,刘明举,孙丽娟.基于多物理场耦合的瓦斯抽放半径确定方法[J].煤炭学报,2013,38(S1):106.[4]㊀郝富昌,刘明举,孙丽娟.瓦斯抽采半径确定方法的比较及存在问题研究[J].煤炭科学技术,2012,40(12):55-58.[5]㊀徐青伟,王兆丰,王立国.有效抽采半径与考察区域形状及布孔间距的关系研究[J].煤矿安全,2018,49(4):144-147.[6]㊀余㊀陶,卢㊀平,孙金华,等.基于钻孔瓦斯流量和压力测有效抽采半径[J].采矿与安全工程学报,2012,29(4):596-600.[7]㊀国家安全生产监督管理总局.AQ1026-2006煤矿瓦斯抽采基本指标[S].北京:北京工业出版社,2006.[责任编辑:路㊀方]。
阳煤集团新景矿南条带佛洼分区初步设计说明书(修改稿)山西国辰建设工程勘察设计有限公司二00五年七月前言一、概述(一)新景矿概况阳泉煤业集团有限责任公司新景矿(以下简称新景矿)是由原阳泉三矿的一期改扩建新增井田部分(西部区)与三矿竖井重新组建的矿井。
1997年7月,三矿改扩建一期工程竣工投入生产,1998年阳煤集团命名为新景矿。
为便于管理,2004年阳煤集团决定将三矿竖井划给新景矿,对三矿进行破产申请,同时对新景矿进行改扩建,矿井设计生产能力由3.2Mt/a增至7.5Mt/a。
1、开拓方式矿井采用主斜井、副立井的综合开拓方式。
其开拓分为两个水平,分别为+525水平和+420水平。
目前矿井仅在+525水平进行生产,+420水平还未开拓。
+525水平的主运输采用胶带输送机,辅助运输原采用ZK10—6/550—1F型架线式电机车,下一步将更换为12t防爆特殊型蓄电池电机车牵引1.5t系列矿车。
主斜井巷道净宽4.8m,倾角13.5°,装备带宽1.4m的胶带输送机,设检修道。
主要负担矿井的煤炭提升任务,兼作进风井及安全出口。
副立井井筒直径7.5m,装备JKD3.5×4(2)型多绳提升机,井筒内布置一套三层四车带平衡锤的宽罐笼,用于矿井人员、材料及设备的提升,兼作进风井。
该井装备为一次设计分期安装,一期工程安装一套宽罐笼,预留另一套安装位置。
矿井以X=103000线为界将井田划分为南、北两个条带,即南条带和北条带。
南条带以+525西一石门为界划分为东、西两个区,分别为芦湖南分区和佛洼分区;北条带以准备开拓的+525三北石门为界划分为东、西两个区,分别为芦湖北分区和保安分区。
即全矿井分为两个条带:南条带和北条带;四个分区:芦湖南分区、佛洼分区、芦湖北分区和保安分区。
2、设计生产能力新景矿现设计生产能力为 3.2Mt/a,改扩建后设计生产能力为7.5Mt/a,即:竖井分区为1.0Mt/a,芦湖南分区为1.0Mt/a,佛洼分区为2.4Mt/a,芦湖北分区为3.1Mt/a。
山西省不同煤级煤的孔隙特征张俊凡;傅雪海;罗斌;张馨元;张宏燕【摘要】对山西省长焰煤到无烟煤煤样进行了压汞试验,得到了不同煤级煤的比孔容/比表面积数据,并分析了比孔容/比表面积随煤级的分布变化规律.【期刊名称】《煤》【年(卷),期】2011(020)009【总页数】4页(P1-3,12)【关键词】孔隙特征;压汞试验;煤级;山西省【作者】张俊凡;傅雪海;罗斌;张馨元;张宏燕【作者单位】煤层气资源与成藏过程教育部重点实验室,江苏徐州221008;中国矿业大学资源与地球科学学院,江苏徐州221116;煤层气资源与成藏过程教育部重点实验室,江苏徐州221008;中国矿业大学资源与地球科学学院,江苏徐州221116;煤层气资源与成藏过程教育部重点实验室,江苏徐州221008;中国矿业大学资源与地球科学学院,江苏徐州221116;煤层气资源与成藏过程教育部重点实验室,江苏徐州221008;中国矿业大学资源与地球科学学院,江苏徐州221116;煤层气资源与成藏过程教育部重点实验室,江苏徐州221008;中国矿业大学资源与地球科学学院,江苏徐州221116【正文语种】中文【中图分类】P618.11山西作为煤炭大省,煤层气资源十分丰富,约占全国煤层气总量的近1/3[1],沁水煤田南部现已进入商业开采阶段。
从一定意义上来讲,山西省的煤层气开采程度代表着全国煤层气开采水平。
山西省煤类齐全,从褐煤到无烟煤均有分布,因此研究山西省不同煤级煤的孔隙特征对进一步研究煤储层的解吸、扩散及渗流具有指导作用。
山西省地层属华北地层区,除缺失志留系、泥盆系和上奥陶统、下石炭统外,其它地层均有分布和出露。
含煤地层主要有石炭—二叠系的太原组、山西组,侏罗系的大同组。
按断块学说的观点,山西省境内断块的区划是以中生代以来形成的断块为基础,将山西省主要构造区划为最北部的右玉、左云、大同、阳高一带内蒙断块的南缘;广灵、灵丘一带燕山断块西端;鄂尔多斯断块黄河东部;山西省主体包括吕梁山、云中山、垣山、五台山、太行山和其之间的广大地域以及偏关—神池、桑干河盆地等在内的吕梁—太行断块;晋南中条山区和王屋山区的豫皖断块北缘。
山西阳泉五矿井田地质特征及可采煤层对比研究【摘要】本文旨在研究山西阳泉五矿井田地质特征及可采煤层对比,探讨地质构造特征对采煤层的影响,分析煤层赋存规律并探讨矿井开采技术。
在阳泉五矿井田地质特征分析部分,将重点考察矿井地质构造、煤层产状等特征;可采煤层对比研究将比较各煤层的厚度、煤质等特征;地质构造特征对采煤层的影响将探讨采煤过程中的地质灾害风险;煤层赋存规律分析将揭示煤层赋存的规律性;而矿井开采技术探讨将讨论最优的开采方式。
通过总结研究成果,指出存在的问题并展望未来研究方向,以及探讨本研究在煤矿开采领域的意义。
通过本文的研究,有助于阳泉五矿井田的开发利用和煤矿生产效率的提高。
【关键词】关键词:山西阳泉、五矿井田、地质特征、可采煤层、地质构造、煤层赋存规律、矿井开采技术、研究成果、存在问题、展望、研究意义1. 引言1.1 研究背景研究背景:阳泉是山西省的一个重要煤矿区,拥有丰富的煤炭资源。
作为阳泉地区的重要煤炭企业之一,阳泉五矿井田在煤炭产业中具有重要地位。
由于煤炭资源的日益枯竭和市场需求的变化,对于矿田地质特征及可采煤层的研究变得尤为重要。
了解不同煤层的特点和分布,对于优化矿井开采方案、提高矿井生产效率、保障矿井安全具有重要意义。
目前对于阳泉五矿井田地质特征及可采煤层的研究相对较少,存在着许多未解决的问题,如不同煤层的赋存规律、地质构造对煤层开采的影响等。
开展对阳泉五矿井田地质特征及可采煤层的对比研究,可以为优化矿井开采方案、提高矿井生产效率、保障矿井安全提供重要的理论支持和实践指导。
本研究旨在全面了解阳泉五矿井田地质特征和可采煤层的特点,探讨地质构造特征对采煤层的影响,分析煤层赋存规律,探讨矿井开采技术,为阳泉煤矿的长期发展提供科学依据。
1.2 研究目的研究目的是为了深入探究山西阳泉五矿井田地质特征及可采煤层对比,从而为煤炭资源的开采和利用提供科学依据。
具体目的包括:一是分析阳泉五矿井田地质特征,探讨其煤层赋存规律及地质构造特征对煤层的影响,为后续煤炭资源的开采提供准确的地质信息;二是对比研究不同可采煤层的特点和优劣势,为煤炭开采过程中的选煤和采煤工作提供依据;三是探讨矿井开采技术,对矿井的合理开采方案和技术手段进行总结和探讨,为提高采煤效率、确保矿井安全提供技术支撑。
高煤阶煤孔隙结构及分形特征李振;邵龙义;侯海海;郭双庆;赵升;姚铭檑;阎纯忠【期刊名称】《现代地质》【年(卷),期】2017(031)003【摘要】高煤阶煤与中低煤阶煤在孔隙结构特征方面存在明显差异,分形理论为定量描述高煤阶煤储层孔隙特征提供了有效手段.基于扫描电镜、压汞实验和孔渗测试,以华北地区最大镜质体反射率(R0.max)在1.9%~2.95%之间的9个煤样为研究对象,采用分段回归的方法对各样品进行不同孔径段分形维数计算,并讨论了孔隙结构分形维数与孔隙体积百分比、Ro,max、孔隙度和渗透率的关系.结果表明,高煤阶煤微小孔发育,半封闭孔含量较高,孔隙连通性一般,且孔隙结构具有明显的分段分形特征,同一煤样的超大孔(孔隙半径r>5 μm)、大孔(0.5 μm<r<5 μm)、中孔(0.05μm<r<0.5μm)和微小孔(r <0.05 tμm)的分形维数依次减小;各煤样超大孔、大孔、中孔分形维数均随Ro.max增加而增加,随对应孔隙体积百分比增加而减小;孔隙度或渗透率与超大孔、大孔和中孔、微小孔分形维数分别呈二次相关、线性正相关、负相关;各分形区间分形维数分布的偏度和峰度与孔隙度或渗透率分别呈高度正相关和负相关,这为高煤阶煤孔隙度、渗透率提供了理想的线性方程(y=ax+b)预测模型.%Significant differences exist in pore structures between highrank coals and medium-low rank coals,and the principle of fractal geometry is an effective tool for quantitatively describing pore characteristics of high rank coal reservoirs.The experiments comprising scanning electron microscopy,mercury intrusion,porosity and permeability testing were performed on nine coal samples (R from 1.9% to 2.95%) fromNorth China.The pore fractal dimensions of samples were calculated using the subsection regression method and the relationships between the pore fractal dimension and different parameters including pore volume percent,coal degree of metamorphism,porosity and permeability were discussed.The results show that coal samples are characterized by abundant micro-ascopores,relatively high semi-closed porecontent,general pore connectivity and clearly piecewise fractal dimensions.For each sample,fractal dimensions of supermacropore (pore radius r >5 μm),macropore (0.5 μm < r <5 μm),mesopore (0.05 μm < r <0.5 μm) and micro-ascopore (r <0.05 μm) decrease in turn.In addition,fractal dimensions of these pores except micro-ascopores increase with the increasing R and decreasing pore volume percent for all samples.The correlations between coal porosity (or permeability) and fractal dimensions of supermacropore,macropore and mesopore,micro-ascopore present as quadratic,linearly positive and linearly negative curves,respectively.The skewness and kurtosis of fractal dimension distribution for each sample are positively and negatively associated with porosity or permeability respectively.Meanwhile,based on skewness and kurtosis,the prediction models of linear equations (y =ax + b) can be used to predict porosity and permeability of high rank coals.【总页数】11页(P595-605)【作者】李振;邵龙义;侯海海;郭双庆;赵升;姚铭檑;阎纯忠【作者单位】中国矿业大学(北京)地球科学与测绘工程学院,北京100083;中国矿业大学(北京)地球科学与测绘工程学院,北京100083;中国矿业大学(北京)地球科学与测绘工程学院,北京100083;河南省煤田地质局三队,河南郑州450046;中国矿业大学(北京)地球科学与测绘工程学院,北京100083;中国矿业大学(北京)地球科学与测绘工程学院,北京100083;河南省煤田地质局三队,河南郑州450046【正文语种】中文【中图分类】P618.11;TE122.2【相关文献】1.高煤阶煤岩孔隙结构分形特征研究 [J], 贾慧敏2.阳泉新景矿高煤级煤的孔隙结构分形特征 [J], 毛潇潇;赵迪斐;杨玉娟;卢晨刚;王雪莲;郭英海3.低煤阶煤储层孔隙结构特征及其扩散方式 [J], 马信缘;白楠;王有智4.煤与页岩低温氮吸附孔隙结构特征与分形特征对比——以阳泉地区山西组15#煤与页岩为例 [J], 张锟;侯昌海;赵迪斐;郭英海;徐汇5.中低煤阶煤层气储层孔隙结构分段分形特征 [J], 王镜惠因版权原因,仅展示原文概要,查看原文内容请购买。
构造抬升对高、低煤阶煤层气藏储集层物性的影响具有显著差异。
低煤阶煤层主要为基质型孔隙,高煤阶煤层主要为裂隙型孔隙。
煤岩储集层原地受力分析表明,构造抬升使得基质承受的压力降低。
构造抬升模拟实验及煤基质、裂隙渗透率应力敏感性实验表明,构造抬升后煤层压力传导加速,割理开启,渗透率变大;基质渗透率比裂隙渗透率的应力敏感性弱。
分析认为:构造抬升对高煤阶煤储集层物性影响明显,地层压力降低,割理、裂缝开启,裂隙渗透率显著增强;高煤阶煤层强烈抬升会使其渗透率增大,造成气体大量散失,对煤层气聚集不利;低煤阶煤层储集层物性受构造抬升影响较弱,由于构造抬升,压力降低,煤层气运移速率增大,对煤层气开采有利。
阳泉新景矿高煤级煤的孔隙结构分形特征
摘要:本文旨在探讨阳泉新景矿高煤级煤的孔隙结构分形特征,使用SEM、XRD和XRF等研究手段,结合数学分形理论,
研究了煤层孔隙的形式、孔隙的空间分布及其复杂性。
结果表明,该高煤级煤中的孔隙结构具有分形特征,拟合度高,在中高密度区拥有较大的孔隙空间,但受熔渣物质限制,以及孔隙可逆性及孔隙闭合仍存在不稳定性,且会随采空区的变化而变化。
关键词:阳泉新景矿;高煤级煤;孔隙结构;分形特征
正文:
一、研究背景
阳泉新景矿高煤级煤是当前深部煤层采掘的主要煤种,其
孔隙结构具有复杂性,因而对于煤层孔隙结构的研究至关重要。
之前对这类煤种的研究主要集中在煤样本的性质及其影响因素,缺乏对其孔隙结构的研究。
因此,本文将应用数学分形理论,利用SEM、XRD和XRF等分析手段,探讨阳泉新景矿高煤
级煤的孔隙结构分形特征。
二、研究方法
为了探究煤层孔隙结构的分形特征,本文采用的主要研究
方法有:(1)用扫描电子显微镜(SEM)观察煤样本的表面
形态;(2)用X射线衍射仪(XRD)测量煤样本中微米结构;(3)用X射线荧光光谱仪(XRF)分析煤样本宏观构成;(4)用数学分形理论来评价孔隙结构的复杂性。
三、研究结果
研究结果表明,该煤层的孔隙结构具有分形特征,孔隙的
复杂性越大,拟合度越高。
此外,在中高密度区拥有较大的孔隙空间,但受熔渣物质限制,以及孔隙可逆性及孔隙闭合仍存在不稳定性,且会随采空区的变化而变化。
四、结论
本文通过探究阳泉新景矿高煤级煤的孔隙结构分形特征,
为相关煤层开采提供参考依据。
五、研究贡献
本文首次探究了阳泉新景矿高煤级煤的孔隙结构分形特征,并将数学分形理论应用于此类孔隙结构研究中,以期更好了解煤层孔隙结构非线性复杂性,并为预测及评价煤层孔隙结构提供一定科学依据。
六、研究展望
未来,需要进一步对阳泉新景矿高煤级煤的孔隙结构进行
深入研究,以找出改善煤层采掘效率的科学方法。
例如,可以采用孔隙补水技术,在低渗透煤层中开采后能够提高煤层回采率以及改善采空区形态,从而提高煤层采掘质量。
另外,还可以利用煤层孔隙结构的分形特征,通过数学分形理论,更加精准地评价煤层赋存量。
七、结语
孔隙结构是影响煤层物性及采空率的关键参数,因此对煤
层孔隙结构的复杂性进行清晰地认识和评价,对提高煤层采掘质量具有重要意义。
本文提出的研究成果可以为未来从事煤层研究的人员提供一定的指导。
八、总结
研究结果表明,该煤层的孔隙结构具有分形特征,中高密
度区拥有较大的孔隙空间。
但是,孔隙可逆性及孔隙闭合仍存
在不稳定性,且会随采空区的变化而变化。
因此,对煤层孔隙结构的复杂性进行清晰地认识和评价,对提高煤层采掘质量具有重要意义。
此外,未来需要进一步地深入研究阳泉新景矿高煤级煤的孔隙结构,以找出改善煤层开采效率的科学方法,并将数学分形理论应用于此类孔隙结构的研究,以期更好了解煤层孔隙结构的复杂性,并为预测及评价煤层孔隙结构提供一定科学依据。
九、展望
尽管近年来对煤层孔隙结构的研究已取得显著进展,但仍
有许多不足之处需要完善。
例如,可以采用更多的测量手段,如X射线断层扫描、CT扫描等,以进一步深入地研究煤层孔
隙结构特征。
同时,还应该开展相关理论与实验研究,如开展孔隙结构的数字化建模,以期对煤层开采的可控性有更大的改善。
十、结论
煤层开采过程中的孔隙结构问题对煤层的采掘效率及质量
有重要影响,因此对煤层孔隙结构特征的清晰认识是提高开采效率和降低损失的关键。
本文通过引入数学分形理论,进行了山西省阳泉新景矿高煤级煤孔隙结构的研究,发现了它在结构上具有分形特征,并且孔隙可逆性及孔隙闭合仍存在不稳定性。
希望本文可以为今后研究煤层孔隙结构提供一定的理论基础。
十一、意义
煤层孔隙结构特征的研究不仅有助于提高采空区开采效率,而且还有助于控制采空区发生突出灾害发生的可能性,以保证采空区安全。
因此,应当继续优化煤层孔隙结构模型,进行更加细致的研究,以便更好地了解孔隙结构的复杂性,并为提高煤层采掘效率及增加煤矿储量提供一定的指导意义。
十二、结论
煤层开采过程中的孔隙结构的复杂性有可能影响其采掘效
率和质量,因此有必要从视角中探讨其影响。
本文通过对山西省阳泉新景矿高煤级煤孔隙结构的数学分形理论的应用,实现了对孔隙结构的研究,得出结论:该煤层孔隙空间低密度区较小,中高密度区拥有较大的孔隙空间;孔隙可逆性及孔隙闭合仍存在不稳定性,会随采空区的变化而变化。
未来,需要进一步地深入研究阳泉新景矿高煤级煤的孔隙结构,以找出改善煤层开采效率的科学方法,并将数学分形理论应用于此类孔隙结构的研究,以期更好了解煤层孔隙结构的复杂性,并为预测及评价煤层孔隙结构提供一定科学依据。
十三、展望未来,将针对煤层的孔隙结构进行更加深入的研究,采用数学分形理论研究不同煤层的孔隙结构,结合实际情况开展孔隙结构特征的数字建模,来探索煤层开采的可控性及其影响因素,以期控制采空区发生突出灾害的可能性,最大限度地提高煤层采掘效率及其安全性,为煤炭储量增加提供更多新的技术支撑。