2019-2020年高三第三次月考数学(文)试题 含答案
- 格式:doc
- 大小:369.50 KB
- 文档页数:4
秘密★启用前[考试时间:2020年4月13日15:00~17:00]眉山市高2017级第三次诊断性考试数 学(文史类)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|y =1x -},B ={-2,-1,0,1,2,3},则A ∩B = A.{-2,-1,0,1,2} B.{0,1,2,3} C.{1,2,3} D.{2,3} 2.若i 为虚数单位,则复数z =-sin23π-icos 23π,则z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.“实数x>1”是“log 2x>0”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.函数f(x)=Asin(ωx +φ)(其中A>0,ω>0,|φ|<2π)的图象如图,则此函数表达式为A.f(x)=3sin(2x +4π) B.f(x)=3sin(12x +4π)C.f(x)=3sin(2x-4π) D.f(x)=3sin(12x -4π)5.已知m ,n 是两条不重合的直线,α是一个平面,则下列命题中正确的是 A.若m//α,n//α,则m//n B.若m//α,n ⊂α,则m//n C.若m ⊥n ,m ⊥α,则n//α D.若m ⊥α,n//α,则m ⊥n6.已知实数x ,y 满足约束条件103300x y x y y -+≥--≤≥⎧⎪⎨⎪⎩,则z =2x +y 的最大值为A.-1B.2C.7D.87.已知a ,b ,c 分别是△ABC 三个内角A ,B ,C 的对边,acosC +3csinA =b +c ,则A = A.6π B.4π C.3πD.23π8.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化。
成都市2016级高中毕业班第三次诊断性检测数学(文科)第I卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U= {x∈Z|(x+l) (x-3)≤0),集合A={0,1,2},则=(A){一1,3} (B){一1,0)(C){0,3) (D){一1,0,3)2.复数z =i(3 -i)的共轭复数为(A) 1+3i (B) -1+3i (C) -1- 3i (D) 1- 3i3.已知函数f(x) =x3+ 3x.若f(-a)=2,则f(a)的值为(A)2 (B) -2 (C)1 (D) -14.函数f(x)=sinx+cosx的最小正周期为(A) (B) π(C) 2π(D) 4π5.如图,在正方体ABCD-A1B l C l D1中,已知E,F,G分别是线段A l C1上的点,且A1E =EF =FG =GC l.则下列直线与平面A1BD平行的是(A) CE (B) CF (C) CG (D) CC16.已知实数x,y满足,则z =2x +y的最大值为(A)1 (B)2 (C)3 (D)47.若非零实数a,b满足2a =3b,则下列式子一定正确的是(A)b>a (B)b<a (C)|b|<|a| (D)|b|>|a|8.设数列的前n项和为S n,则S10=(A) (B) (C) (D)9.执行如图所示的程序框图,则输出的n的值为(A)1 (B)2 (C)3 (D)410.“幻方’’最早记载于我国公元前500年的春秋时期《大戴礼》中.“n阶幻方(n≥3,n∈N*)”是由前,n2个正整数组成的—个n阶方阵,其各行各列及两条对角线所含的n个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为(A) 75 (B) 65 (C) 55 (D) 4511.已知双曲线C: =l(a>0,b>0)的左,右焦点分别为F1,F2,抛物线y2=2px(p>0)与双曲线C有相同的焦点.设P为抛物线与双曲线C的一个交点,且,则双曲线C的离心率为(A) 或(B) 或3 (C)2或(D)2或312.三棱柱ABC -A1BlCl中,棱AB,AC,AA1两两垂直,AB =AC,且三棱柱的侧面积为+1。
2021届重庆市第一中学校高三上学期第三次月考数学试题一、单选题1.复数z 满足21iz i=-,则复数z 的虚部为()A .﹣1B .1C .iD .﹣i【答案】B【分析】利用复数的除法运算化简211ii i=-+-,再利用复数的代数形式求出结果.【详解】解:∵()()()()2121211112i i i i i z i i i i ++====-+--+,则复数z 的虚部为1.故选:B .【点睛】本题考查复数的除法运算.复数的除法运算关键是分母“实数化”,其一般步骤如下:(1)分子、分母同时乘分母的共轭复数;(2)对分子、分母分别进行乘法运算;(3)整理、化简成实部、虚部分开的标准形式.2.已知集合{}22,A xx x Z =<∈∣,则A 的真子集共有()个A .3B .4C .6D .7【答案】D【分析】写出集合{1,0,1}A =-,即可确定真子集的个数.【详解】因为{}22,{1,0,1}A xx x Z =<∈=-∣,所以其真子集个数为3217-=.故选:D.【点睛】本题考查集合的真子集个数问题,属于简单题.3.已知某圆锥的母线长为4,底面圆的半径为2,则圆锥的全面积为()A .10πB .12πC .14πD .16π【答案】B【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【详解】底面周长是:2×2π=4π,则侧面积是:14π48π2⨯⨯=,底面积是:π×22=4π,则全面积是:8π+4π=12π.故选B .【点睛】本题考查了圆锥的全面积计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.4.为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大它的光就越暗.到了1850年,由于光度计在天体光度测量的应用,英国天文学家普森又提出了亮度的概念,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()12212.5lg lg m m E E -=-,其中星等为k m 的星的亮度为(1,2)k E k =.已知“心宿二”的星等是1.00,“天津四”的星等是1.25,则“心宿二”的亮度大约是“天津四”的()倍.(当||x 较小时,2101 2.3 2.7x x x ≈++)A .1.27B .1.26C .1.23D .1.22【答案】B【分析】把已知数据代入公式计算12E E .【详解】由题意211 1.25 2.5(lg lg )E E -=-,12lg0.1E E =,∴0.1212101 2.30.1 2.70.1 1.257 1.26E E =≈+⨯+⨯=≈.故选:B .【点睛】本题考查数学新文化,考查阅读理解能力.解题关键是在新环境中抽象出数学知识,用数学的思想解决问题.5.向量,a b 满足||1a = ,a 与b 的夹角为3π,则||a b - 的取值范围为()A .[1,)+∞B .[0,)+∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .3,2⎫+∞⎪⎢⎪⎣⎭【答案】D【分析】把||a b -用数量积表示后结合函数的性质得出结论.【详解】22222||()2121cos 3a b a b a a b b b b π-=-=-⋅+=-⨯⨯+ 21b b -+= 2134423b ⎛⎫=+≥⎪⎝⎭- ,所以3||2a b -≥ .1||2b = 时取得最小值.故选:D .【点睛】本题考查平面向量的模,解题关键是把模用向量的数量积表示,然后结合二次函数性质得出结论.6.已知三棱锥P ABC -,过点P 作PO ⊥面,ABC O 为ABC ∆中的一点,,PA PB PB PC ⊥⊥,PC PA ⊥,则点O 为ABC ∆的()A .内心B .外心C .重心D .垂心【答案】D【分析】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,可得BC ⊥PA ,由PO ⊥平面ABC 于O ,BC ⊂面ABC ,PO ⊥BC ,可得BC ⊥AE ,同理可以证明CO ⊥AB ,又BO ⊥AC .故O 是△ABC 的垂心.【详解】连接AO 并延长交BC 于一点E ,连接PO ,由于PA ,PB ,PC 两两垂直可以得到PA ⊥面PBC ,而BC ⊂面PBC ,∴BC ⊥PA ,∵PO ⊥平面ABC 于O ,BC ⊂面ABC ,∴PO ⊥BC ,∴BC ⊥平面APE ,∵AE ⊂面APE ,∴BC ⊥AE ;同理可以证明CO ⊥AB ,又BO ⊥AC .∴O 是△ABC 的垂心.故选D .【点睛】本题主要考查了直线与平面垂直的性质,解题时要注意数形结合,属于基本知识的考查.7.设sin5a π=,b =,2314c ⎛⎫= ⎪⎝⎭,则()A .a c b <<B .b a c <<C .c a b<<D .c b a<<【答案】C【分析】借助中间量1和12比较大小即可.【详解】解:由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=,由三角函数sin y x =在0,2π⎛⎫ ⎪⎝⎭上单调递增的性质得1sin sin 562a ππ=>=.所以c ab <<.故选:C.【点睛】本题考查利用函数的单调性比较大小,考查运算能力,化归转化思想,是中档题.本题解题的关键在于借助中间量1和12,尤其在比较a 与c 的大小时,将c 变形得24331142c ⎛⎫⎛⎫= ⎪ =⎪⎝⎭⎝⎭,进而与12比较大小是重中之核心步骤.8.已知三棱锥P ABC -的四个顶点均在同一个确定的球面上,且BA BC ==,2ABC π∠=,若三棱锥P ABC -体积的最大值为3,则其外接球的半径为()A .2B .3C .4D .5【答案】A【分析】由题意分析知三棱锥P ABC -体积的最大时,P ,O ,O '共线且O P '⊥面ABC ,P 在大于半球的的球面上,根据棱锥体积公式求得||O P ',进而应用勾股定理求外接球的半径.【详解】由题意知:AC 中点O '为面ABC 外接圆圆心,若外接球球心为O ,半径为R ,三棱锥P ABC -体积的最大时,P ,O ,O '共线且O 在P ,O '之间,∴1||33P ABC ABC V S O P -'=⋅⋅= ,1||||32ABC S BA BC =⋅⋅= ,即||3O P '=,||||32AC O C '==,所以()22222'|||'|33O C OC OO R R =-=--=,解得2R =,故选:A【点睛】关键点点睛:理解三棱锥P ABC -体积的最大时P 的位置及与球心、底面外接圆圆心的关系,结合棱锥体积公式、勾股定理求球体半径.二、多选题9.设m 、n 是两条不同的直线,α、β是两个不同的平面,下列命题中错误..的是()A .若,,//m n m n αβ⊂⊂,则//αβB .若,m n m α⊂⊥,则n α⊥C .若,m n αα^Ì,则m n ⊥D .若//,,m n αβαβ⊂⊂,则//m n【答案】ABD【分析】根据空间线、面关系,结合空间关系相关图例以及线线、线面、面面间的平行、垂直判定与性质,即可知选项的正误.【详解】A :,,//m n m n αβ⊂⊂,α、β不一定平行,错误.B :,m n m α⊂⊥,n 不一定垂直于α,错误.C :由线面垂直的性质:,m n αα^Ì,则必有m n ⊥,正确.D ://,,m n αβαβ⊂⊂,m 、n 不一定平行,错误.故选:ABD10.下列函数中,在(0,1)内是减函数的是()A .||12x y ⎛⎫= ⎪⎝⎭B .212log y x =C .121=+y x D .2log sin y x=【答案】ABC【分析】根据复合函数的单调性判断确定选项中各函数是否为减函数即可.【详解】A :1(2t y =为减函数,||t x =在(0,1)上为增函数,所以||12x y ⎛⎫= ⎪⎝⎭为减函数;B :12log y t =为减函数,2t x =在(0,1)上为增函数,所以212log y x =为减函数;C :1y t =为减函数,21t x =+在(0,1)上为增函数,所以121=+y x 为减函数;D :2log y t =为增函数,sin t x =在(0,1)上为增函数,所以2log sin y x =为增函数;故选:ABC【点睛】结论点睛:对于复合函数的单调性有如下结论1、内外层函数同增或同减为增函数;2、内外层函数一增一减为减函数;11.下列关于函数1()2sin 26f x x π⎛⎫=+⎪⎝⎭的图像或性质的说法中,正确的为()A .函数()f x 的图像关于直线83x π=对称B .将函数()f x 的图像向右平移3π个单位所得图像的函数为12sin 23y x π⎛⎫=+ ⎪⎝⎭C .函数()f x 在区间5,33ππ⎛⎫-⎪⎝⎭上单调递增D .若()f x a =,则1cos 232a x π⎛⎫-=⎪⎝⎭【答案】AD 【分析】令1262x k πππ+=+得到对称轴,即可判断A ;根据平移变换知识可判断B ;求出其单调增区间即可判断C ;利用配角法即可判断D.【详解】对于A ,令1262x k πππ+=+()k ∈Z ,解得22()3x k k Z ππ=+∈,当1k =时,得83x π=,故A 正确;对于B ,将函数()f x 的图像向右平移3π个单位,得112sin[()]2sin 2362y x x ππ=-+=,故B 错误;对于C ,令122()2262k x k k Z πππππ-+<+<+∈4244()33k x k k Z ππππ⇒-+<<+∈,故C 错误;对于D ,若12sin()26x a π+=,则11cos()sin[()]23223x x πππ-=+-=1sin()262ax π+=,故D 正确.故选:AD【点睛】方法点睛:函数()sin (0,0)y A x B A ωϕω=++>>的性质:(1)max min =+y A B y A B =-,.(2)周期2π.T ω=(3)由()ππ2x k k +=+∈Z ωϕ求对称轴(4)由()ππ2π2π22k x k k -+≤+≤+∈Z ωϕ求增区间;由()π3π2π2π22k x k k +≤+≤+∈Z ωϕ求减区间.12.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有()A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】由()()f x f x x '<知:()()0xf x f x x'-<,令()()f x g x x =,则()()()20xf x f x g x x '-='<,∴()g x 在(0,)+∞上单调递减,即122112121212()()()()()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >;A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+;B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+;C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <;D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小.故选:ABC【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=.2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.三、填空题13.若一个球的体积为323π,则该球的表面积为_________.【答案】16π【解析】由题意,根据球的体积公式343V R π=,则343233R ππ=,解得2R =,又根据球的表面积公式24S R π=,所以该球的表面积为24216S ππ=⋅=.14.设向量a ,b 不平行,向量a b λ+ 与2a b + 平行,则实数λ=_________.【答案】12【解析】因为向量a b λ+ 与2a b + 平行,所以2a b k a b λ+=+ (),则{12,k k λ==,所以12λ=.【解析】向量共线.15.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.【答案】228【分析】由题知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,从左到右第4个数字为228.【详解】观察数据可知,第n 行有n 个数字,奇数行从右至左由小变大,偶数行从左至右由小变大,则前20行共有20(120)123202102+++++==L 个数字,第21行最左端的数为21021231+=,所以第21行从左到右第4个数字为228.故答案为:228.【点睛】关键点睛:本题考查合情推理、数列的前n 项和,解题关键要善于观察发现数据特征,考查了学生的逻辑思维能力、数据处理能力、运算求解能力,综合性较强,属于较难题型.四、双空题16.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为______;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立的最大正整数m =______.【答案】(1,)+∞4039【分析】根据已知求得1a 的表达式,由此求得q 的取值范围.根据12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立列不等式,化简求得m 的取值范围,从而求得最大正整数m .【详解】由已知201911201911a qa q =⇒=,结合101a <<知2019101q <<,解得1q >,故q 的取值范围为(1,)+∞.由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 成立则1212111m ma a a a a a +++≤+++ 即()111111111m m a q a q q q⎛⎫-⎪-⎝⎭≤--,将120191a q=代入整理得:40394039m q q m ≤⇒≤故最大正整数4039m =.故答案为:(1,)+∞;4039【点睛】本小题主要考查等比数列的性质,考查等比数列前n 项和公式,属于中档题.五、解答题17.在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,M 是线段AB 的中点,1160,22,2,DAB AB CD DD C M ∠=︒====(1)求证:1//C M 平面11A ADD ;(2)求异面直线 CM 与1DD 所成角的余弦值.【答案】(1)证明见解析;(2)14.【分析】(1)易得1111//,C D MA C D MA =,则四边形11AMC D 为平行四边形,得到11//C M D A ,再利用线面平行的判定定理证明.(2)由//CM DA ,将异面直线CM 与1DD 成的角,转化为 DA 与1DD 相交所成的角,然后在1ADD ,利用余弦定理求解.【详解】(1)因为四边形ABCD 是等腰梯形,且2AB CD =,所以//AB DC .又由M 是AB 的中点,因此//CD MA 且CD MA =.如图所示:连接1AD ,在四棱柱1111ABCD A B C D -中,因为1111//,CD C D CD C D =,可得1111//,C D MA C D MA =,所以四边形11AMC D 为平行四边形.因此11//C M D A ,又1C M ⊄平面11A ADD ,1D A ⊂平面11A ADD ,所以1//C M 平面11A ADD .(2)因为//CM DA ,所以异面直线CM 与1DD 成的角,即为 DA 与1DD 相交所成的直角或锐角,在1ADD中,1C M =,所以111,2AD AD DD ===,由余弦定理可得:22211111cos 24AD DD AD ADD AD DD +-∠==-⋅,所以异面直线CM 和1DD 余弦值为14.【点睛】方法点睛:判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).18.已知数列{}n a 满足:13a =,且对任意的n *∈N ,都有1,1,n n a a +成等差数列.(1)证明数列{}1n a -等比数列;(2)已知数列{}n b 前n 和为n S ,条件①:()1(21)n n b a n =-+,条件②:11n n n b a +=-,请在条件①②中仅选择一个条件作为已知条件.............来求数列{}n b 前n 和n S .【答案】(1)证明见解析;(2)答案不唯一,具体见解析.【分析】(1)由条件得121n n a a +=-,利用等比数列定义可得证.(2)选条件①得(21)2nn b n =+,选条件②得1(1)()2nn b n =+⋅利用错位相减法可得解.【详解】(1)由条件可知112n n a a ++=,即121n n a a +=-,∴()1121n n a a +-=-,且112a -=∴{}1n a -是以112a -=为首项,2q =为公比的等比数列,∴12nn a -=,∴()21nn a n N*=+∈(2)条件①:()1(21)(21)2nn n b a n n =-+=+,123325272(21)2nn S n =⋅+⋅+⋅+++⋅ 23412325272(21)2n n S n +=⋅+⋅+⋅+++⋅利用错位相减法:123413222222222(21)2nn n S n +-=⋅+⋅+⋅+⋅++⋅+⋅- 118(12)6(21)212n n n S n -+--=++⋅--化简得()12(21)2n n S n n N +*=-+∈条件②:11(1)()12nn n n b n a +==+⋅-231111234(1)2222n nS n =⋅+⋅+⋅+++⋅ 234111111234(1)22222n n S n +=⋅+⋅+⋅+++⋅ 利用错位相减法:23411111111(1)222222n n n S n +=++++-+⋅ 1111[1()]11421(1)12212n n n S n -+-=+-+⋅-化简得()13(3)(2n n s n n N *=-+∈【点睛】错位相减法求和的方法:如果数列{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解;在写“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式19.已知椭圆C 的两个焦点分别为12(1,0),(1,0)F F -,短轴的两个端点分别为12,B B .且122B B =.(1)求椭圆C 的标准方程;(2)过点2F 的直线l 与椭圆C 相交于P ,Q 两点,且11F P FQ ⊥ ,求直线l 的方程.【答案】(1)2212x y +=;(2)10x +-=,或10x -=.【分析】(1)由题干条件可得c 和b 的值,进而求出2a 的值,从而求出椭圆方程;(2)首先考虑斜率不存在的情况,不符合题意;当斜率存在时,联立方程,可得()22121222214,2121k k x x x x k k -+=⋅=++,又110F P FQ ⋅= ,向量坐标化可得()()()2221212111110k x x k x x k F P FQ ⋅--==++++uuu r uuu r ,代入1212,x x x x +⋅,化简,即可求出k 的取值,从而求出直线方程.【详解】解(1)由条件可知:1c =,又122B B =,所以1b =,则22a =,所以椭圆C 的方程为2212x y +=(2)当直线l 的斜率不存在时,其方程为1x =,不符合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,22(1)12y k x x y =-⎧⎪⎨+=⎪⎩得()()2222214210k x k x k +-+-=,()2810k ∆=+>,设()()1122,,,P x y Q x y ,则()22121222214,2121k k x x x x k k -+=⋅=++,()()1111221,,1,F P x y F Q x y =+=+ ,∵110F P FQ ⋅= ,即()()()()()22212121212111110x x y y k x x k x x k +++=+--+++=,即()()()222222221411()102121k k kk k k k -+--++=++化简得:2201172k k =+-解得217,77k k ==±.故直线l的方程为10x +-=,或10x --=.【点睛】方法点睛:(1)将向量转化为坐标的关系;(2)联立直线和椭圆,求出两根之和,两根之积;(3)将两根之和和两根之积代入坐标关系中,解出k .20.已知()cossin 222x x x f x ⎛⎫=+ ⎪⎝⎭,记ABC 的内角,,A B C 的对边分别为,,a b c .(1)求()f B 的取值范围;(2)当4a =,433b =,且()f B 取(1)中的最大值时,求ABC 的面积.【答案】(1)30,12⎛+ ⎝⎦;(2)833或433【分析】(1)利用公式对函数化简,根据B 角的范围,求函数值域.(2)由(1)求出B 的大小,利用正弦定理和三角形面积公式即可求出结果.【详解】(1)2()cossin sin cos 222222x x x x x x f x ⎛⎫=+=+ ⎪⎝⎭13(cos 1)3sin sin 2232x x x π+⎛⎫=+=++ ⎪⎝⎭因为B 为三角形的内角,所以(0,)B π∈所以4,333B πππ⎛⎫+∈ ⎪⎝⎭,所以3()0,12f B ⎛∈+ ⎝⎦(2)34()11,,23333f B B B ππππ⎛⎫⎛⎫=++=+∈ ⎪ ⎝⎭⎝⎭,,326B B πππ∴+==,由正弦定理得:4343sin 1sin sin sin 22a b A A B A =⇒=⇒=()0,,3A A ππ∈∴=,或23A π=,若3A π=,则2C π=,183sin 23ABC S ab C ==若23π=A ,则6π=C,1sin 23==ABC S ab C 【点睛】本题考查了三角恒等变换、正弦定理和三角形面积公式等基本数学知识,考查了数学运算能力和逻辑推理能力,属于中档题目.21.在直三棱柱111ABC A B C -中,112,120,,AB AC AA BAC D D ==∠=分别是线段11,BC B C 的中点,过线段AD 的中点P 作BC 的平行线,分别交,AB AC 于点,M N .(1)证明:平面1A MN ⊥平面11ADD A ;(2)求二面角1A A M N --的余弦值.【答案】(1)证明见解析;(2)155.【分析】(1)根据线面垂直的判定定理即可证明MN ⊥平面ADD 1A 1;又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)建立空间坐标系,利用向量法求出平面的法向量,利用向量法进行求解即可.【详解】(1)证明:∵AB=AC ,D 是BC 的中点,∴BC ⊥AD ,∵M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,∴MN ⊥AD ,∵AA 1⊥平面ABC,MN ⊂平面ABC ,∴AA 1⊥MN ,∵AD,AA 1⊂平面ADD 1A 1,且AD∩AA 1=A ,∴MN ⊥平面ADD 1A 1∴,又MN ⊂平面A 1MN ,所以平面A 1MN ⊥平面ADD 1A 1;(2)设AA 1=1,如图:过A 1作A 1E ∥BC ,建立以A 1为坐标原点,A 1E ,A 1D 1,A 1A 分别为x ,y ,z 轴的空间直角坐标系如图:则A 1(0,0,0),A(0,0,1),∵P 是AD 的中点,∴M ,N 分别为AB ,AC 的中点.则31,,122M ⎛⎫ ⎪ ⎪⎝⎭,31,,122N ⎛⎫- ⎪ ⎪⎝⎭,则131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,)NM = ,设平面AA 1M 的法向量为(),,m x y z=,则100m AM m A A ⎧⋅=⎪⎨⋅=⎪⎩,得10220x y z z ++=⎨⎪=⎩,令1x =,则y =,则()1,m =,同理设平面A 1MN 的法向量为(),,n x y z=,则100n A M n NM ⎧⋅=⎨⋅=⎩,得310220x y z ++=⎪⎨⎪=⎩,令2y =,则1z =-,则()0,2,1n =-,则()15cos ,5m n m n m n ⋅===-⋅,∵二面角A-A 1M-N 是锐二面角,∴二面角A-A 1M-N 的余弦值是155.【点睛】本题主要考查直线垂直的判定以及二面角的求解,建立空间直角坐标系,利用向量法进行求解,综合性较强,运算量较大.22.已知21()(1)2xf x e ax b x =---.其中常数 2.71828e ≈⋅⋅⋅⋅⋅⋅.(1)当2,4a b ==时,求()f x 在[1,2]上的最大值;(2)若对任意0,()a f x >均有两个极值点()1212,x x x x <,(ⅰ)求实数b 的取值范围;(ⅱ)当a e =时,证明:()()12f x f x e +>.【答案】(1)max ()1f x e =-;(2)(ⅰ)1b >;(ⅱ)证明见解析.【分析】(1)由题得2()4(1)x f x e x x =---,()24x f x e x '=--,()2x f x e ''=-,由[1,2]x ∈,可得()0f x ''>,即()'f x 在[1,2]上单增,且2(2)80f e -'=<,即()0f x '<,可知()f x 在[1,2]上单减,求得max ()(1)1f x f e ==-.(2)(ⅰ)利用两次求导可得(,ln )x a ∈-∞时,()'f x 单减;(ln ,)x a ∈+∞时,()'f x 单增,再由()f x 有两个极值点,知(ln )ln 0f a a a a b =--<',即ln b a a a >-恒成立,构造函数()ln g a a a a =-,利用导数求其最大值,可得实数b 的取值范围;(ⅱ)设()()(2),(1)h x f x f x x ''=--<,求导可得()h x 在(,1)-∞单增,得到()(2)f x f x ''<-,可得()()112f x f x ''<-,()()122f x f x ''->,结合()'f x 在(1,)+∞上单增,可得()()122f x f x >-,得到()()()()2222122222222x x f x f x f x f x e e ex ex e -+>-+=+-+-,构造22()22x x M x e e ex ex e -=+-+-,(1)x >,再利用导数证明()2(1)M x M e >=,即可得到()()12f x f x e+>【详解】(1)由2,4a b ==得,2()4(1)x f x e x x =---,求导()24x f x e x '=--,()2x f x e ''=-,[1,2]x ∈ ,2[,]x e e e ∴∈,20x e ∴->,即()0f x ''>()f x '∴在[1,2]上单增,且2(2)80f e -'=<,即[1,2]x ∀∈,()0f x '<,()f x ∴在[1,2]上单减,max ()(1)1f x f e ∴==-.(2)(ⅰ)求导()x f x e ax b '=--,因为对任意0,()a f x >均有两个极值点12,x x ,所以()0f x '=有两个根,求二阶导()x f x e a ''=-,令()0f x ''=,得ln x a=当(,ln )x a ∈-∞时,()0f x ''<,()'f x 单减;当(ln ,)x a ∈+∞时,()0f x ''>,()'f x 单增,由()0f x '=有两个根12,x x ,知(ln )ln 0f a a a a b =--<',即ln b a a a >-对任意0a >都成立,设()ln g a a a a =-,求导()ln g a a '=-,令()0g a '=,得1a =,当(0,1)x ∈时,()0g a '>,()g a 单增;当(1,)x ∈+∞时,()0g a '<,()g a 单减,max (()1)1g g a =∴=,1b ∴>又0,,()ba b f e x f x a -⎛⎫''-=>→+∞→+∞ ⎪⎝⎭Q ,所以实数b 的取值范围是:1b >.(ⅱ)当a e =时,()x f x e ex b '=--,()x f x e e ''=-,令()0f x ''=,得1x =当(,1)x ∈-∞时,()0f x ''<,()'f x 单减;当(1,)x ∈+∞时,()0f x ''>,()'f x 单增,又12,x x 是()0f x '=的两根,且12x x <,121,1x x <∴>,121x ∴->设()()(2),(1)h x f x f x x ''=--<,即22(2)2()2,(1)xxx xe ex b ee x b e e ex e x h x --⎡⎤=-=-------+<⎣⎦,则2()2220x x h x e e e e e -=+->-='()h x ∴在(,1)-∞单增,()(1)0h x h ∴<=,即()(2)f x f x ''<-又11,x <,()()112f x f x ''∴<-,()()122f x f x ''∴->又()f x ' 在(1,)+∞上单增,122x x ∴->,即1222x x x <-<,又()f x 在()12,x x 上单减,()()122f x f x ∴>-()()()()2222122222222x x f x f x f x f x e e ex ex e-∴+>-+=+-+-令22()22x x M x e e ex ex e -=+-+-,(1)x >则2()22x x M x e e ex e -'=--+,2()20x x M x e e e -''=+-≥()M x '∴在(1,)+∞单增,且(1)0M '=,()0M x '∴>,故()M x 在(1,)+∞单增又21x > ,()2(1)M x M e ∴>=,即()()12f x f x e+>【点睛】方法点睛:本题考查利用导数研究函数的单调性,求极值,最值,以及证明不等式,证明不等式的方法:若证明()()f x g x <,(,)x a b ∈,可以构造函数()()()F x f x g x =-,如果()0F x '<,则()F x 在(,)a b 上是减函数,同时若()0F a ≤,由减函数的定义可知(,)x a b ∈时,有()0F x <,即证明了()()f x g x <,考查学生的函数与方程思想,化归与转化思想,考查逻辑思维能力与推理论证能力,属于难题.。
惠安县嘉惠中学2019-2020学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设a ,b为正实数,11a b+≤23()4()a b ab -=,则log a b =( ) A.0B.1-C.1 D .1-或0 【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.2. 已知一三棱锥的三视图如图所示,那么它的体积为( )A .13B .23C .1D .2 3. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如下:由22()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”; ②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”; ③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④4. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A5. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( ) A .()1,10 B .()1,+∞ C .()0,13.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥D .()10,+∞6. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力. 7. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ). A. ]210,1( B. ]537,1( C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)8. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F是菱形,则其在底面ABCD 上投影的四边形面积( )A .12 B .34C. 2 D.34- 9. 已知x ,y满足时,z=x ﹣y 的最大值为( ) A .4 B .﹣4 C .0 D .210.设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)++∞ C. (1,3)D .(3,)+∞11.执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( )A.[0,2]e -B. (,2]e -?C.[0,5]D.[3,5]e -。
天津市南开区南大奥宇学校2022-2023学年高三上学期第三次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设全集为R ,集合{13}A x x =∈-<≤Z∣,集合{}1,2B =,则集合A B ⋂=R ð()A .{}0,3B .()(]1,12,3-⋃C .()()(]0,11,22,3⋃⋃D .{}1,0-2.如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+3.设x ∈R ,则“2x x >”是“11x<”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件4.若等差数列{}n a 满足8926a a -=,则它的前13项和为()A .110B .78C .55D .455.已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点,且AB =则k =()A .15B .43C .12D .5126.若函数()()22x xf x x -=-,设12a =,41log 3b =,51log 4c =,则下列选项正确的是()A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b <<7.设F 是抛物线21:2(0)C y px p =>的焦点,点A 是抛物线1C 与双曲线222221(0,0x y C a b a b-=>>:)的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为()AB C D .28.若函数()||0)f x x a =>没有零点,则a 的取值范围是()A .)+∞B .()2,+∞C .())0,1+∞ D .()()0,12,⋃+∞9.函数()()()sin ,0,0,0πf x A x A ωϕωϕ=+>><<的部分图像如图中实线所示,图中圆C 与()f x 的图像交于M ,N 两点,且M 在y 轴上,有如下说法:①函数()f x 的最小正周期是π②函数()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上单调递减③函数()f x 的图像向左平移π12个单位后关于直线π2x =对称④若圆C 的半径为5π12,则函数()f x 的解析式为()πsin 263f x x ⎛⎫=+ ⎪⎝⎭则其中正确的说法是()A .①③B .②④C .①③④D .①②④二、填空题10.若复数6i3ia +-(,i a ∈R 为虚数单位)是纯虚数,则实数a 的值为______.11.已知函数()f x 的导函数为()f x ',且满足()()21ln f x xf x +'=,则(1)f '=___.12.己知10,lg 2b a a b =+=,则ab =______.13.设a >0,b >0,a ≤2b ≤2a +b ,则2222aba b +的取值范围为_______.三、双空题14.如图是一个圆台的侧面展开图(扇形的一部分),若两个圆弧 DE 、 AC 所在圆的半径分别是3和9,且120ABC ∠= ,则该圆台的高为______;表面积为______.15.如图在ABC 中,90ABC ∠= ,8BC =,12AB =,F 为AB 中点,E 为CF 上一点.若3CE =,则EA EB ⋅= ______;若()01CE CF λλ=≤≤ ,则EA EB ⋅的最小值为______.四、解答题16.已知ABC 的内角,,A B C 的对边分别为,,a b c ,且3,1,2b c A B ===.(1)求a 的值;(2)求πcos 26A ⎛⎫+ ⎪⎝⎭的值.17.已知在直三棱柱111ABC A B C -中,AB BC ⊥,且1222,,AA AB BC E M ===分别是1CC ,1AB 的中点.(1)证明:EM 平面ABC ;(2)求直线1A E 与平面1AEB 所成角的正弦值;(3)求平面BEM 与平面1B EM 夹角的余弦值.18.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n n c b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.19.已知椭圆()2222:10x y E a b a b+=>>的右焦点为2F ,上顶点为H ,O 为坐标原点,230OHF ∠=︒,点31,2⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)设经过点2F 且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点()2,0P -,()2,0Q .若M ,N 分别为直线AP ,BQ 与y 轴的交点,记MPQ ,NPQ △的面积分别为MPQ S ,NPQ S △,求MPQ NPQS S △△的值.20.已知函数()e xf x =,直线:,l y mx m =∈R .(1)若直线l 为曲线()y f x =的切线,求m 的值;(2)若不等式()()0x k f x x k -++≥对任意的[)0,x ∈+∞恒成立,求实数k 的最大值;(3)若直线l 与曲线()y f x =有两个交点()()1122,,,A x y B x y .求证:212ln x x m <.参考答案:1.A【分析】先求出集合A ,进而求出A B ⋂R ð.【详解】{}{}130,1,2,3A x x =∈-<≤=Z∣.因为{}1,2B =,所以A B ⋂=R ð{}0,3.故选:A 2.A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C;设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D.故选:A.3.C【分析】先求出2x x >与11x<的关系,然后根据充分条件,必要条件的判定即可得出结论.【详解】由2x x >,可得1x >或0x <,则可以推出11x<;由11x<,可得:1x >或0x <,则可以推出2x x >,所以“2x x >”是“11x<”的充分必要条件,故选:C .4.B【分析】根据等差数列的通项公式及前n 项和公式即可求解.【详解】设等差数列{}n a 的首项为1a ,公差为d ,则因为8926a a -=,所以()()112786a d a d +-+=,即166a d +=.所以()()13111313113136136782S a d a d ⨯-=+=+=⨯=.5.B【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d,则d =而1d ==,所以1d =,解方程即可求出答案.【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d,则d =,而1d ==,所以1d =,解得:43k =.故选:B.6.A【分析】先判定函数()f x 的奇偶性及单调性,比较,,a b c 三者之间的大小关系,带入函数求解.【详解】由题可知()()22x x f x x -=-()x R ∈,故()()22()x xf x x f x --=--=,∴函数()f x 为偶函数;易知,当0x >时,()f x 在(0,)+∞为单调递增函数;又441log log 33b ==-,∴44()(log 3)(log 3)f b f f =-=,同理,5()(log 4)fc f =;又441log 2log 32=<,222524lg 4log 4lg 4lg 4(lg 4)lg 51lg 3log 3lg 5lg 3lg 5lg 3lg 42⎛⎫⋅==≥=>⎪⋅+⎛⎫⎭⎪⎝⎭,故451log 3log 42<<,故()()()f a f b f c <<.故选:A.7.B【分析】联立方程求出点A 的坐标,结合抛物线的定义可得a ,b 的关系,由此可求双曲线【详解】由题意得,02p F ⎛⎫⎪⎝⎭,准线为2P x =-,设双曲线的一条渐近线为b y x a =,则点,22p pb A a ⎛⎫ ⎪⎝⎭,由抛物线的定义得AF 等于点A 到准线的距离,即222pb p p a =+,所以12ba=,所以c e a a a====故选:B.8.D【分析】根据函数()f x 没有零点,等价为函数y =与||y x =的图象没有交点,在同一坐标系中画出它们的图象,即可求出a 的取值范围.【详解】解:令||0x =||x =,令y =22x y a +=||y x =,表示以(为端点的折线,在同一坐标系中画出它们的图象如图,根据图象知,由于两曲线没有公共点,故圆心到折线的距离小于1,a ∴的取值范围为()()0,12,⋃+∞.故选:D .9.C【分析】由M ,N 关于点C 对称,求出π3C x =,判断出最小正周期为πT =.即可判断①;先求出()πsin 23f x A x ⎛⎫=+ ⎪⎝⎭.判断出()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上不单调.即可判断②;求出对称轴直接判断③;利用圆C 的半径为5π12,求出A .【详解】因为圆C 与()f x 的图像交于M ,N 两点,所以M ,N 关于点C 对称.因为2π0,3M N x x ==所以π3C x =.由图像可得:()f x 的半个周期为πππ362⎛⎫--= ⎪⎝⎭,所以最小正周期为πT =.故①正确;因为最小正周期为πT =,所以2ππω=,由0ω>,解得:2ω=.因为06f π⎛⎫-= ⎪⎝⎭,所以由“五点法”可得:π206ϕ⎛⎫⋅-+= ⎪⎝⎭,解得:π3ϕ=.所以()πsin 23f x A x ⎛⎫=+ ⎪⎝⎭.当7ππ,123x ⎛⎫∈-- ⎪⎝⎭时,π5ππ2,363x ⎛⎫+∈-- ⎝⎭.因为sin y t =在5ππ,62⎛⎫-- ⎝⎭上单减,在ππ,23⎛⎫-- ⎪⎝⎭上单增,所以函数()f x 在7ππ,123⎛⎫-- ⎝⎭上不单调.故②错误;函数()f x 的图像向左平移π12个单位后得到函数()ππππsin 2sin 2cos 212326g x f x A x A x A x ⎛⎫⎛⎫⎛⎫=+=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以()g x 的对称轴为2π,Z x k k =∈,即π,Z 2kx k =∈.所以函数()f x 的图像向左平移12π个单位后关于直线π2x =对称.故③正确;若圆C 的半径为5π12=解得:A所以函数解析式为:()π23f x x ⎛⎫=+ ⎪⎝⎭.故④正确.综上所述:①③④正确.故选:C 10.2【分析】由6ii 3ia m +=-,(,,0,i a m m ∈∈≠R R 为虚数单位),利用复数相等列方程即可求解.【详解】因为复数6i3ia +-(,i a ∈R 为虚数单位)是纯虚数,所以6ii 3ia m +=-,(,,0,i a m m ∈∈≠R R 为虚数单位).所以6i 3i a m m +=+,所以,36a m m ==,解得:2,2a m ==.故答案为:2.11.1-【分析】对给定等式两边求导,令1x =,解方程作答.【详解】依题意,对()()21ln f x xf x '=+两边求导得:()()121f x f x''=+,当1x =时,()()1211f f ''=+,解得()11f '=-,所以()11f '=-.故答案为:-112.10【分析】对等式10b a =两边取对数可得lg 1b a =,又lg 2a b +=,所以,lg b a 为方程2210x x -+=的解,即可求得,a b ,即可得解.【详解】由10b a =可得lg 1b a =,又lg 2a b +=,所以,lg b a 为方程2210x x -+=的解,所以1,lg 1b a ==,10a =,所以10ab =,故答案为:1013.4,92⎡⎢⎣⎦;【分析】首先根据不等式的性质,得到122ab≤≤,之后将所求的式子化为关于a b 的关系式,之后借助于对勾函数以及不等式的性质,求得目标式的取值范围.【详解】根据a >0,b >0,由222a b b a b≤⎧⎨≤+⎩求得122ab ≤≤,222222ab a b a b b a=++,令1[,2]2a t b =∈,则29]2t t +∈,所以24[29t t∈+,故答案是4[]92.【点睛】该题考查的是有关代数式的取值范围的问题,涉及到的知识点有不等式的性质,对勾函数的性质,在求解的过程中,注意对式子的正确转化.14.34π【分析】计算出圆台上、下底面的直径,取圆台的轴截面,利用等腰梯形的几何性质可求得该圆台的高;利用圆台的表面积公式可求得该圆台的表面积.【详解】由题意可知,圆台的母线长为936-=,上底面圆的直径为123π32πd ⨯==,下底面圆的直径为229π36πd ⨯==,取该圆台的轴截面MNGH ,如下图所示:易知四边形MNGH 为等腰梯形,分别过点M 、N 分别作MP GH ⊥、NQ GH ⊥,垂足分别为点P 、Q ,由已知,2MN =,6GH MH NG ===,因为MH NG =,MHP NGQ ∠=∠,90MPH NQG ∠=∠= ,所以,Rt Rt MPH NQG △≌△,所以,PH QG =,MP NQ =,因为MP GH ⊥、NQ GH ⊥,则//MP NQ ,则四边形MNQP 为矩形,所以,2PQ MN ==,22GH MN PH QG -===,MP ∴==,该圆台的表面积为()221π1π32π6π634π2S =⨯+⨯++⨯=.故答案为:34π.15.1336-【分析】求得22EA EB EF FB ⋅=- ,计算出CF 、BF 的长,当3CE =时,可求得EA EB ⋅ 的值;计算得出()1EF CF λ=- ,利用平面向量数量积的运算性质以及二次函数的基本性质可求得EA EB ⋅ 的最小值.【详解】因为90ABC ∠= ,162BF AB ==,8BC =,则10CF ==,当3CE =时,7EF =,此时()()()()22227613EA EB EF FA EF FB EF FB EF FB EF FB ⋅=+⋅+=-⋅+=-=-= ;()1EF CF CE CF λ=-=- ,则()222213636EA EB EF FB CF λ⋅=-=--≥- ,当且仅当1λ=时,等号成立,故EA EB ⋅ 的最小值为36-.故答案为:13;36-.16.(1)【分析】(1)由A =2B 得sin A =sin2B ,再利用正弦定理和余弦定理角化边即可求解;(2)利用余弦定理可求cos A ,从而可求sin A 及cos2A 、sin2A ,结合两角和差的余弦公式进行求解即可﹒【详解】(1)由2A B =,知sin sin 22sin cos A B B B ==,由正、余弦定理得22222a c b a b ac+-=⋅.∵3b =,1c =,∴212a =,则a =;(2)由余弦定理得22291121cos 263b c a A bc +-+-===-,∵0πA <<,∴sin 3A ===,故sin 22sin cos 9A A A ==-,27cos 22cos 19A A =-=-,πππcos(2)cos 2cos sin 2sin 666A A A +=-=17.(1)证明见解析3(3)23【分析】(1)根据直三棱柱的特征可得:AB ⊥平面11BCC B ,建立空间直角坐标系,求出所需点的坐标,利用空间向量的方法证明;(2)分别求出直线1A E 的一个方向向量和平面1AEB 的一个法向量,利用向量的夹角公式即可求解;(3)求出平面BEM 的法向量,结合(2)中平面1B EM 的法向量,利用向量的夹角公式求解即可.【详解】(1)在直三棱柱111ABC A B C -中,1BB AB ⊥,1BB BC ⊥,又因为AB BC ⊥,1BC BB B = ,且1,BC BB ⊂平面11BCC B ,所以AB ⊥平面11BCC B .以点B 为原点,BC ,1BB ,BA 分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,则()()()()()()1110,0,0,1,0,0,0,2,0,0,0,1,1,2,0,0,2,1B C B A C A .(1)因为,E M 分别是11,CC AB 的中点,所以()111,1,0,0,1,,1,0,22E M EM ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ .易知平面ABC 的法向量为()0,2,0m = ,因为0EM m ⋅= ,所以EM m ⊥ .又因为EM ⊄平面ABC ,所以EM 平面ABC .(2)()()()1110,2,1,1,1,0,1,1,1AB EB EA =-=-=- .设()1111,,n x y z = 为面1AEB 的法向量,则11110n AB n EB == ,即111120,0,y z x y -=⎧⎨-+=⎩取11y =,则111,2x z ==,从而()11,1,2n = ,设直线1A E 与平面1AEB 所成角为θ,则111111sin cos<,3EA n EA n EA n θ⋅=>==⋅ ,即直线1A E 与平面1AEB所成角的正弦值为3.(3)()11,1,0,0,1,2BE BM ⎛⎫== ⎪⎝⎭ .设()2222,,n x y z = 为平面BEM 的法向量,则220n BE n BM ⋅=⋅= ,即22220,10,2x y y z +=⎧⎪⎨+=⎪⎩,取22z =,则221,1x y ==-,从而()21,1,2n =- ,由(2)知:平面1B EM 的一个法向量()11,1,2n = ,所以1212122cos ,3n n n n n n ⋅<>==⋅ ,所以平面BEM 与平面1B EM 夹角的余弦值为23.18.(1)2n a n =,2n n b =(2)1112220222,10,22022404422,11.n n n n n T n n ++⎧-++≤=⎨-+-≥⎩(3)证明见解析【分析】(1)利用1n n n a S S -=-求出{}n a 和{}n b 的通项公式;利用公式法求出{}n b 的通项公式;(2)由20222,10,202222022,11,n n n n n c b n ⎧-≤=-=⎨-≥⎩对n 分类讨论:10n ≤和11n ≥分别求和,即可求出n T ;(3)利用裂项相消法求和,即可证明.【详解】(1)当2n ≥时,()221(1)1n n n a S S n n n n λλ-⎡⎤=-=+--+-⎣⎦21,n λ=-+由36a =,得1λ=,即2n S n n =+,当1n =时,112a S ==,当2n ≥时,2n a n =,所以2n a n =.设正项等比数列{}n b 的公比为(0)q q >,则()21123242,212b a b b a a q q ==+=+=+=,所以260q q +-=,解得2q =或3q =-(舍),所以2n n b =.(2)20222,10,202222022,11,n n n n n c b n ⎧-≤=-=⎨-≥⎩所以当10n ≤时,()122022222n n T n =-+++ ()12122022202222,12nn n n +⨯-=-=-+-当11n ≥时,()1102022222n n T n T +=--++1122022224044024n n +=-+-+-+11222022404422n n +=-+-即1112220222,10,22022404422,11.n n n n n T n n ++⎧-++≤=⎨-+-≥⎩(3)当1n =时,()1221223(21)1b b ==<--;当2n ≥时,()()()()22222122121nn nn n n n b b =<----()()111211,21212121n n n n n ---==-----所以()22123141111111122121212121211n i n n i i b b ---=<+-+-++--------∑ 13321n =-<-.19.(1)22143x y +=(2)13【分析】(1)由230OHF ∠=︒,得b =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中,结合222a b c =+可求出,a b ,从而可求出椭圆方程,(2)设直线:1l x my =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程消去x ,整理后利用根与系数的关系,可得()121232my y y y =+,表示出直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-,而121212MPQ NPQ PQ OM S OM k S ON k PQ ON ⋅===⋅△△,代入化简即可【详解】(1)由230OHF ∠=︒,得b =(c 为半焦距),∵点31,2⎛⎫⎪⎝⎭在椭圆E 上,则221914a b +=.又222a b c =+,解得2a =,b =,1c =.∴椭圆E 的方程为22143x y +=.(2)由(1)知()21,0F .设直线:1l x my =+,()11,A x y ,()22,B x y .由221143x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()2234690m y my ++-=.显然()214410m ∆=+>.则122634m y y m -+=+,122934y y m -=+.∴()121232my y y y =+.由()2,0P -,()2,0Q ,得直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-.又1OMk OP=,2ON k OQ =,2OP OQ ==,∴12OM k ON k =.∴121212MPQNPQPQ OM S OM k S ON k PQ ON ⋅===⋅△△.∵()()()()121211212121212221233y x y my k my y y k x y my y my y y ---==+++()()1211212212313122233933222y y y y y y y y y y +-+===+++.∴13MPQNPQ S S =△△.20.(1)em =(2)2(3)证明见解析【分析】(1)利用导数的几何意义得出切线方程为()000e e x x y x x -=-,然后再根据已知的切线方程即可求解;(2)根据题意,将条件等价转化为()00g '≥,二次求导进而求出k 的最小值即可;(3)利用导数先求出直线l 与曲线()y f x =有两个交点时e m >,然后再根据两个零点的大小关系构造函数()2e 22ln e xx m F x mx m m =--+,利用导数求出其单调性进而得到证明.【详解】(1)因为()e x f x =,所以()e x f x '=,设切点为()00,x y ,则切线斜率0e x k m ==,切线方程为:()000e e x x y x x -=-,因为直线l 过坐标原点(0,0),则有()000e e x x x -=-,解得01x =,所以e m =.(2)设()()()()e x g x x k f x x k x k x k =-++=-++,因为()00g =,所以()0g x ≥的一个必要条件是()00g '≥,又()()1e 1x g x x k -'=++,所以()0110g k =-+≥',则2k ≤,当2k =时,()()2e 2x g x x x =-++,则()()1e 1x g x x '=-+,又因为()e 0x g x x ='≥',所以()g x '单调递增,而()00g '=,则()0g x '≥,所以()g x 在[)0,∞+上单调递增,故()()00g x g ≥=,符合题意,所以实数k 的最大值为2.(3)依题意,方程e 0x mx -=有两个不同的实根12,x x .令()e x h x mx =-,则有()e x h x m'=-①若0m ≤,则()0h x '>在R 上恒成立,所以()h x 在R 单调递增,此时()h x 不可能有两个不同的零点,故舍去;②若0m >,当ln x m <时,()0h x '<;当ln x m >时,()0h x '>,所以()h x 在(),ln m -∞上单调递减,在()ln ,m +∞上单调递增,从而()min ()ln ln 0h x h m m m m ==-<,解得e m >.又()010h =>,故()h x 在(),ln m -∞有一个零点.设正数()20ln 2x m =,则()()()()2202ln 222ln ln22ln20h x m m m m m m m =-=-->->.由于()2ln 2ln m m >,因此()h x 在()ln ,m +∞有一个零点.综上所述,e m >.不妨设12x x <,则120ln ,ln 1x m x m <<>>,令()()()22ln e 22ln e xx m F x h x h m x mx m m =--=--+,则()2e 20e xx m F x m '=+-≥,所以函数()F x 在R 上单调递增,由2ln x m >,可得()()2ln 0F x F m >=,即()()222ln h x h m x >-,又12,x x 是函数()h x 的两个零点,即()()12h x h x =,所以()()122ln h x h m x >-,因为2ln x m >,所以22ln ln m x m -<,又1ln x m <,函数()h x 在(),ln m -∞上单调递减,所以122ln x m x <-,即122ln x x m +<,又12x x +>,所以2ln m <,因此212ln .x x m <【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。
机密★启用前乐山市高中2020届第三次调查研究考试文科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,0,1,2M =-,{}1,2,3N =,则M N ⋃=( ). A .{}1,2B .{}1,0,1,2,3-C .{}2,0,1,2,3-D .{}1,0,1,2-2.已知复数1z ,2z 在复平面内对应的点分别为()2,1-,()0,1-,则12z z =( ). A .12i +B .12i -C .2i -+D .2i --A .2B .2-C .3D .3-A .a b c >>B .a c b >>C .b c a >>D .c a b >>5.已知向量a r 与向量()4,6m =r平行,()5,1b =-r ,且14a b ⋅=r r ,则a =r ( ).6.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的22⨯列联表:则下列结论正确的是( ).A .在犯错的概率不超过1%的前提下,认为“支付方式与性别有关”B .在犯错的概率超过1%的前提下,认为“支付方式与性别有关”C .有99.9%以上的把握认为“支付方式与性别有关”D .有99.9%以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 为1,2,4,则输出的S 的值为( ).A .4B .10C .11D .128.函数()32sin xx x f x e-=的图象大致为( ). A .B .C .D .9.如图,在三棱锥A BCD -中,90ABC ABD CBD ∠=∠=∠=︒,1AB BC BD ===,则其外接球的体积为( ).A .3πB .2π2C 3D .π210.数列{}n a 中,已知对任意n *∈N ,1231nn a a a +++=-L ,则22212n a a a +++=L ( ).A .912n -B .912n +C .922n -D .922n +11.已知点P 是双曲线()222:10x C y a a -=>上的动点,点M 为圆22:1O x y +=上的动点,且0OM PM ⋅=u u u u r u u u u r,若PM 的最小值为3,则双曲线C 的离心率为( ).A .633B .3C .52D .512.已知点π,024A ⎛⎫⎪⎝⎭在函数()()cos 2f x x ωϕ=+(0ω>且ω*∈N ,0πω<<)的图象上,直线π6x =是函数()f x 的图象的一条对称轴.若()f x 在区间ππ,63⎛⎫⎪⎝⎭内单调,则ϕ=( ). A .π6B .π3C .π3D .5π6二、填空题:13.已知函数()321f x x x =+-,则函数()f x 在()()1,1f 处的切线方程为______.14.小王老师2018年的家庭总收入为8万元,各种用途占比统计如图①所示,2019年收入的各种用途占比统计如图②所示.已知2019年的就医费用比2018年增加0.7万元,则小王2019年的家庭总收入为______.①②15.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,A 、B 分别为C 的右顶点和上顶点,直线FB 与直线x a =的交点为M ,若2BM FB =u u u u r u u u r ,且AFM △的面积为932,则椭圆的标准方程为______.16.已知数列{}n a 的前n 项和为n S ,且满足()21n n n a S a -=.有以下结论:①数列{}2n S 是等差数列;②2n a n <;③11n n a a +<.其中所有正确命题的序号是______.三、解答题:解答应写出文字说明、证明过程或推演步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据需求作答. (一)必考题17.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin C B A A C -=-. (1)求角B 的值;(2)若7a c +=,13b =,求ABC △的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI ),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI 的平均值为依据播报该市的空气质量.(1)若某日播报的AQI 为119,已知轻度污染区AQI 平均值为70,中度污染区AQI 平均值为115,求重试污染区AQI 平均值;(2)如图是2018年11月份30天的AQI 的频率分布直方图,11月份仅有1天AQI 在[)140,150内.①某校参照官方公布的AQI ,如果周日AQI 小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;②环卫部门从11月份AQI 不小于170的数据中抽取两天的数据进行研究,求抽取的这两天中AQI 值在[)170,200的天数的概率.19.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,1222AA AB BC ===,M 、N 、D 分别为AB 、1BB 、1CC 的中点,E 为线段MN 上的动点.(1)证明://CE 平面1ADB ;(2)若将直三棱柱111ABC A B C -沿平面1ADB 截开,求四棱锥1A BCDB -的表面积.20.已知曲线C 上的点到点()1,0F 的距离比到直线:20l x +=的距离小1,O 为坐标原点. (1)过点F 且倾斜角为45︒的直线与曲线C 交于M ,N 两点,求MON △的面积;(2)设P 为曲线C 上任意一点,点()2,0N ,是否存在垂直于x 轴的直线l ,使得l 被以PN 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由. 21.已知函数()2ln 2f x x x x =+-. (1)讨论函数()f x 的单调性;(2)判断并说明函数()()cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间[](),,m n m n ∈∈Z Z 内,求n m -的最小值.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系Ox . (1)求曲线C 的极坐标方程;23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足3a b c ++=.(2)证明:9412ab bc ac abc ++≥.参考答案1.B由题得{}1,0,1,2,3M N ⋃=-,故选B . 2.A由题得12i z =-,2i z =-,则122i 12i iz z -==+-,故选A . 3.D4.B5.B所以()4,6a =--r,故选B .6.C由22⨯列联表得到40a =,10b =,25c =,25d =,因为6.6359.8910.828<<,所以有99%以上的把握认为“支付方式与性别有关”,故选C . 7.D输入1a =时,0211s =⨯+=,011k =+=,此时12k =>不成立; 输入2a =时,1224s =⨯+=,112k =+=,此时22k =>不成立; 输入4a =时,42412s =⨯+=,213k =+=,此时32k =>成立; 输出的S 的值为12,故选D . 8.A由题知()f x 为奇函数,排除D ; 因为()12sin110f e-=<,排除C ;又因为322732sin 38202f e -+⎛⎫-=< ⎪⎝⎭,所以排除B ,故选A .9.C如图,将三棱锥A BCD -放入棱长为1的正方体中,则其外接球即为正方体的外接球,球半径为2R =,所以外接球的体积为24ππ32V R ==,故选C . 10.A由1231n n a a a +++=-L ,当2n ≥时,112131n n a a a --+++=-L ,两式相减得()1232n n a n -=⨯≥, 又12a =,满足123n n a -=⨯,则123n n a -=⨯.所以数列{}n a 是首项为12a =,公比3q =的等比数列,则{}2n a 是首项为214a =,29q =的等比数列,11.C由题222OM PMOP +=,且1OM =,若PM 取最小值,则OP 取最小值,由双曲线的性质可知,当点P 在为双曲线的顶点时,OP 取最小值a ,此时2221a +=,此时2a =,c =所以2e =,故选C . 12.B由题意得,πππ62484T -=≥,得12ππ428ω⨯≤,得2ω≥, 又因为()f x 在区间ππ,63⎛⎫⎪⎝⎭内单调,所以ππ362T -≤,得12ππ226ω⨯≥,得3ω≤.所以23ω≤≤. 又因为ω*∈N ,所以2ω=或3. 当2ω=时,πcos 4024ϕ⎛⎫⨯+= ⎪⎝⎭,得ππ3k ϕ=+, 又0πϕ<<,所以π3ϕ=, 此时直线π6x =是函数()f x 的图象的一条对称轴,且()f x 在区间ππ,63⎛⎫⎪⎝⎭内单调. 所以π3ϕ=. 当3ω=时,πcos 6024ϕ⎛⎫⨯+= ⎪⎝⎭,得ππ4k ϕ=+, 又0πϕ<<,所以π4ϕ=,此时ππcos 61642⎛⎫⨯+=-≠± ⎪⎝⎭, 所以直线π6x =不是函数()f x 的图象的一条对称轴. 所以2ω=,π3ϕ=,故选B .13.530x y --=因为()232f x x '=+,则()15f '=, 又因为()11212f =+-=,故切线方程为()241y x -=-,即530x y --=. 14.10万元由已知得,2018年小王的就医费用为810⨯%0.8=万元, 则2019年小王的就医费用为0.80.7 1.5+=(万元), 所以小王2019年生的家庭总收入为1.51015%=(万元).由2BM FB =u u u u r u u u r,且//OB AM (O 为坐标原点),16.①②③对于①,由条件知,对任意正整数n ,有()()221111n n n n n n S S S S S S ---=-+=-,又1n =时,求得211S =,所以{}2n S 是等差数列,故①正确;对于②,由①可知,n S ,显然,当n S =1n n n a S S -=-=<当n S =10n n n a S S -=-< 对于③仅需考虑n a ,1n a +同号的情况即可,可设n a ,1n a +均为正,由②得n S =1n S +=,此时n a =1n a +从而1n n a a +=<1<=,故③正确;综上,正确的序号①②③.17.(1)由222cos cos sin sin sin C B A A C -=-得222sin sin sin sin sin B C A A C -=-,由正弦定理得222b c a ac -=-,即222a cb ac +-=,(2)由(1)得222222cos b a c ac B a c ac =+-=+-,即2213a c ac +-=,所以()2313a c ac +-=,即12ac =,所以113sin 1233222ABC S ac B ==⨯⨯=. 18.解:(1)设重度污染区AQI 平均值为x , 则119970211543x ⨯=⨯+⨯+,解得157x =. (2)①AQI 在[)140,170上的有830308900⨯⨯=天, AQI 在[)170,200上的有530305900⨯⨯=天, AQI 在[)200,230上的有230302900⨯⨯=天, 所以11月份AQI 不小于150天的共852114++-=天. 即能参加户外活动的概率为14813015P =-=. ②由①AQI 在[)170,200上的有5天,编号设为a ,b ,c ,d ,e , AQI 在[)200,230上的有2天,编号设为m ,n ,从7天中抽取两天有:(),a b ,(),a c ,(),a d ,(),a e ,(),a m ,(),a n , (),b c ,(),b d ,(),b e ,(),b m ,(),b n , (),c d ,(),c e ,(),c m ,(),c n , (),d e ,(),d m ,(),d n ,(),e m ,(),e n ,(),m n ,共21种.满足条件的有(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种,所以满足条件的概率为1021P =. 19.(1)证明:连接CM 、CN ,因为N 、D 分别为1BB 、1CC 的中点,所以1112NB BB =,1112C D CC =, 又因为11//BB CC ,11BB CC =,所以易证1NCDB 为平行四边形,所以1//NC DB ,又因为M 为AB 的中点,则1//MN AB ,而CM CN C ⋂=,111AB DB B ⋂=,所以平面//MNC 平面1ADB ,又CE ⊂平面MNC ,故//CE 平面1ADB .(2)连接BD ,因为AB BC ⊥,1BB AB ⊥,1BC BB B ⋂=,所以AB ⊥平面11BCC B ,所以AB BD ⊥,11122ABC S ⨯==△,12112ABB S ⨯==△,12222ACD S ==△, ()1121322BCDB S +⨯==梯形,在1ADB △中,3AD =15AB =,12DB所以22211AD DB AB +=,所以1AD DB ⊥,123622ADB S ==△, 所以四棱锥1A BCDB -的表面积为1236261322222S =++++=+. 20.依题意得,曲线C 上的点到点()1,0F 的距离与到直线:1l x =-的距离相等, 所以曲线C 的方程为:24y x =.过点F 且倾斜角为45︒的直线方程为1y x =-,设()11,M x y ,()22,N x y ,联立241y x y x ⎧=⎨=-⎩,得2440y y --=,则124y y +=,124y y ⋅=-,则1212MAN S y y =-==△.(2)假设满足条件的直线l 存在,其方程为x a =,()11,P x y ,则以PN 为直径的圆的方程为()()()1120x x x y y y --+-=, 将直线x a =代入,得()()21120y y y a a x -+--=,则()()()()2111424120y a a x a x a a ∆=---=-+->⎡⎤⎣⎦, 设直线l 与以PN 为直径的圆的交点为()3,A a y ,()4,B a y ,则341y y y +=,()()3412y y a a x ⋅=--,故满足条件的直线l 存在,其方程为1x =.21.(1)()2ln 2f x x x x =+-的定义域为()0,+∞,()2122122x x f x x x x-++'=+-=,令()0f x '=,得12x =或12x -=.当x ⎛∈ ⎝⎭时,()0f x '>,当12x ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时,()0f x '<,所以()f x 在10,2⎛+ ⎝⎭上单调递增,在1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减.因此,函数()f x 的单调递增区间为10,2⎛⎫ ⎪ ⎪⎝⎭,单调递减区间为12⎛⎫+∞ ⎪ ⎪⎝⎭. (2)()2ln 2cos g x x x x x =+--,当()0,1x ∈时,()122sin g x x x x '=+-+, 因为()122f x x x'=+-单调递减, 所以()()1122sin11g x g ''>=+-+>,∴()g x 在()0,+∞上单调递增,又()11cos10g =->,11111ln cos 0442164g ⎛⎫=+--< ⎪⎝⎭, 所以存在唯一的()20,1x ∈,使得()10g x =. 当π1,2x ⎡⎫∈⎪⎢⎣⎭时,()122sin g x x x x '=+-+, ()212cos 0g x x x ''=--+<,∴()g x '单调递减, 又π22π102πg ⎛⎫'=+-+> ⎪⎝⎭,∴()0g x '>, ∴()g x 在π1,2⎡⎫⎪⎢⎣⎭上单调递增, ∵()11cos10g =->,∴()0g x >,故不存在零点. 当π,32x ⎡⎤∈⎢⎥⎣⎦时,()122sin g x x x x '=+-+,()212cos 0g x x x ''=--+<, 所以()g x '单调递减, 又π02g ⎛⎫'> ⎪⎝⎭,()1224sin 202g '=+-+<, 所以存在0π,22x ⎡⎫∈⎪⎢⎣⎭,使得()00g x '=. 当0π,2x x ⎡⎫∈⎪⎢⎣⎭时,()0g x '>,()g x 单调递增,当()0,3x x ∈时,()0g x '<,()g x 单调递递减, 又2πππln π0224g ⎛⎫=+-> ⎪⎝⎭, ()2ln 2cos20g =->,()3ln369cos30g =+--<,所以存在唯一的()22,3x ∈,使得()30g x =,当[)3,x ∈+∞时,()2212130g x x x x x x <-+-+=-+≤,故不存在零点. 综上,()g x 存在两个零点1x ,2x ,且()20,1x ∈,()22,3x ∈,因此,n m -的最小值为3.22.(1)消去参数α,得到曲线C 的标准方程为()2224x y -+=, 故曲线C 的极坐标方程为4cos ρθ=.即2000004cos 4sin cos 2cos 22sin 2S θθθθθ=-=-+当且仅当1a b c ===时,等号成立.(2)证明:要证9412ab bc ac abc ++≥,。
2024学年湖北武汉市华中师大一附中高三(高补班)下学期第三次月考数学试题试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)2.已知函数()f x 是奇函数,且22()'()ln(1)ln(1)1f x f x x x x -=+----,若对11[,]62x ∀∈,(1)(1)f ax f x +<-恒成立,则a 的取值范围是( ) A .(3,1)--B .(4,1)--C .(3,0)-D .(4,0)-3.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .16004.已知0a >,若对任意()0,m ∈+∞,关于x 的不等式()()1e ln 11exaxx m m --<-+-(e 为自然对数的底数)至少有2个正整数解,则实数a 的取值范围是( )A .3e e,2e ⎛⎤+ ⎥⎝⎦B .3e ,2e ⎡⎫++∞⎪⎢⎣⎭C .3e 0,2e ⎛⎤+ ⎥⎝⎦D .3e ,2e ⎛⎫++∞ ⎪⎝⎭5.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>6.已知向量a ,b 满足|a |=1,|b |=2,且a 与b 的夹角为120°,则3a b -=( ) ABC.D7.下列说法正确的是( )A .命题“00x ∃≤,002sin x x ≤”的否定形式是“0x ∀>,2sin x x >”B .若平面α,β,γ,满足αγ⊥,βγ⊥则//αβC .随机变量ξ服从正态分布()21,N σ(0σ>),若(01)0.4P ξ<<=,则(0)0.8P ξ>= D .设x 是实数,“0x <”是“11x<”的充分不必要条件 8.已知命题:p x R ∀∈,20x >,则p ⌝是( ) A .x ∀∈R ,20x ≤B .0x ∃∈R ,200x ≤.C .0x ∃∈R ,200x >D .x ∀∉R ,20x ≤.9.已知符号函数sgnx 100010x x x ⎧⎪==⎨⎪-⎩,>,,<f (x )是定义在R 上的减函数,g (x )=f (x )﹣f (ax )(a >1),则( )A .sgn [g (x )]=sgn xB .sgn [g (x )]=﹣sgnxC .sgn [g (x )]=sgn [f (x )]D .sgn [g (x )]=﹣sgn [f (x )]10.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40B .-20C .20D .4011.已知集合A={y|y=|x|﹣1,x ∈R},B={x|x≥2},则下列结论正确的是( ) A .﹣3∈A B .3∉B C .A∩B=B D .A ∪B=B 12.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3B .()1,2C .()0,3D .()0,2二、填空题:本题共4小题,每小题5分,共20分。
2019-2020年高三第三次月考数学(文)试题 含答案
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1已知集合M ={x |x x -1
≥0,x ∈R },N ={y |y =3x 2
+1,x ∈R },则M ∩N 等于 ( ) A .∅ B .{x |x ≥1} C .{x |x >1} D .{x |x ≥1或x <0}
2.已知命题命题则下列命题中为真命题的是( )
3.已知那么( )
4. 是( )
A.最小正周期为的偶函数
B.最小正周期为的奇函数
C.最小正周期为的偶函数
D.最小正周期为的奇函数
5.对于函数若则( )
6.函数
7.为了得到函数的图像,只需把函数的图像( )
A.向左平移个长度单位
B.向右平移个长度单位
C.向左平移个长度单位
D.向右平移个长度单位
8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=+>><<为奇函
数,该函数的部分图象如图所示,是边长为2的等边三角形,则
的值为( )
A .
B . C. D.
9.若,对任意实数t 都有,则实数m 的值等于 ( )
A .—1
B .±5
C .—5或—1
D .5或1
10.设函数,若实数满足,则( )
二、填空题:本大题共5小题,每小题5分,共25分.
11.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (x ,4)是角θ终边上
一点,且cos θ=-255
,则x =________. 12如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.
13. 若0≤sin α≤22
,则α的取值范围是 14已知函数,x ∈[0, ]的图象和直线y =2围成一个封闭的平面图形,则该图形的面积 .
15求函数的值域 .
三、解答题:本大题共6小题,共75分.
16.(本小题满分12分)
(1)已知,且,求的值;
(2)已知为第二象限角,且,求的值.
17(本小题满分12分)
已知集合
(1)能否相等?若能,求出实数的值,若不能,试说明理由?(2)若命题命题且是的充分不必要条件,求实数的取值范围;
(本小题满分12分)
在△中,角,,对应的边分别是,,. 已知.
(1)求角A的大小;
(2)若△的面积,,求的值.
19.(本小题满分12分)
已知函数.
(1)若,求的值;
(2)设三内角所对边分别为且,求在上的值域.
文科数学答案
CBADD ABDCA
11.-8 12 10 6 13. ⎣⎡⎦⎤2k π,2k π+π4∪⎣⎡⎦
⎤2k π+3π4,2k π+π(k ∈Z ), 14. 15设点P (sin x ,cosx ),Q (-2,0),则可看成单位圆上的动点P 与点Q 连线的斜率,如答图: 设直线是方程为y =k (x +2),即kx -y +2k =0,则圆心(0,0)到它的距离,解得或,所以,即,故,.
或者: k 值亦可由333
1||||tan tan 1121===∠-=∠Q P O P QO P QO P 求得;或将式子变为,利用辅助角公式求解(过程略).
16. (1)(2)
17解
(1)当时当时显然
故时,
(2)
当时, 则解得
当时,则
综上是的充分不必要条件,实数的取值范围是或
18解:(1)由,得,
即,解得 或(舍去).
因为,所以.
(2)由得. 又,知.
由余弦定理得故. 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.
19.解:(1)由,得.
∴. ∴,
即
, ∴.………………5分
(2)由即得
则即,…………………………………8分
又=………………………………………10分
由,则,故,即值域是………12分
20.解:(1)当时,,
,
曲线在点处的切线方程.
(2)对任意的,使成立,只需对任意的,.
①当时,在上是增函数,只需
而, 满足题意;
②当时,,在上是增函数,
只需 而, 满足题意;
③当时,,在上是减函数,上是增函数,
只需即可,而, 不满足题意;
综上,.
21.(1)由题设得,
,则,
所以 ……………………2分
所以对于任意实数恒成立
.故 ……………………4分
(2)由x a x x x a x x f x g ln 2ln )1(2)()(2
++=+++=,求导数得
……………………5分
在上恒单调,只需或在上恒成立,即或恒成立,所以或在上恒成立……………………7分 记,可知:,
或 ……………………9分 (3) 令),0(2,121ln 2)(21ln 22
'2>-=+-=-=x x
x y x x x f x y ……10分 令02ln 22,0',20,0'>=∴><<<>有极大值时,得得y x x y x y ………………………………………12分
有两个零点时,有一个零点
时,无零点,时,)(2ln )(2ln )(2ln x h k x h k x h k <=>∴ …..14分。