小学奥数--简单的还原问题
- 格式:doc
- 大小:42.00 KB
- 文档页数:11
四年级奥数-------还原问题1.甲、乙、丙三人共有660元,如果甲给乙30元,乙给丙46元,丙给甲58元,那么三人钱数正好相等。
问:甲、乙、丙三人原来各有多少元?2.粮店库存面粉若干袋,第一天卖出库存的一半多4袋,第二天卖出剩下的一半少3袋,第三天运进30袋,这时粮店里共有面粉50袋,求粮店里原有面粉多少袋?3.抽屉里有若干个玻璃球,小军每次拿出其中的一半再放回1个,这样一共拿了5次,抽屉里还有3个玻璃球,那么,原来抽屉里有多少个玻璃球?4.甲乙丙三人共有360元,如果甲给乙70元,乙给丙20元,丙给甲90元则三人钱数恰好相等。
甲、乙、三人原来各有多少钱?5.一个篮子里放着一苹果,有一个小朋友从篮子里往外拿苹果,每次都拿出篮子苹果总数的一半,然后再放回1个。
就这样这个小朋友一共拿了597次之后,这时篮子里还有2个苹果。
那么刚开始时篮子里有几个苹果?6.王奶奶上街卖一篮鸡蛋,第一读了一半还多1个,第二天卖了剩下的一半还多1个,第三天卖了剩下的一半还多1个,篮子里剩下5个鸡蛋,奶奶的篮子里原来有够少个鸡蛋?7.司机开车按顺序到五个车站接学生到学校(如图)。
每个站都有学生上车。
第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半。
车到学校时,车上最少有多少学生?8.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。
这捆电线原来长多少米?9.修一条路,第一天修了全长的一半多6米,第二天修了余下的一半少20米,第三天修了30米,最后还剩14米没修。
这条路长多少米?10.一袋大米,第一天吃去它的一半少2千克,第二天吃去剩下的一半多2千克,还剩下10千克,这袋大米原有多少千克?11.丁丁在计算除法时,把除数23写成了32 ,结果得到的商为21 ,余数是18 ,正确的商是多少?12.小明在计算(28+33)时,漏看了小括号,算出的结果是358,检查时发现了错误,又重新计算,他算出的正确结果是多少?13.小明爷爷今年的年龄数加上8后,再除以6,然后减去6,最后乘10,正好得100,小明爷爷今年是多少岁?14.一位同学使用计算器算题,最后一步应加上11,但他却除以11了,因此得到的错误结果是10,正确的答案应该是多少?15.计算一道两位数乘法时,小琴将一个因数个位上的7看成了1,结果是3726;小林将同一个因数十位上的8看成了5,结果是2622,正确的积应该是多少?16.一个数加上5,减去5,乘5,除以5,最后结果是10,这个数是多少?17.有A、B、C、D四个数,它们的和是60,A的5倍与B数减1、C数加4、D数的一半都相等。
6-1-2.还原问题(一)教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.3. 培养学生“倒推”的思想.知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.关键:从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号.例题精讲模块一、计算中的还原问题【例 1】一个数的四分之一减去5,结果等于5,则这个数等于_____。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】希望杯,五年级,二试,第3题【例 2】某数先加上3,再乘以3,然后除以2,最后减去2,结果是10,问:原数是多少?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】(2008年“陈省身杯”国际青少年数学邀请赛)有一个数,如果用它加上6,然后乘以6,再减去6,6-1-2.还原问题(一).题库教师版page 1 of最后除以6,所得的商还是6,那么这个数是。
【考点】计算中的还原问题【难度】1星【题型】填空【关键词】可逆思想方法【巩固】一个数减16加上24,再除以7得36,求这个数.你知道这个数是几吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】少先队员采集树种子,采得的个数是一个有趣的数.把这个数除以5,再减去25,还剩25,你算一算,共采集了多少个树种子?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【例 3】学学做了这样一道题:某数加上10,乘以10,减去10,除以10,其结果等于10,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】学学做了这样一道题:一个数加上3,减去5,乘以4,除以6得16,求这个数.小朋友,你知道答案吗?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【巩固】一次数学竞赛颁奖会上,小刚问老师:“我得了多少分?”老师说:“你的得分减去6后,缩小2倍,再加上10后,扩大2倍,恰好是100分”.小刚这次竞赛得了多少分?【考点】计算中的还原问题【难度】1星【题型】解答【关键词】可逆思想方法【例 4】牛老师带着37名同学到野外春游.休息时,小强问:“牛老师您今年多少岁啦?”牛老师有趣地回答:“我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数.”小朋友们,你知道牛老师今年多少岁吗?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】小智问小康:“你今年几岁?”小康回答说:“用我的年龄数减去8,乘以7,加上6,除以5,正好等于4. 请你算一算,我今年几岁?”【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】在小新爷爷今年的年龄数减去15后,除以4,再减去6之后,乘以10,恰好是100,问:小新爷爷今年多少岁数?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【巩固】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁.”小朋友,你知道这位神仙现在有多少岁吗?【考点】计算中的还原问题【难度】2星【题型】解答【关键词】可逆思想方法【例 5】在电脑里先输入一个数,它会按给定的指令进行如下运算:如果输入的数是偶数,就把它除以2;如果输入的数是奇数,就把它加上3.同样的运算这样进行了3次,得出结果为27.原来输入的数可能是.【考点】计算中的还原问题【难度】3星【题型】填空【关键词】可逆思想方法,第七届,小数报【例 6】假设有一种计算器,它由A、B、C、D四种装置组成,将一个数输入一种装置后会自动输出另一个数。
奥数专题之还原问题11.将一个数做如下运算:乘以4;再加上112;减去20;最后除以4;这时得100.那么这个数是 .2.李白提壶去买酒;遇店加一倍;见花喝一斗;三遇店和花;喝光壶中酒;壶中原有斗酒.3.甲、乙两个车站共停135辆汽车;如果从甲站开36辆到乙站;从乙站开45辆到甲站;这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥;第一天卖出一半又多15吨;第二次卖出余下的一半多8吨;第三次卖出180吨;正好卖完;这批化肥原来有吨.5.四个袋子共有168粒棋子;小红过来一看;把棋子作如下的调整;把丁袋调3粒到丙袋;丙调6粒到乙袋;乙又调6粒到甲袋;甲袋调2粒到丁袋;这时;四个袋子的棋子一样多;乙袋原来有粒棋子.6.一筐桔子;把它四等分后多一个;取走3份又一个;剩下的四等分后又剩一个;再取走3份又一个;剩下的四等分又剩一个;那么原来至少有个桔子.7.袋子里有若干个球;小华每次拿出其中的一半再放回一个球;这样共操作了5次;袋中还有3个球;那么;袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A;B;C;D四数之和为45;且A+2=B-2=C×2=D÷2;那么;这四个数依次是 .10.两个小于1000的质数之积是一个偶数;这个偶数最大可能是.11.有26块砖;兄弟俩拿去挑;弟弟抢在前;刚摆好姿势;哥哥赶到了.哥哥看到弟弟挑得太多;从弟弟那里抢过了一半;弟弟不服;又从哥哥那里抢回一半;哥哥不肯;弟弟只好给哥哥5块;此时哥哥比弟弟多挑2块;问最初弟弟准备挑多少块12.批发站有若干筐苹果;第一天卖出一半;第二天运进450筐;第三天又卖出现有苹果的一半又50筐;还剩600筐;这个批发站原有多少筐.13.三人共有糖72粒;若甲给乙、丙各一些;使他们增加1倍.接着乙又给甲、丙各一些;使它们翻倍.最后丙也给甲、乙各一些;使他们翻倍.这时三人糖数相等;求三人原来各几粒14.袋子里有若干个球;小明每次拿出其中的一半;再放回一个;一共做了5次;袋中还有3个球;问原来袋中有几个球。
小学奥数趣味学习《还原问题》典型例题及解答还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。
解题思路和方法:解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。
简言之就是反其道而行之就能算出结果。
例题1:将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?解:1、本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。
2、由最后的结果出发,除以6商是6,那么之前就是6×6=36;减去6是36,那么之前是36+6=42;乘6是42,那么之前是42÷6=7;加上6是7,那么之前数7-6=1。
例题2:修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?解:1、本题考查的是一半与整体关系还原,关键是抓住最后的数量,从后往前推理。
2、根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度;又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米),这样得出剩下的长度的2倍就是全长,即150×2=300(米)。
例题3:甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?解:1、本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。
2、根据题意我们可以列表如下:3、最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。
4、因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《⼩学奥数还原问题经典例题讲解【三篇】》供您查阅。
【第⼀篇:挑砖】【例】有26块砖,兄弟2⼈争着去挑,弟弟抢在前⾯,刚摆好砖,哥哥赶来了。
哥哥看弟弟挑得太多,就拿来⼀半给⾃⼰。
弟弟觉得⾃⼰能⾏,⼜ 从哥哥那⾥拿来⼀半。
哥哥不让,弟弟只好给哥哥5块,这样哥哥⽐弟弟多挑2块。
问最初弟弟准备挑多少块? 【分析】我们得先算出最后哥哥、弟弟各挑多少块。
只要解⼀个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。
提⽰:解还原问题所作的相应的“逆运算”是指:加法⽤减法还原,减法⽤加法还原,乘法⽤除法还原,除法⽤乘法还原,并且原来是加(减)⼏,还原时应为减(加)⼏,原来是乘(除)以⼏,还原时应为除(乘)以⼏。
对于⼀些⽐较复杂的还原问题,要学会列表,借助表格倒推,既能理清数量关系,⼜便于验算。
【第⼆篇:存取款】【例】某⼈去银⾏取款,第⼀次取了存款的⼀半多50元,第⼆次取了余下的⼀半多100元。
这时他的存折上还剩1250元。
他原有存款多少元? 【分析】从上⾯那个“重新包装”的事例中,我们应受到启发:要想还原,就得反过来做(倒推)。
由“第⼆次取余下的⼀半多100元”可知,“余下的⼀半少100元”是1250元,从⽽“余下的⼀半”是1250+100=1350(元) 余下的钱(余下⼀半钱的2倍)是:1350×2=2700(元) ⽤同样道理可算出“存款的⼀半”和“原有存款”。
综合算式是: [(1250+100)×2+50]×2=5500(元) 还原问题的⼀般特点是:已知对某个数按照⼀定的顺序施⾏四则运算的结果,或把⼀定数量的物品增加或减少的结果,要求最初(运算前或增减变化前)的数量。
解还原问题,通常应当按照与运算或增减变化相反的顺序,进⾏相应的逆运算。
第一套还原问题■例1、1、一篮鸡蛋第一次吃去了全部的一半多1个,第二次又吃去了余下的一半少1个,这时还剩18个,原来鸡蛋有多少个?【做一做】2、小红去超市买学习用品,买了几只圆珠笔用去了一半多2元,买笔盒用去了余下的一半多1元,还剩5元,小红原来有多少元?3、有一筐鸡蛋,第一次吃去全部的一半少5个,第二次吃去余下的一半少6个,结果还剩下28个鸡蛋,求原来有多少个鸡蛋?4、儿童玩具店有一批玩具,卖掉200件后,又运来500件,再卖掉400件,还剩下300件,儿童玩具店原有玩具多少件?■例2、5、一根绳子剪去全长的一半多6米,还剩下16米,原来这根绳子是多少米?【做一做】6、一捆电线,用去全长的一半多4米,还剩16米,这捆电线原来长多少米?7、三年级一班一半人参加音乐小组,余下的人中又有一半人参加电脑小组,这时还剩下13人,都参加书法小组,这个班有多少人?H15-C-1页8、一捆电线,用去全长的一半少4米,还剩16米,这捆电线原来长多少米?■例3、9、某数加上6,乘以6,除以6,其结果等于6,某数是多少?【做一做】10、小红的奶奶的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁,小红的奶奶今年多少岁?11、一根绳子对折,再对折,这时每段长8米,原来这绳子长多少米?12、一个数加上6,除以2,再减去9,最后得8,求这个数。
■例4、13、有三盒乒乓球共90个,如果从第一盒拿出8个到第二盒,再从第二盒拿出10个到第三盒,那么三盒乒乓球的个数就相等,第二盒原来的有多少个乒乓球?【做一做】14、三只鱼缸里养63条金鱼,如果从第一只鱼缸里拿8条到第三只鱼缸里去,再从第二只鱼缸里拿4条金鱼到第三只鱼缸里去,那么三只鱼缸里的金鱼的条数相等,第三只鱼缸里原来有多少条金鱼?15、篮子里有若干个桔子,取它的一半又一个给第一人,再取其余的一半又2个给第二人,又取最后所余的一半又3个给第三人,篮内的桔子恰好分完,问篮子里原有多少个桔子?16、书架上分上、中、下三层,一共发放192本书,现在从上层取出与中层同样多的书放到中层,再从中层取出与下层同样多的书放到下层,最后从下层取出与上层剩下的本数同样多的书放到上层,这时三层所放的书本数相同。
还原问题1、一位老人说:“把我的年龄加上14后除以3,再减去26,最后用25乘,恰巧是100岁。
”这位老人今年多少岁?2、某数除以5,减去200,再乘以2,最后加上30,结果等于230,这个数是多少?3、小敏问爷爷今年多少岁。
爷爷笑着说:“把我的年龄减去6以后,缩小5倍,再加上10之后,扩大4倍,正好是100岁。
”你算算小敏爷爷今年多少岁。
4、小马虎在一次计算练习中,把其中一道整数加法个位上的6看作9,把十位上的8看作3,结果算出答数是123,问正确的结果应该是多少。
5、两个数的和是128,一位学生在计算时将其中一个加数个位上的0漏掉了,结果算出的和是56,这两个加数各是多少?6、小马虎在计算整十数乘法时,把一个因素末尾的零丢了,接着在将这个结果加上一个两位数时,又将个位的1看成7,十位的6看成9,最后得297,正确的计算结果应是多少?7、甲乙两桶各有油若干千克,如果从甲桶倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶剩下的同样多的油放入甲桶,这时两桶油恰好都是28千克。
问两桶油原来各有多少千克?8、甲、乙两个车库共停了135辆汽车,如果从甲库开到乙库36辆汽车,而从乙库开到甲库45辆汽车,这时乙库所停气车的辆数是甲库的1.5倍,原来甲库停放汽车多少辆?乙库停放汽车多少辆/9、李白:无事街上做,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有酒多少斗?10、一根绳子,第一次截掉一半零1厘米,第二次截掉剩下的一半零1厘米,第三次截掉再剩下的一半零1厘米,还剩下7厘米。
这根绳子原来长多少厘米?11、在体育器材室里有若干个球,六年级学生借走3个又借剩下的一半;五年级借走一个又借剩下的一半;三年级同学借了一个又借剩下的一半,还剩下2个求,那么原来有多少个球?12、一个盒子里放着一些苹果,一个小朋友从盒子里往外拿苹果。
拿的规则是:每次总要拿出盒子里苹果总数的一半,然后再放回一个。
这个小朋友按此规则拿了597次之后,盒子里还有2个苹果。
还原问题奥数题还原问题奥数题1.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的 ?2.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米?3.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元?4.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个?5. 甲乙丙三人共有棋子若干,甲先拿出自己棋子的一半平分给乙丙,然后乙拿出现有的三分之一平分给甲和丙,最后丙把自己的四分之一平分给甲和乙,此时三人棋子数一样多,那么三人至少共有棋子多少?6. 有一堆桃,第一个猴子拿走了这堆桃的一半加半个桃子,第二个猴子又拿走了剩下桃的一半加半个,第三个猴子拿走了最后剩下的桃的一半加半个,桃子正好被拿光。
问:这堆桃子原来有几个?7.有一堆桃,第一个猴子拿走了这堆桃的一半加半个桃子,第二个猴子又拿走了剩下桃的一半加半个,第三个猴子拿走了最后剩下的桃的一半加半个,桃子正好被拿光。
问:这堆桃子原来有几个?8.袋子里有若干个球,小明每次拿出其中的一半再放回一个球,一共这样做了五次,袋中还有3个球。
问:原来袋中有多少个球?9.有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个老人,老人对他说:“你只要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32个铜板。
”财迷算了算挺合算,就同意了。
他走过桥去又走回来,身上的钱果然增加了一倍,他很高兴地给了老人32个铜板。
这样走完第五个来回,身上的最后32个铜板都给了老人,一个铜板也没剩下。
问:财迷身上原有多少个铜板?10.有一堆棋子(棋子数大于1),把它四等分后剩一枚,拿去三份另一枚,将剩下的棋子再四等分后还是剩一枚,再拿走三份另一枚,将剩下的棋子四等分还是剩一枚。
还原问题例1:小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?练习一1,在□里填上适当的数。
20×□÷8+16=262,一个数的3倍加上6,再减去9,最后乘上2,结果得60.这个数是多少?3,小红问王老师今年多大年纪,王老师说:“把我的年纪加上9,除以4,减去2,再乘上3,恰好是30岁.”王老师今年多少岁?例2:某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?练习二1,粮库内有一批大米,第一次运出总数的一半多3吨,第二次运出剩下的一半多5吨,还剩下4吨。
粮库原有大米多少吨?2,爸爸买了一些橘子,全家人第一天吃了这些橘子的一半多1个,第二天吃了剩下的一半多1个,第三天又吃掉了剩下的一半多1个,还剩下1个。
爸爸买了多少个橘子?3,某水果店卖菠萝,第一次卖掉总数的一半多2个,第二次卖掉了剩下的一半多1个,第三次卖掉第二次卖后剩下的一半多1个,这时只剩下一外菠萝。
三次共卖得48元,求每个菠萝多少元?例3:小明、小强和小勇三个人共有故事书60本。
如果小强向小明借3本后,又借给小勇5本,结果三个人有的故事书的本数正好相等。
这三个人原来各有故事书多少本?练习三1,甲、乙、丙三个小朋友共有贺年卡90张。
如果甲给乙3张后,乙又送给丙5张,那么三个人的贺年卡张数刚好相同。
问三人原来各有贺年卡多少张?2,小红、小丽、小敏三个人各有年历片若干张。
如果小红给小丽13张,小丽给小敏23张,小敏给小红3张,那么他们每人各有40张。
原来三个人各有年历片多少张?3,甲、乙、丙、丁四个小朋友有彩色玻璃弹子10颗,甲给乙13颗,乙给丙18颗,丙给丁16颗,四人的个数相等。
他们原来各有弹子多少颗?例4:甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
“简单的还原问题”学生姓名授课日期教师姓名授课时长什么是还原问题?简单的说,还原问题就是已知一个数的变化过程和最后结果,求原来的数的问题。
解决还原问题的基本思路:一步一步退回去,原来是加的,退回去用减;原来是减的,退回去用加;原来是乘的,退回去用除;原来是除的,退回去用乘。
换句话说,就是一步一步退回到原来的出发点。
所以,这类问题也称为还原问题或逆推问题。
一、倒推法的使用范围1.已知步骤2.已知结果二、倒推法注意事项1.从结果开始一步一步往前推2.每一步都是逆运算(加减互逆,乘除互逆)三、倒推法的形式1.顺序图(单个变量)2.表格法(多个变量)【课前小游戏】——走迷宫有一天,jerry不小心遇到了tom,他一下子就钻到了迷宫里,jerry要想不被tom吃掉,应该从A、B、C哪个门出去呢?(呵呵,今天的晚餐好丰盛哦!我一定要吃掉你!)同学们,在我们解答问题的时候,有时知道了问题可能发生的结果,但是却不知道为什么会发生这样的结果,这个时候只要我们顺着答案往前一步步进行推理,就可以找到问题发生的原因啦!这种方法就叫做倒推法【小试牛刀】【试题来源】【题目】你知道下面每个起点上的数字各是几吗?【试题来源】【题目】【试题来源】【题目】大雄问小丸子:“你今年几岁?”小丸子回答:“用我的年龄减去2,乘以2,减去2,再除以2,恰好等于5。
”你能帮大雄算一下,小丸子今年多少岁吗?【试题来源】【题目】小聪明拿了妈妈给的零花钱去买东西.他先用这些钱的一半买了一把尺子,之后又买了一枝1元5角钱的铅笔,最后还剩下3角钱。
你知道妈妈给小聪明多少钱吗?【试题来源】【题目】馋嘴和尚吃一堆馒头。
第一次吃了一半,觉得不够;第二次又吃了剩下的一半,觉得差不多了;第三次又吃了5个,觉得饱了。
他发现还剩下5个,干脆又吃光了。
这一堆馒头有多少个?【试题来源】【题目】安安拿出一些棋子玩游戏,她每次拿出其中的一半再放回1颗,这样一共做了三次,最后还剩3颗棋子,你知道安安一共拿出了多少颗棋子?【试题来源】【题目】你知道下面每个起点上的数字各是几吗?【试题来源】【题目】乐乐问小丸子:“你今年几岁?”小丸子回答:“用我的年龄减去2,乘以2,减去2,再除以2,恰好等于5。
简单的还原问题阅读与思考已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,还可借助画图和列表来解决。
典型例题例1 一个数加上25,再减去38后是20。
这个数是多少?分析我们从问题入手,按照下图的思路来寻求解决办法。
要求的这个数最后是20,如果不减去38,就是20+38=58;如果不加上25,就是58-25=33。
算完后注意这样检验:33+25-38=20。
训练快餐1(1)一个数加上48,再减去29后是50。
这个数是多少?(2)一个数减去19,再加上36后是60。
这个数是多少?例2 一个数乘4,再除以3后是8。
这个数是多少?分析我们从问题入手,按照下图的思路来寻求解决办法。
要求的这个数最后是8,如果不除以3,就是8×3=24;如果不乘4,就是24÷4=6。
算完后注意这样检验:6×4÷3=8。
训练快餐2(1)一个数乘6,再除以4后是9。
这个数是多少?(2)一个数除以2,再乘4后是20。
这个数是多少?例3 小刚的姥姥今年年龄减去7岁后,缩小9倍,再加1岁后才10岁。
小刚的奶奶今年多少岁?分析我们从问题入手,按照下图的思路来寻求解决办法。
从最后一个条件恰好是100岁向前推算,加上1岁之后是10岁,没有加1岁之前应是10-1=9岁;没有缩小9倍之前应是9×9=81岁;减去7之后是81岁,没有减去岁7前应是81+7=88岁。
训练快餐3(1)一个数的3倍加上6,再减去9,结果得21。
这个数是多少?(2)一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?例4 小马虎在做一道加法题目时,把一个加数个位上的5看成了9,把十位上的8看成了3,结果得到的和是43。
正确的结果应是多少?分析把一个加数个位上的5看成了9,就多加了4;把一个加数个位上的8看成了3,就少加了50。
小学奥数还原问题应用题及答案【三篇】导读:本文小学奥数还原问题应用题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【篇一】【篇二】【篇三】【练习题一】1、三个容器内都有水,如果甲容器的1/3水倒入乙容器,再把乙容器的1/4倒入丙容器,最后再把丙容器的1/10倒入甲容器,那么各容器的水都是9升,每个容器里原来有水多少升?2、去年年终甲、乙、丙三人领取了数额不同的奖金,如果甲把自己的一部分奖金分给乙、丙两人,使乙、丙的奖金数额增加一倍;然后乙又拿出奖金的一部分分给甲、丙二人,使甲、丙的奖金额增加一倍;最后丙也拿出一部分奖金分给甲、乙二人,使甲、乙二人的奖金数额增加一倍,这样三人的奖金都是96元,则原来甲的奖金应是多少元?3、某男孩付一角钱进入一家商店,他在商店里花了剩余的钱的一半,走出商店时,又付了一角钱,之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱。
接着他又用同样的方式进出第三家和第四家商店,当他离开第四家商店后,这时他身上只剩下一角钱,问:他进入第一家商店之前身上有多少钱?4、甲、乙、丙三堆零件,第一次从甲堆中拿出零件放到乙、丙中去,使乙、丙分别增加1/3,第二次从乙堆中拿到甲、丙中去,使甲、丙分别增加1/3。
第三次再从丙堆中拿到甲、乙中去,也使甲、乙分别增加1/3,这样三堆零件都是320个。
甲堆原有零件多少个?5、兄弟俩各有若干元钱,在哥哥拿出1/5给弟弟后,弟弟拿出1/4给哥哥,这时两人各有180元。
原来哥哥有多少元?弟弟有多少元?【练习题二】1、妈妈买来一批桔子,小明第一天吃了这些桔子的一半多一个,第二天吃了剩下的一半多1个,第三天又吃了剩下的一半多1个,第四天小明吃掉剩下的最后一个桔子。
妈妈买的桔子共多少个?2、山顶有棵桔子树,一只猴子偷吃桔子。
第一天偷吃了1/10,以后八天分别偷吃了当天剩下桔子的1/9、1/8、1/7、……、1/3、1/2,偷吃了九天,树上还留下10只桔子,问树上原有多少只桔子?3、一堆西瓜,第一次卖出总个数的1/4又4个,第二次卖出余下的1/2又2个,第三次卖出余下的1/2又2个,还剩下2个,这堆西瓜共有多少个?4、一瓶酒精,第一次倒出1/3,然后倒回瓶中40克;第二次倒出瓶中剩下酒精的5/9,第三次倒出180克,瓶中还剩下60克,原来瓶中有酒精多少克?5、甲、乙两人各有钱若干元,甲拿出1/6给乙后,乙又拿出1/5给甲,这时他们各有240元,两人原来各有多少元?。
还原问题例1:一个数减去8,加上10,再除以7,乘以4,结果是48,问:这个数是多少?例2:有一老人说:“把我的年龄加上17用4除,再减去15后用10乘,恰巧是100岁。
”这位老人今年多少岁?例3:小马虎做一道减法题,把被减数十位上的6当做9,把减数个位的3当做5,结果是217,正确的答案是多少?例4:王叔叔到银行取钱,第一次取了存款数的一半还多6元,第二次取了余下的一半还多8元,这时还剩100元,王叔叔原有存款多少元?例5:甲乙两个油桶各装了15千克的油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶油增加1倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加1倍,这时甲桶油恰好是乙桶油的3倍。
问:售货员从两个桶里个卖了多少千克油?例6:甲、乙、丙各有卡片若干张,甲拿出与乙相同张数的卡片给乙,甲也拿出与丙相同张数的卡片给丙,然后乙拿出与甲、丙相同张数的卡片给甲、丙,最后丙也拿出与甲、乙相同张数的卡片给甲、乙,此时三个小朋友都有卡片16张。
问三个小朋友最初各有多少张卡片?1.某数加上1,减去2,乘以3,除以4得9,求这个数?2.某数加上6,乘以6,减去6,除以6,其结果等于6,这个数是多少?3.一根绳子剪去一半多40厘米,再减去余下的一半,还剩430厘米,这根绳子原来长多少厘米?4.在做一道加法试题时,某学生把个位上的5看做9,把十位上的8看做3,结果“和”得123.正确的答案是多少?5.某数扩大5倍,再减去6得39,如这个数先减去6,再扩大5倍得多少?6.小军在计算两个数相加时,把一个加数个位上的1错误地当做7,把另一个加数十位上的8错误的当做3,所得的和是1946,原来两数相加的正确答案是多少?7.有一条铁丝,第一次用去它的一半少100厘米,第二次用去了剩下的一半多100厘米,最后还剩250厘米。
这条铁丝原来长多少厘米?8.甲、乙、丙三个中队共有图书498册,如果甲中队给乙中队4册,乙中队给丙中队10册,那么三个中队的图书册数相等。
还原问题(一)
问题1 小明的爷爷今年年龄减去7后,除以9,再加上2,最后乘10,恰好是100岁,小明爷爷今年多少岁?
[解析]从最后一个条件恰好是100岁,向前推算,乘10后是100岁,那没有乘10前应是100÷10=10(岁);加上2之后是10岁,那没加2之前应是10-2=8(岁);除以9后是8岁,那没除以9之前应是8×9=72(岁);减去7后是72岁,那没减7之前是72+7=79(岁)。
所以,小明爷爷今年是79岁。
列式为:(100÷10-2)×9+7=79(岁)。
练习:
(1)在□内填上适当的数 20×□÷8+16 = 46。
(2)一个数除以10后再增加80,然后乘3,再减去85,得200,求这个数。
(3)东东问张老师今年多少岁,张老师说:“把我的年纪加上8,除以4,减去2,再乘5,恰好是45岁。
”张老师今年多少岁?
问题2 某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,这时还剩95台,这个商场原来有洗衣机多少台?
[解析]根据题意,我们可以画出如下的分层线段图。
从“下午售出剩下的一半还多20台”和“这时还剩95台”向前推算,从图中可以看出,这时剩下的95台加上下午多卖的20台的和,即95+20=115(台),正好是上午售出后剩下的一半,那么115×2=230(台),就是上午售出后剩下的台数,而230台与10台即230+10=240(台),又正好是总数的一半。
所以原有洗衣机的台数是240×2=480(台)。
列式是:[(95+20)×2+10] ×2=480(台)
练习:。
四年级奥数:还原问题(一)有一位老人说:“把我的年龄加上12,再用4除,再减去15后乘以10,恰好是100岁。
”这位老人有多少岁呢?解这个题目要从所叙述的最后结果出发,利用已给条件一步步倒着推算,同学们不难看出,这位老人的年龄是(100÷10+15)×4—12=88(岁)。
从这一例子可以看出,对于有些问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是,如果改变思考顺序,从问题叙述的最后结果出发,一步一步倒着思考,一步一步往回算,原来加的用减,减的用加,原来乘的用除,除的用乘,那么问题便容易解决。
这种解题方法叫做还原法或逆推法,用还原法解题的问题叫做还原问题。
例1有一个数,把它乘以4以后减去46,再把所得的差除以3,然后减去10,最后得4。
问:这个数是几?分析:这个问题是由(□×4—46)÷3—10=4,求出□。
我们倒着看,如果除以3以后不减去10,那么商应该是4+10=14;如果在减去46以后不除以3,那么差该是14×3=42;可知这个数乘以4后的积为42+46=88,因此这个数是88÷4=22。
解:[(4+10)×3+46]÷4=22。
答:这个数是22。
例2小马虎在做一道加法题目时,把个位上的5看成了9,把十位上的8看成了3,结果得到的“和”是123。
问:正确的结果应是多少?分析:利用还原法。
因为把个位上的5看成9,所以多加了4;又因为把十位上的8看成3,所以少加了50。
在用还原法做题时,多加了的4应减去,多减了的50应加上。
解:123-4+50=169。
答:正确的结果应是169。
例3学校运来36棵树苗,乐乐与欢欢两人争着去栽,乐乐先拿了若干树苗,欢欢看到乐乐拿得太多,就抢了10棵,乐乐不肯,又从欢欢那里抢回来6棵,这时乐乐拿的棵数是欢欢的2倍。
问:最初乐乐拿了多少棵树苗?分析:先求乐乐与欢欢现在各拿了多少棵树苗。
简单的还原问题
阅读与思考
已知某个数经过加、减、乘、除运算后所得的结果,要求原数,这类问题叫做还原问题,还原问题又叫逆运算问题。
解决这类问题通常运用倒推法。
遇到比较复杂的还原问题,还可借助画图和列表来解决。
典型例题
例1 一个数加上25,再减去38后是20。
这个数是多少?
分析我们从问题入手,按照下图的思路来寻求解决办法。
要求的这个数最后是20,如果不减去38,就是20+38=58;如果不加上25,就是58-25=33。
算完后注意这样检验:33+25-38=20。
训练快餐1
(1)一个数加上48,再减去29后是50。
这个数是多少?
(2)一个数减去19,再加上36后是60。
这个数是多少?
例2 一个数乘4,再除以3后是8。
这个数是多少?
分析我们从问题入手,按照下图的思路来寻求解决办法。
要求的这个数最后是8,如果不除以3,就是8×3=24;如果不乘4,就是24÷4=6。
算完后注意这样检验:6×4÷3=8。
训练快餐2
(1)一个数乘6,再除以4后是9。
这个数是多少?
(2)一个数除以2,再乘4后是20。
这个数是多少?
例3 小刚的姥姥今年年龄减去7岁后,缩小9倍,再加1岁后才10岁。
小刚的奶奶今年多少岁?
分析我们从问题入手,按照下图的思路来寻求解决办法。
从最后一个条件恰好是100岁向前推算,加上1岁之后是10岁,没有加1岁之前应是10-1=9岁;没有缩小9倍之前应是9×9=81岁;减去7之后是81岁,没有减去岁7前应是81+7=88岁。
训练快餐3
(1)一个数的3倍加上6,再减去9,结果得21。
这个数是多少?
(2)一个数加上3,乘3,再减去3,最后除以3,结果还是3,这个数是几?
例 4 小马虎在做一道加法题目时,把一个加数个位上的5看成了9,把十位上的8看成了3,结果得到的和是43。
正确的结果应是多少?
分析把一个加数个位上的5看成了9,就多加了4;把一个加数个位上的8看成了3,就少加了50。
把错误的和43加上50,再减去4,就是正确的和了。
训练快餐4
(1)小明在做一道加法题时,把一个加数个位上的6看成了9,把十位上的0看成了8,结果得到的和是100。
正确的结果应是多少?
(2)小阳在做一道减法题时,把被减数个位上的3看成了8,把十位上的7看成了1,结果得到的差是36。
正确的结果应是多少?
例 5 某商场春季优惠出售洗衣机,上午售出了总数的一半,下午售出剩下的一半后,还剩10台。
这个商场原来有洗衣机多少台?
分析我们可以根据题意,画出线段图进行分析思考。
结合上图,从“下午售出剩下的一半后还剩10台”向前倒推,上午售后剩下的一半,那么上午售出后剩下的台数就是10×2=20台;而20台又正好是总数的一半,那么原有洗衣机的台数就是20×2=40台。
训练快餐5
(1)粮库内有一批大米,第一次运出总数的一半,第二次运出剩下的一半,还剩下5吨。
粮库原有大米多少吨?
(2)爸爸买了一些橘子,全家人第一天吃了这些橘子的一半,第二天吃了剩下的一半,还剩下3个。
爸爸买了多少个橘子?
能力检测
1.在□中填入合适的数。
(1)□+38-52=48
(2)(□-10)×2=16
2.一个数加上10,再减去20后是50,这个数是多少?
3.一个数减去18,再加上26后是66,这个数是多少?
4.一个数乘6,再除以5后是6,这个数是多少?
5.一个数除以4,再乘6是48,这个数是多少?
6.一个数加上10,再除以2后是9,这个数是多少?
7.一个数减去10,再乘5后是15,这个数是多少?
8.一个数加5,再乘5,在减5,最后得20,这个数原来是多少?
9.欢欢在做一道加法题时,把一个加数个位上的0看成了3,把十
位上的5看成了8,结果得到的和是68。
正确的结果应是多少?
10.乐乐在做一道减法题时,把被减数个位上的9看成了6,把十位
上的0看成了9,结果得到的差是90。
正确的结果应是多少?
11.乘风电器商场春节优惠出售电视机,上午售出了总数的一半,下
午售出剩下的一半后,还剩2台。
这个商场原来有电视机多少台?
12.妈妈买了一些苹果,全家人第一天吃了这些苹果的一半,第二天
吃了剩下的一半,还剩下4个。
妈妈买了多少个苹果?
13.小红问王老师今年多大年纪,王老师说:“把我的年龄减去
10,再除以2,恰好是10岁。
”王老师今年多少岁?
14.五路车在文化宫站下车12人后又上车15人,这时车上共有38
人。
车上原有多少人?
15.一段布,第一次剪去一半,第二次又剪去余下的一半,还剩6
米。
这段布原来长多少米?
16.某水果店卖西瓜,第一次卖掉总数的一半,第二次卖掉剩下的一
半又1个,这时还剩8个西瓜。
原有西瓜多少个?
17.某人乘船从甲地到乙地,行了全程的一半时开始睡觉,当他睡醒
时发现船又行了睡前剩下的一半,这时离乙地还有40千米。
甲、乙两地相距多少千米?
18.甲、乙、丙三人各有一些连环画,甲给乙3本,乙给丙5本后,
三人的本数同样多。
乙原来比丙多多少本?
19.甲、乙、丙三个小朋友各有贺年卡若干张。
如果甲给乙3张后,
乙又送给丙5张,那么三个人各有贺年卡30张。
这三人原来各有贺年卡多少张?
20.小红、小丽、小敏三个人各有故事书若干本。
如果小红给小丽
13本,小丽给小敏23本,小敏给小红3本,那么他们每人各有40本。
原来三个人各有故事书多少本?
简单的还原问题答案
例题
1.20+38-25=33
2.8×3÷4=6
3.(10-1)×9+7=88(岁)
4.43-4+50=89
5.10×2×2=40(台)
训练快餐
1.(1)50+29-48=31
(2)60-36+19=43
2.(1)9×4÷6=6
(2)20÷4×2=10
3.(1)(21+9-6)÷3=8
(2)(3×3+3)÷3-3=1 4.(1)100-80-3=17
(2)36+60-5=91
5.(1)5×2×2=20(吨)
(2)3×2×2=12(个)
能力检测
1.(1)48+52-38=62
(2)16÷2+10=18
2.50+20-10=60
3.66-26+18=58
4.6×5÷6=5
5.48÷6×4=32
6.9×2-10=8
7.15÷5+10=13
8.(20+5)÷5-5=0
9.68-30-3=35
10.90+3-90=3
11.2×2×2=8(台)
12.4×2×2=16(个)
13.10×2+10=30(岁)
14.38-15+12=35(人)
15.6×2×2=24(米)
16.(8+1)×2×2=36(个)
17.40+40=80(千米)
80+80=160(千米)
18.5×2-3=7(本)
19.甲:30+3=33(张)
乙:30+5-3=32(张)
丙:30-5=25(张)
20.小红:40+13-3=50(本)
小丽:40-13+23=50(本)
小敏:40-23+3=20(本)
11 / 11。