2013年三角函数的概念、同角三角函数的关系和诱导公式真题练习
- 格式:doc
- 大小:224.50 KB
- 文档页数:7
三角函数的定义、诱导公式、同角三角函数的关系练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边经过点P(4,-3),则的值为()A. B. C. D.2.已知角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cos α-sin α的值为( )A. B.C. D.3.已知角α的终边与单位圆的交点P,则sinα·tanα=( )A.- B.± C.- D.±4.若tanα<0,且sinα>cosα,则α在( )A.第一象限 B.第二象限C.第三象限 D.第四象限5.若,且,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.若,且为第二象限角,()A. B. C. D.7.已知,则等于A .B .C .D .8.若,且为第二象限角,则( )A .B .C .D .二、填空题9.已知 ,则___________三、解答题 10.已知,且是第四象限的角。
.(1)求;(2). 11.(1)已知,求的值;(2)已知, ,求的值.12.已知tan α2,=(1)求值: sin cos sin cos αααα+- (2)求值: ()()()()π5πsin cos cos π22cos 7πsin 2πsin παααααα⎛⎫⎛⎫+--+ ⎪ ⎪⎝⎭⎝⎭+-+ 13.已知角α终边上的一点()7,3P m m - ()0m ≠.(1)求()cos sin 2119cos sin 22παπαππαα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭的值; (2)求22sin cos cos ααα+-的值.14.已知0θπ<<,且1sin cos 5θθ+=,求 (1)sin cos θθ-的值;(2)tan θ的值.15.已知tan 2α=. (1)求3sin 2cos sin cos αααα+-的值; (2)求()()()()3cos cos sin 22sin 3sin cos πππαααπααππα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+-+的值; 16.已知,计算:(1);(2).17.已知: 1sin cos ,0<<,5θθθπ+=且 (Ⅰ)求sin cos tan θθθ-和的值;(Ⅱ)求22sin cos 2sin cos θθθθ-的值. 18.已知求的值.19.已知,(1)求的值;(2)求的值;(3)求的值.20.已知.(1)求的值(2)求的值.21.已知,求的值;若是第三象限角,求的值.22.已知,.(1)求的值.(2)求的值.23.(1)已知,求的值;(2)已知,求的值.参考答案1.C【解析】【分析】利用任意角函数的定义求出cosα,利用三角函数的诱导公式化简求出值.【详解】∵角α的终边经过点P(4,﹣3),∴p到原点的距离为5∴sinα,cosα∴故选:C.【点睛】本题考查三角函数的定义,考查诱导公式,属于基础题.2.C【解析】【分析】利用任意角的三角函数的定义,求得cosα和sinα的值,可得cosα﹣sinα的值.【详解】角α的始边与x轴非负半轴重合,终边在射线4x-3y=0(x≤0)上,不妨令x=-3,则y=-4,∴r=5,∴cos α==,sin α==,则cos α-sin α=-+=.故选C.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.3.C【解析】【分析】由条件利用任意角的三角函数的定义求得tanα和sinα的值.【详解】由|OP|2=+y2=1,得y2=,y=。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,,则角的终边在第()象限A.一B.二C.三D.四【答案】B【解析】由题意,确定的象限,然后取得结果 .由,得在第二、四象限,由,得在第二、三象限,所以在第二象限.,故选B【考点】任意角的三角函数的定义.2.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算3.已知,且为第三象限角,(1)求的值;(2)求的值。
【答案】(1)(2)【解析】(1)由,再结合第三象限,余弦值为负,算出结果(2)先化简上式,根据,再结合(1)算出结果。
试题解析:(1)且(2分)为第三象限角(4分)(2)==(7分)=(8分)【考点】同角三角函数基本关系的运用以及三角函数的化简.4.已知,那么角是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角【答案】B【解析】要,即,因此角是第二或第三象限角,故选择B.【考点】同角三角函数基本关系及三角函数值的符号确定.5.已知.【答案】.【解析】对式子两边平方,得,从而.【考点】同角三角函数基本关系(平方关系),注意通过平方可与联系.6.已知是第三象限角,且.(1)求的值;(2)求的值【答案】(1);(2).【解析】解题思路:(1)先求,再求,进而求;(2)联立方程组,解得,进而求所求值.规律总结:涉及“”的“知一求二”问题,要利用以下关系式:;.注意点:由的值,求的值,要注意结合角的范围确定符号.试题解析:,是第三象限角,由得.【考点】同角三角函数基本关系式.7.设函数(1)求;(2)若,且,求的值.(3)画出函数在区间上的图像(完成列表并作图)。
(1)列表(2)描点,连线【答案】(1)2;(2);(3)见解析【解析】(1)由正弦函数周期公式得,=,即可求得;(2)将代入的解析式,得到关于的方程,结合诱导公式即可求出,再利用平方关系结合的范围,求出,再利用商关系求出;(3)先由为0和算出分别等于,,在(,)分别令取,0,,求出相应的值和值,在给定的坐标系中描出点,再用平滑的曲线连起来,就得到所要作的图像.试题解析:(1),2分(2)由(1)知由得:, 4分∵∴ 6分∴. 8分(其他写法参照给分)(3)由(1)知,于是有(1)列表11分(2)描点,连线函数 14分【考点】正弦函数周期公式;诱导公式;同角三角函数基本关系式;五点法作图8.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号9.已知,.(1)求;(2)求的值.【答案】(1);(2).【解析】(1)由同角三角函数的基本关系:,,结合条件,可得,再由可知,从而;(2)由(1)可知,可将欲求值的表达式化为与只有关的,根据齐次的数学思想,可分子分母同时除以,从而可得:.试题解析:(1)∵,,∴, 2分又∵,∴, 4分∴; 6分(2) 9分12分.【考点】同角三角函数基本关系.10.已知为锐角,则 .【答案】.【解析】∵为锐角,,∴,,∴.【考点】1.同角三角函数基本关系;2.两角和的正切公式.11.已知x,y均为正数,,且满足,,则的值为.【答案】【解析】因为,所以而所以由得,因此或∵x、y为正数,∴【考点】同角三角函数关系,消参数12.已知的值为()A.-2B.2C.D.-【答案】D【解析】由原式可得,解得.【考点】同角三角函数间的基本关系.13.已知,则的值为 .【答案】【解析】,即,又,故.【考点】诱导公式,同角三角函数的基本关系式.14.已知:,其中,则=【答案】【解析】因为,所以,又因,所以,.【考点】诱导公式.15.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数16.已知是第四象限的角,则= .【答案】【解析】是第四象限的角,则,而.【考点】二倍角公式、同角三角函数的基本关系.17.已知()A.B.C.D.【答案】A【解析】由即①由即②所以①+②可得即即,选A.【考点】1.同角三角函数的基本关系式;2.两角差的余弦公式.18.已知(1)化简;(2)若是第三象限角,且,求的值.【答案】(1) ;(2) .【解析】(1)根据诱导公式进行化简;(2)首先化简,根据第三象限角,同角基本关系式求,确定的值.试题解析:解:(1);. (6)(2),又是第三象限角,,.. (6)【考点】1.诱导公式;2同角基本关系式.19.比较大小:(用“”,“”或“”连接).【答案】>.【解析】在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0.【考点】三角函数线.20.函数在区间上的最大值为,则实数的值为( )A.或B.C.D.或【答案】A【解析】因为,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或,故选A.【考点】1.同角三角函数的基本关系式;2.二次函数的最值问题;3.分类讨论的思想.21.已知函数(1)求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.【答案】(1)(2)【解析】(1)先利用诱导公式,二倍角公式,化一公式将此函数化简为的形式,利用周期公式,求周期,用x的范围求出整体角的范围,结合三角函数图像求其最值。
高三数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则.【答案】3【解析】===3.【考点】同角三角函数基本关系式2.若tan α=3,则 sin2α-2 sin αcos α+3 cos2α=______.【答案】【解析】sin2α-2 sin αcos α+3 cos2α====.3.已知f(α)=,则f的值为________.【答案】-【解析】∵f(α)==-cos α,∴f=-cos=-cos=-cos=-.4.化简+=________.【解析】原式=+=-sin α+sin α=0.5.已知α∈(,π),tanα=-,则sin(α+π)=()A.B.-C.D.-【答案】B【解析】由题意可知,由此解得sin2α=,又α∈(,π),因此有sinα=,sin(α+π)=-sinα=-,故选B.6.记cos(-80°)=k,那么tan100°=()A.B.-C.D.-【答案】B【解析】解法一:因为cos(-80°)=cos80°=k,sin80°==,所以tan100°=-tan80°=-=-.解法二:因为cos(-80°)=k,所以cos80°=k,所以tan100°=-tan80°==-.7.已知sinαcosα=,且π<α<,则cosα-sinα的值为()A.-B.C.-D.【答案】B【解析】∵π<α<,∴cosα>sinα,∴cosα-sinα>0,又∵(cosα-sinα)2=1-2cosαsinα=,∴cosα-sinα=.8.若3cos(-θ)+cos(π+θ)=0,则cos2θ+sin2θ的值是________.【答案】【解析】∵3cos(-θ)+cos(π+θ)=0,即3sinθ-cosθ=0,即tanθ=.∴cos2θ+sin2θ======.9.(5分)(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A.B.C.D.【答案】D【解析】把已知的等式中的cos2α,利用同角三角函数间的基本关系化简后,得到关于sinα的方程,根据α的度数,求出方程的解即可得到sinα的值,然后利用特殊角的三角函数值,由α的范围即可得到α的度数,利用α的度数求出tanα即可.解:由cos2α=1﹣2sin2α,得到sin2α+cos2α=1﹣sin2α=,则sin2α=,又α∈(0,),所以sinα=,则α=,所以tanα=tan=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式及同角三角函数间的基本关系化简求值,是一道基础题.学生做题时应注意角度的范围.10.已知sin α=+cos α,且α∈,则的值为________.【答案】-【解析】将sin α-cos α=两边平方,得2sin α·cos α=,(sin α+cos α)2=,sin α+cos α=,==-(sin α+cos α)=-.11.在△ABC中,若sinA,cosA是关于x的方程3x2-2x+m=0的两个根,则△ABC是 ( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【答案】A【解析】∵sinA,cosA是关于x的方程3x2-2x+m=0的两个根∴sinA+cosA=∴(sinA+cosA)2=1+2sinAcosA=即sinAcosA=-∵0o<A<180o,∴sinA>0,所以cosA<0,即90o<A<180o故知△ABC是钝角三角形12.已知,则()A.B.C.D.【答案】A【解析】∵,∴,∴,∴,∴,∴,∴.【考点】三角函数求值.13.在中,角A,B,C的对边a,b,c成等差数列,且,则 .【答案】【解析】∵成等差数列,∴,∴,∵,∴,∴,∴,(1)∵且,∴代入(1)式中,,∴,∴,∴,∴.【考点】1.等差中项;2.倍角公式;3.诱导公式.14.已知,,则.【答案】【解析】由题意,,.【考点】同角间的三角函数关系.15.若则【答案】【解析】,得,∴.【考点】求三角函数值.16.α是第二象限角,tanα=-,则sinα=________.【答案】【解析】由解得sinα=±.∵α为第二象限角,∴sinα>0,∴sinα=.17. cos=________.【答案】-【解析】cos=cos=cos(17π+)=-cos=-.18.已知其中若.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)先由已知条件求得的值,再由平方关系可得的值,把拆为,最后利用两角和的余弦公式即可求得的值;(2)考查了三角函数中知一求三的思想,即这几个量“知一求三”.可先利用差角余弦公式将展开,求得的值,两边平方即可求得的值,再由平方关系即可求得的值,最后由商关系即可求得的值.试题解析:(1)由已知得:,(2)由,得,两边平方得:,即,∵,且,从而. 12分【考点】1.平面向量的数量积运算;2.应用三角恒等变换求三角函数的值.19.已知x∈(0,),则函数f(x)=的最大值为()A.0B.C.D.1【答案】C【解析】由已知得,f(x)==tanx-tan2x=-(tanx-)2+,∵x∈(0,),∴tanx∈(0,1),=.故当tanx=时,f(x)max20.已知sinθ,cosθ是关于x的方程x2-ax+a=0(a∈R)的两个根.(1)求cos3(-θ)+sin3(-θ)的值.(2)求tan(π-θ)-的值.【答案】(1) -2 (2) 1+【解析】【思路点拨】先由方程根的判别式Δ≥0,求a的取值范围,而后应用根与系数的关系及诱导公式求解.解:由已知,原方程的判别式Δ≥0,即(-a)2-4a≥0,∴a≥4或a≤0.又(sinθ+cosθ)2=1+2sinθcosθ,则a2-2a-1=0,从而a=1-或a=1+(舍去),因此sinθ+cosθ=sinθcosθ=1-.(1)cos3(-θ)+sin3(-θ)=sin3θ+cos3θ=(sinθ+cosθ)(sin2θ-sinθ·cosθ+cos2θ)=(1-)[1-(1-)]=-2.(2)tan(π-θ)-=-tanθ-=-(+)=-=-=1+.21.若sinθcosθ>0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限【答案】B【解析】∵sinθcosθ>0,∴sinθ,cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B.22.=()A.-B.-C.D.【解析】====sin 30°=.23.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-【解析】f(x)=sin x-2cos x==sin(x-φ),其中sin φ=,cos φ=,当x-φ=2kπ+ (k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cos θ=-sin φ=-.24. 4cos 50°-tan 40°=________.【答案】【解析】4cos 50°-tan 40°======.25.已知α∈,且cos α=-,则tan α=________.【答案】2【解析】利用同角三角函数的基本关系求解.由条件可得sin α=-,所以tan α===2.26.若α,β∈,cos =,sin =-,则cos (α+β)=________.【答案】【解析】∵α,β∈,∴-<α-<,-<-β<,由cos =和sin =-得α-=±,-β=-,当α-=-,-β=-时,α+β=0,与α,β∈矛盾;当α-=,-β=-时,α=β=,此时cos (α+β)=-.27.若cos =,则cos =().A.-B.-C.D.【答案】D【解析】∵cos =,∴cos =2cos 2-1=-,即sin 2x=,∴cos =sin 2x=.28.已知sin θ+cos θ=,则sin θ-cos θ的值为________.【答案】-【解析】∵sin θ+cos θ=,∴(sin θ+cos θ)2=1+2cos θsin θ=,∴2cos θsin θ=,∴(sin θ-cos θ)2=1-=,又θ∈,∴sin θ<cos θ,∴sin θ-cos θ=-.29.已知,则=____________.【答案】【解析】,根据,可知:,故答案为.【考点】同角三角函数的基本关系式的运算30.已知,且,则.【答案】【解析】因为,所以。
第四章 三角函数第一节 三角函数的概念、同角三角函数的关系、诱导公式高考试题考点一 三角函数的概念1.(2011年新课标全国卷,理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( ) (A)-45 (B)-35 (C)35 (D)45解析:①取x=1,则y=2,∴∴cos θ, cos 2θ=2cos 2θ-1=-35. ②取x=-1,则y=-2,∴θ. cos 2θ=2cos 2θ-1=-35.故选B. 答案:B2.(2012年山东卷,理16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为 .解析:如图所示,由题意知=OB=2,∵圆半径为1,∴∠BAP=2,故∠DAP=2-π2, ∴DA=Apcos(2-π2)=sin 2,DP=APsin (2-π2)=-cos 2. ∴OC=2-sin 2,PC=1-cos 2. ∴OP =(2-sin 2,1-cos 2).答案:(2-sin 2,1-cos 2)考点二 同角三角函数的基本关系式1.(2013年浙江卷,理6)已知α∈R,sin α+2cos α则tan 2α等于( ) (A)43 (B)34 (C)-34 (D)-43解析:因为sin α+2cos α所以sin 2α+4sin α cos α+4cos 2α=52,所以3cos 2α+4sin α cos α=32, 所以2223cos 4sin cos sin cos ααααα++=32, 所以234tan 1tan αα++=32,即3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,所以tan 2α=22tan 1tan αα-=-34.故选C.答案:C2.(2012年辽宁卷,理7)已知sin α-cos αα∈(0,π),则tan α=()(A)-1(D)1解析:∵sin α-cos α∴(sin α-cos α)2=2,∴1-2sin αcos α=2,2sin αcos α=-1<0,∴α∈(π2,π),∴1+2sin αcos α=0,∴(sin α+cos α)2=0,sin α+cos α=0,由sin cos sin cos 0, αααα⎧-⎪⎨+=⎪⎩得sin α,cos α,tan α=sin cos αα=-1. 故选A.答案:A 3.(2012年江西卷,理4)若tan θ+1tan θ=4,则sin 2θ=( ) (A)15(B)14 (C)13 (D)12解析:∵tan θ+1tan θ=sin cos θθ+cos sin θθ =1sin cos θθ =2sin 2θ=4,∴sin 2θ=12. 故选D.答案:D4.(2011年福建卷,理3)若tan α=3,则2sin 2cos αα的值等于( ) (A)2 (B)3 (C)4 (D)6解析: 2sin 2cos αα=22sin cos cos ααα=2tan α=6,故选D. 答案:D5.(2013年新课标全国卷Ⅱ,理15)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ= . 解析:因为θ为第二象限角, 所以π2+2k π<θ<π+2k π,k ∈Z, 因此34π+2k π<θ+π4<54π+2k π,k ∈Z, 从而sin(θ+π4)<0. 又∵tan(θ+π4)=12,∴sin(θ+π4∴sin θ+cos θθ+π4答案6.(2011年大纲全国卷,理14)已知α∈(π2,π),sin α,则tan 2α= . 解析:∵sin αα∈(π2,π), ∴cos α, ∴tan α=-12, ∴tan 2α=22tan 1tan αα-=1114--=-43. 答案:-43考点三 诱导公式及其应用(2010年大纲全国卷Ⅰ,理2)记cos (-80°)=k,那么tan 100°等于( )解析:∵cos(-80°)=k,∴cos 80°=k,∴sin 80°,∴tan 100°=tan(180°-80°)=-tan 80° =-sin80cos80. 故选B.答案:B模拟试题考点一 三角函数的概念1.(2011浙江杭州模拟)已知角α的终边经过点(3a-9,a+2),且cos α≤0,sin α>0,则实数a 的取值范围 是( )(A)(-2,3] (B)(-2,3)(C)[-2,3) (D)[-2,3]解析:∵cos α≤0,sin α>0,∴390,20,a a -≤⎧⎨+>⎩ ∴-2<a ≤3,故选A.答案:A2.(2013安徽省大江中学、开成中学高三联考)已知点P(sin 3π4,cos3π4)角θ的终边上,则tan(θ+π3)值为.解析:∵sin 3π4,cos3π4,∴点P的坐标为)∴tan θ=-1.则tan(θ+π3)=πtan tan3π1tan tan3θθ+-⋅=)212答案考点二同角三角函数基本关系式1.(2013山东师大附中高三月考)若α∈(π2,π),tan(α+π4)=17,则sin α等于( )(A)35(B)45(C)-35(D)-45解析:∵tan(α+π4)=tan11tanαα+-=17,∴tan α=-34=sincosαα,∴cos α=-43sin α,又∵sin2α+cos2α=1,∴sin2α=9 25,又∵α∈(π2,π),∴sin α=3 5 .答案:A2.(2012山东潍坊模拟)已知α∈(0,π)且 sin α+cos α,则sin α-cos α= .解析:由sin α+cos α,两边平方得2sin αcos α=-1 2 ,∴(sin α-cos α)2=1-2sin αcos α=3 2 .又α∈(0,π),sin αcos α<0,∴sin α>0,cos α<0,∴sin α-cos α.答案考点三诱导公式1.(2013广东省深圳市高三第一次调研)化简sin 2013°的结果是( )(A)sin 33°(B)cos 33°(C)-sin 33°(D)-cos 33°解析:sin 2013°=sin (5×360°+213°)=sin 213°=sin(180°+33°)=-sin 33°.故选C.答案:C2.(2012浙江丽水质检)设tan(π+α)=2,则()()()()sinπcosπsinπcosπ+αααα-+-+-等于( )(A)3 (B)1 3(C)1 (D)-1解析:由tan(π+α)=2,得tan α=2,故()()()() sinπcosπsinπcosπ+αααα-+-+-=()sin cossin cosαααα-----=sin cossin cosαααα+-=tan1tan1αα+-=3.故选A.答案:A3.(2013浙江省建八高中月考)若α∈(0,π2),且cos2α+sin(π2+2α)=12,则tan α= .解析:cos2α+sin(π2+2α)=cos2α+cos 2α=3cos2α-1=12, ∴cos 2α=12. ∵α∈(0,π2),∴cos α,sin α, ∴tan α=1.答案:1综合检测1.(2012江西八所重点高中模拟)在直角坐标平面内,已知函数f(x)=log a (x+2)+3(a>0且a ≠1)的图象恒过定点P,若角θ的终边过点P,则cos 2θ+sin 2θ的值等于( ) (A)-12 (B)12 (C)710 (D)-710 解析:因为函数y=log a x 的图象恒过定点(1,0),所以f(x)的图象恒过定点P(-1,3),由三角函数的定义知sin θ,cos θ则cos 2θ+sin 2θ=cos 2θ+2sin θcos θ=110+2× =110-610=-12. 故选A.答案:A2.(2012安徽合肥一模)已知sin(π3-x)=35,则cos(5π6-x)= . 解析:cos(56π-x)=cos[π2+(π3-x)] =-sin(π3-x) =-35. 答案:-353.(2011江苏泰兴月考)已知sin(π-α)-cos(π+α(π2<α<π).求下列各式的值:(1)sin α-cos α;(2)sin3(π2-α)+cos3(π2+α).解:由sin(π-α)-cos(π+α,得sin α+cos α,(*)将(*)式两边平方,得1+2sin α·cos α=2 9 ,故2sin α·cos α=-7 9 .又π2<α<π,∴sin α>0,cos α<0.(1)(sin α-cos α)2=1-2sin α·cos α=1-(-7 9 )=16 9,∴sin α-cos α=4 3 .(2)sin3(π2-α)+cos3(π2+α)=cos3α-sin3α=(cos α-sin α)(cos2α+cos α·sin α+sin2α)=-43×(1-718)=-22 27.。
掌门1对1教育 高中数学 【数学】2013版《6年高考4年模拟》 第四章 三角函数及三角恒等变换第一节 三角函数的概念、同角三角函数的关系和诱导公式第一部分 六年高考荟萃2013年高考题1 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-答案:C 因为,又sin 2α+cos 2α=1,联立解得,或故tan α==,或tan α=3,代入可得tan2α===﹣,或tan2α===故选C2.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))004cos50tan 40-=( )A.2B.232+ C.3 D.221- 答案:C【命题立意】本题考查两角和差的正弦公式以及倍角公式。
sin 404cos50tan 404cos50cos 40-=-000000004cos50cos 40sin 404sin 40cos 40sin 40cos 40cos 40--== 00000002sin80sin 402sin(6020)sin(6020)cos 40cos 40-+--==000033cos 20sin 202sin(6020)sin(6020)22cos 40cos 40++--== 03cos 403cos 40==,选C. 3.(2013年高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______答案:255-. f (x )=sinx ﹣2cosx=(sinx ﹣cosx )=sin (x ﹣α)(其中cos α=,sin α=),因为x=θ时,函数f (x )取得最大值,所以sin (θ﹣α)=1,即sin θ﹣2cos θ=, 又sin 2θ+cos 2θ=1,联立解得cos θ=﹣.4.(2013年高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.答案:3因为sin2α=2sin αcos α=﹣sin α,α∈(,π), 所以cos α=﹣,sin α==,所以tan α=﹣,则tan2α===.5.(2013年高考上海卷(理))若12cos cos sin sin,sin 2sin 223x y x y x y +=+=,则sin()________x y +=答案:2sin()3x y +=. 【解答】1cos()2x y -=,2sin 2sin 22sin()cos()3x y x y x y +=+-=,故2s i n ()3x y +=.6.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________. 答案:22由α是第三象限的角,得到cos α<0, 又sin α=﹣,所以cos α=﹣=﹣则cot α==27.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________. 答案:105-因为tan (θ+)==,所以tan θ=﹣,因为θ为第二象限角,所以cos θ=﹣=﹣,sin θ==,则sin θ+cos θ=﹣=﹣.2012年高考题1.[2012·湖北卷] 函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5C .6 D .7答案:C [解析] 令f (x )=0,得x =0或cos x 2=0,由x ∈[]0,4,得x 2∈[]0,16.因为cos ⎝⎛⎭⎫π2+k π=0()k ∈Z ,故方程cos x 2=0中x 2的解只能取x 2=π2,3π2,5π2,7π2,9π2∈[]0,16.所以零点个数为6.故选C.2.[2012·辽宁卷] 已知sin α-cos α=2,α∈(0,π),则tan α=( ) A .-1 B .-22 C.22D .1 答案:A [解析] 本小题主要考查同角三角函数基本关系的应用.解题的突破口为灵活应用同角三角函数基本关系.∵sin α-cos α=2⇒()sin α-cos α2=2⇒1-2sin αcos α=2⇒sin αcos α=-12⇒sin αcos αsin 2α+cos 2α=-12⇒tan αtan 2α+1=-12⇒tan α=-1.故答案选A. C5 两角和与差的正弦、余弦、正切 3.[2012·重庆卷] 设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3 答案:A [解析] 因为tan α,tan β是方程x 2-3x +2=0的两根,所以tan α+tan β=3,tan α·tan β=2,所以tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.4.[2012·安徽卷] 在平面直角坐标系中,点O (0,0),P (6,8),将向量OP →绕点O 按逆时针方向旋转3π4后得向量OQ →,则点Q 的坐标是( )A .(-72,-2)B .(-72,2)C .(-46,-2)D .(-46,2) 答案:A [解析] 本题考查三角函数的和角公式,点的坐标.设∠POx =α,因为P ()6,8,所以OP →=(10cos α,10sin α)⇒cos α=35,sin α=45,则OQ →=⎝⎛⎭⎫10cos ⎝⎛⎭⎫θ+3π4,10cos ⎝⎛⎭⎫θ+3π4=(-72,-2).故答案为A. 5.[2012·全国卷] 已知α为第二象限角,sin α+cos α=33,则cos2α=( ) A .-53 B .-59 C.59 D.53答案:A [解析] 本小题主要考查三角函数中和角公式与二倍角公式的运用,解题的突破口为原式两边平方后转化为二倍角结构及任何情况下均要考虑“符号看象限”. 由sin α+cos α=33及α为第二象限角有2k π+π2<α<2k π+3π4(k ∈Z ),∴4k π+π<2α<4k π+3π2(k ∈Z ).原式两边平方得2sin αcos α=sin2α=-23,∴cos2α=-53,故选A.6.[2012·山东卷] 若θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,则sin θ=( )A.35 B.45 C.74 D.34 答案:D [解析] 本题考查三角函数的二倍角公式,考查运算求解能力,中档题. 法一:∵θ∈⎣⎡⎦⎤π4,π2,sin2θ=378,∴cos2θ=-1-⎝⎛⎭⎫3782=1-2sin 2θ,解之得sin θ=34.法二:联立⎩⎪⎨⎪⎧2sin θcos θ=378,sin 2θ+cos 2θ=1,解之得sin θ=34.7.[2012·湖南卷] 函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1] D.⎣⎡⎦⎤-32,32 答案:B [解析] 考查三角函数化简求值,关键是三角函数的化简,三角公式的识记. 函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6=32sin x -32cos x =3sin ⎝⎛⎭⎫x -π6,所以函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为[-3,3],故选B.8.[2012·江西卷] 若tan θ+1tan θ=4,则sin2θ=( )A.15 B.14 C.13 D.12答案:D [解析] 考查同角三角函数的关系、二倍角公式,以及“1”的代换及弦切互化等方法.解题的突破口是通过“1”的代换,将整式转化为齐次分式,再通过同除以cos θ达到化切目的.∵tan θ+1tan θ=tan 2θ+1tan θ=4,∴sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=24=12,故选D.9.[2012·重庆卷] 设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .3 答案:A [解析] 因为tan α,tan β是方程x 2-3x +2=0的两根,所以tan α+tan β=3,tan α·tan β=2,所以tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.10.[2012·重庆卷] 设△ABC 的内角A ,B ,C 的对边分别为a 、b 、c ,且cos A =35,cos B =513,b =3,则c =________.答案:145 [解析] 因为cos A =35,cos B =513,所以sin A =45,sin B =1213,因为sin C =sin[180°-(A +B )]=sin(A +B )=sin A cos B +cos A sin B =45×513+35×1213=5665,由正弦定理知c sin C =bsin B ,即c 5665=31213,解得c =145. 11.[2012·四川卷] 如图所示,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC 、ED ,则sin ∠CED =( ) A.31010 B.1010 C.510 D.515答案:B [解析] 法一:由已知,∠CED =∠BED -∠BEC =45°-∠BEC , 而结合图形可知tan ∠BEC =12,∴tan ∠CED =tan(45°-∠BEC )=1-121+12=13,∴sin ∠CED =1010. 法二:由已知,利用勾股定理可得DE =2,CE =5,又CD =1,利用余弦定理得:cos ∠CED =2+5-12×2×5=31010,∴sin ∠CED =1010.法三:同法二,得DE =2,CE =5,又CD =1,有S △CED =12CD ·AD =12,又S △CED =12CE ·ED sin ∠CED =102sin ∠CED ,对比得sin ∠CED =1010.12.[2012·上海卷] 在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定答案:C [解析] 考查正弦定理和判断三角形的形状,考查考生的转化思想,关键是利用正弦定理,把角转化边,再利用边之间的关系,判断三角形的形状.由正弦定理可把不等式转化为a 2+b 2<c 2,cos C =a 2+b 2-c 22ab<0,所以三角形为钝角三角形.故选C.13.[2012·湖南卷] 在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( )A. 3B.7 C .2 2 D.23答案:A [解析] 考查向量的数量积运算和解三角形,主要是余弦定理的运用,是此题的关键.由AB →·BC →=1可得2||BC cos(180°-B )=1,即2|BC |cos B =-1,又由三角形的余弦定理可得32=||BC 2+22-2×2||BC cos B ,把2||BC cos B =-1代入,解得9=||BC 2+4+2,即||BC =3,故选A. 14.[2012·陕西卷] 在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32 B.22 C.12 D .-12答案:C [解析] 本小题主要考查余弦定理和不等式的知识,解题的突破口为利用余弦定理写出cos C 的表达式,然后用基本不等式去计算即可.cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12.故选C.15.[2012·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725 D.2425答案:A [解析] 本题考查三角函数的倍角公式及正弦、余弦定理,考查运算求解能力,中档题.由正弦定理得8sin B =5sin C ,∵C =2B ,∴cos B =45,∴cos C =cos2B =2cos 2B -1=2⎝⎛⎭⎫452-1=725.16.[2012·江苏卷] 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案:17250 [解析] 本题考查三角函数求值问题.解题突破口为寻找已知角和所求角之间的整体关系.由条件得sin ⎝⎛⎭⎫α+π6=35,从而sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2425,cos ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6=2×1625-1=725, 从而sin ⎝⎛⎭⎫2α+π12=sin ⎝⎛⎭⎫2α+π3-π4=2425×22-725×22=17250. 17.[2012·北京卷] 在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.答案:4 [解析] 本题考查余弦定理和解三角形等基础知识,考查对数据的运算能力. cos B =a 2+c 2-b 22ac =-14,可得cos B =4+c -bc +b4c=-14,4+c -bc=-1,8c -7b +4=0,结合b +c =7,可得⎩⎪⎨⎪⎧a =2,b =4,c =3,答案为4.18.[2012·湖北卷] 设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.答案:2π3 [解析] 由已知条件(a +b -c )(a +b +c )=ab ,化简得a 2+b 2-c 2=-ab ,所以cos C=a 2+b 2-c 22ab =-ab 2ab =-12.又C 是三角形的内角,则C ∈()0,π,所以C =2π3.19.[2012·浙江卷] 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案:-16 [解析] 本题主要考查平面几何的性质、平面向量的线性运算与数量积. 法一:AB →·AC →=(MB →-MA →)·(MC →-MA →)=MB →·MC →-MB →·MA →-MA →·MC →+MA →2=5×5×cos180°-5×3×cos ∠BMA -3×5×cos ∠AMC +32=-16,故应填-16.法二:特例法:假设△ABC 是以AB 、AC 为腰的等腰三角形,如图,AM =3,BC =10,AB =AC =34,cos ∠BAC =34+34-1002×34=-817,AB →·AC →=|AB →|·|AC→|·cos ∠BAC =-16.[点评] 对平面向量进行正确的线性分解是解决本题的关键,同时注意向量的夹角之间的关20.[2012·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,则下列命题正确的是________(写出所有正确命题的编号).①若ab >c 2,则C <π3;②若a +b >2c ,则C <π3;③若a 3+b 3=c 3,则C <π2;④若(a +b )c <2ab ,则C >π2;⑤若(a 2+b 2)c 2<2a 2b 2,则C >π3.答案:①②③ [解析] 本题考查命题真假的判断,正、余弦定理,不等式的性质,基本不等式等.对于①,由c 2=a 2+b 2-2ab cos C <ab 得2cos C +1>a 2+b 2ab =b a +a b ≥2,则cos C >12,因为0<C <π,所以C <π3,故①正确;对于②,由4c 2=4a 2+4b 2-8ab cos C <a 2+b 2+2ab 得ab ()8cos C +2>3()a 2+b 2即8cos C +2>3⎝⎛⎭⎫a b +b a ≥6,则cos C >12,因为0<C <π,所以C <π3,故②正确;对于③,a 3+b 3=c 3可变为⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3=1,可得0<a c <1,0<b c<1,所以1=⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,所以c 2<a 2+b 2,故C <π2,故③正确;对于④,()a +b c <2ab 可变为2×1c >1a +1b ≥2ab,可得ab >c ,所以ab >c 2,因为a 2+b 2≥2ab >ab >c 2,所以C <π2,④错误;对于⑤,()a 2+b 2c 2<2a 2b 2可变为1a 2+1b 2<2c 2,即1c 2>1ab ,所以c 2<ab ≤a 2+b 22,所以cos C >a 2+b 222ab ≥12,所以C <π3,故⑤错误.故答案为①②③.21.[2012·福建卷] 已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 答案:-24 [解析] 根据题意设三角形的三边分别是:22a 、a 、2a ,最大角所对的边是2a ,根据大边对大角定理结合余弦定理得:cos α=a 2+⎝⎛⎭⎫22a 2-2a 22×22a ×a =-24,所以最大角的余弦值是-24. 22.[2012·福建卷] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin13°cos17°;(2)sin 215°+cos 215°-sin15°cos15°; (3)sin 218°+cos 212°-sin18°cos12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)请从上述五个式子中选择一个,求出这个常数; (2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:解法一:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34. 23.[2012·重庆卷] 设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域;(2)若f (x )在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值. 解:(1)f (x )=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin2ωx +1.因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].(2)因y =sin x 在每个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间⎣⎡⎦⎤k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.依题意知⎣⎡⎦⎤-3π2,π2⊆⎣⎡⎦⎤k πω-π4ω,k πω+π4ω对某个k ∈Z 成立,此时必有k =0,于是 ⎩⎨⎧-3π2≥-π4ω,π2≤π4ω,解得ω≤16,故ω的最大值为16.24.[2012·课标全国卷] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C-b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3. (2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.25.[2012·重庆卷] 设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0.(1)求函数y =f (x )的值域;(2)若f (x )在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值. 解:(1)f (x )=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin2ωx +1.因-1≤sin2ωx ≤1,所以函数y =f (x )的值域为[1-3,1+3].(2)因y =sin x 在每个闭区间⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z )上为增函数,故f (x )=3sin2ωx +1(ω>0)在每个闭区间⎣⎡⎦⎤k πω-π4ω,k πω+π4ω(k ∈Z )上为增函数.依题意知⎣⎡⎦⎤-3π2,π2⊆⎣⎡⎦⎤k πω-π4ω,k πω+π4ω对某个k ∈Z 成立,此时必有k =0,于是 ⎩⎨⎧-3π2≥-π4ω,π2≤π4ω,解得ω≤16,故ω的最大值为16.26.[2012·广东卷] 已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 解:(1)由2πω=10π得ω=15.(2)∵-65=f ⎝⎛⎭⎫5α+53π=2cos ⎝⎛⎭⎫15⎝⎛⎭⎫5α+53π+π6=2cos ⎝⎛⎭⎫α+π2=-2sin α,1617=f ⎝⎛⎭⎫5β-56π=2cos ⎝⎛⎭⎫15⎝⎛⎭⎫5β-56π+π6=2cos β,∴sin α=35,cos β=817.∵α,β∈⎣⎡⎦⎤0,π2,∴cos α=1-sin 2α=1-⎝⎛⎭⎫352=45,sin β=1-cos 2β=1-⎝⎛⎭⎫8172=1517.∴cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385. 27.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期; (2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而g (x )=g (x +π)=12sin[2(x +π)]=12sin2x . 综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.28.[2012·北京卷] 已知函数f (x )=x -cos xxsin x.(1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解:(1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=x -cos x x sin x=2cos x (sin x -cos x )=sin2x -cos2x -1=2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π.(2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 29.[2012·福建卷] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin 213°+cos 217°-sin13°cos17°;(2)sin 215°+cos 215°-sin15°cos15°; (3)sin 218°+cos 212°-sin18°cos12°;(4)sin 2(-18°)+cos 248°-sin(-18°)cos48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)请从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:解法一:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15°=1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二:(1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α=12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α)=1-14cos2α-14+14cos2α=34. 30.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期;(2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故 ①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而 g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而g (x )=g (x +π)=12sin[2(x +π)]=12sin2x . 综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.31.[2012·湖北卷] 已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ).设函数f (x )=a·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ =2sin ⎝⎛⎭⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0,即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫53x -π6≤1,得-1-2≤2sin 53x -π6-2≤2- 2. 故函数f (x )在⎣⎡⎦⎤0,3π5上的取值范围为[-1-2,2-2]. 32.[2012·安徽卷] 设函数f (x )=22cos2x +π4+sin 2x .(1)求f (x )的最小正周期; (2)设函数g (x )对任意x ∈R ,有g ⎝⎛⎭⎫x +π2=g (x ),且当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x ).求g (x )在区间[-π,0]上的解析式. 解:(1)f (x )=22cos ⎝⎛⎭⎫2x +π4+sin 2x =22⎝⎛⎭⎫cos2x cos π4-sin2x sin π4+1-cos2x 2=12-12sin2x . 故f (x )的最小正周期为π.(2)当x ∈⎣⎡⎦⎤0,π2时,g (x )=12-f (x )=12sin2x ,故 ①当x ∈⎣⎡⎦⎤-π2,0时,x +π2∈⎣⎡⎦⎤0,π2.由于对任意x ∈R ,g ⎝⎛⎭⎫x +π2=g (x ),从而 g (x )=g ⎝⎛⎭⎫x +π2=12sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2=12sin(π+2x )=-12sin2x . ②当x ∈⎣⎡⎭⎫-π,-π2时,x +π∈⎣⎡⎭⎫0,π2,从而 g (x )=g (x +π)=12sin[2(x +π)]=12sin2x .综合①②得g (x )在[-π,0]上的解析式为g (x )=⎩⎨⎧12sin2x ,x ∈⎣⎡⎭⎫-π,-π2,-12sin2x ,x ∈⎣⎡⎦⎤-π2,0.33.[2012·湖北卷] 已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ).设函数f (x )=a·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在区间⎣⎡⎦⎤0,3π5上的取值范围.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin2ωx +λ =2sin ⎝⎛⎭⎫2ωx -π6+λ. 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1, 所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5. (2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0,即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫53x -π6≤1,得-1-2≤2sin 53x -π6-2≤2- 2. 故函数f (x )在⎣⎡⎦⎤0,3π5上的取值范围为[-1-2,2-2]. 34.[2012·江西卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a .(1)求证:B -C =π2;(2)若a =2,求△ABC 的面积. 解:(1)证明:由b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ,应用正弦定理,得sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭⎫π4+B =sin A ,sin B ⎝⎛⎭⎫22sin C +22cos C -sin C⎝⎛⎭⎫22sin B +22cos B =22.整理得sin B cos C -cos B sin C =1,即sin(B -C )=1, 由于0<B ,C <34π,从而B -C =π2.(2)由(1)知B -C =π2,又B +C =π-A =3π4,因此B =5π8,C =π8.由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π8,所以△ABC 的面积S =12bc sin A =2sin 5π8sin π8=2cos π8sin π8=12.图1-4 35.[2012·辽宁卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值. 解:(1)由已知2B =A +C ,A +B +C =180°,解得B =60°,所以cos B =12.(2)(解法一)由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,所以sin A sin C =1-cos 2B =34.(解法二)由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-ac 2ac,解得a =c ,所以A =C =B =60°,故sin A sin C =34.36.[2012·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos(A -C )+cos B =1,a =2c ,求C .解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C , 由已知得sin A sin C =12.①由a =2c 及正弦定理得,sin A =2sin C ,②由①、②得sin 2C =14,于是sin C =-12(舍去)或sin C =12.又a =2c ,所以C =π6.37.[2012·浙江卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积. 解:(1)因为0<A <π,cos A =23,得sin A =1-cos 2A =53.又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C ,所以tan C = 5. (2)由tan C =5,得sin C =56,cos C =16,于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C ,得c = 3.设△ABC 的面积为S ,则S =12ac sin B =52.38.[2012·课标全国卷] 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C-b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .解:(1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.2011年高考题1.(重庆理6)若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足22a b 4c +-=(),且C=60°,则ab 的值为A .43B .843-C . 1D .23【答案】A2.(浙江理6)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=A .33B .33-C .539D .69-【答案】C3.(天津理6)如图,在△ABC 中,D 是边AC 上的点,且,23,2AB CD AB BD BC BD ===,则sin C 的值为A .33 B .36C .63D .66【答案】D4.(四川理6)在∆ABC 中.222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是A .(0,6π]B .[ 6π,π)C .(0,3π]D .[ 3π,π)【答案】C【解析】由题意正弦定理22222222211cos 023b c a a b c bc b c a bc A A bc π+-≤+-⇒+-≥⇒≥⇒≥⇒<≤5.(全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45-(B )35-(C ) 35 (D )456.(辽宁理4)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,asinAsinB+bcos2A=a 2,则=a b(A )23 (B )22(C )3 (D )2【答案】D7.(辽宁理7)设sin 1+=43πθ(),则sin 2θ= (A )79-(B )19-(C )19 (D )79【答案】A8.(福建理3)若tan α=3,则2sin 2cos a α的值等于A .2B .3C .4D .6【答案】D 二、填空题9.(上海理6)在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
高一数学同角三角函数的基本关系式和诱导公式试题答案及解析1.已知,则= ;【答案】【解析】分子分母同除,便会出现,【考点】三角函数的计算2.已知,则( )A. B. C D.【答案】B【解析】.【考点】同角三角函数的基本关系.3.化简的结果 .【答案】【解析】,当为奇数时,,原式;当为偶数时,,原式;综上原式【考点】三角函数化简.4.已知,且∥.求值:(1);(2).【答案】(1);(2) .【解析】解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.试题解析:(1),,.(2).【考点】平面向量平行的判定、同角三角函数基本关系式.5.已知且是第四象限角,则A.B.C.D.【答案】A【解析】∵=,∴,又∵是第四象限角,∴==,故选A.由诱导公式知,=,∴,由是第四象限角知,,结合同角三角函数基本关系中的平方关系得==.【考点】诱导公式;同角三角函数基本关系式;三角函数在各象限的符号6.若则.【答案】【解析】由故【考点】同角三角函数基本关系式7.已知,则的值为.【答案】-11【解析】【考点】弦化切8.化简:.【答案】【解析】此类化简题的关键在于诱导公式的使用,要能够理解诱导公式口决“奇变偶不变,符号看象限”的意义,奇偶指的是的倍数如,中是的偶数倍,4倍,中是的奇数倍,11倍;符号看象限,指的是使用诱导公式时,将看成锐角时的所在的象限,不管题中的范围,如中,为锐角时,为第四象限角,则符号为负,故可知.当然也可用诱导公式层层推进.本题由诱导公式易化简.解:原式=.【考点】诱导公式.9.已知,则=()A.B.C.D.【答案】C【解析】∵,∴,∴.【考点】1.诱导公式;2.同角三角函数基本关系.10.的值等于()A.B.C.D.【答案】C【解析】,故选C.【考点】诱导公式11.已知是第二象限角,()A.B.C.D.【答案】A【解析】由是第二象限角,则.【考点】同角三角函数的基本关系式,三角函数的符号.12.的化简结果是()A.B.C.D.【答案】D【解析】是第二限角,则,所以==.【考点】诱导公式,同角三角函数的基本关系式.13.已知角的终边过点.(1)求的值;(2)若为第三象限角,且,求的值.【答案】;【解析】(1)由角的终边过点求出,利用诱导公式化简即可;(2)由为第三象限角,,可求出,结合(1)求出,利用展开式即可(1)因为的终边过点,所以,而;(2)因为为第三象限角,且,,故【考点】三角函数的定义,诱导公式,同角三角函数基本关系式,两角和与差的三角函数14.已知sinθ=,sin2θ<0,则tanθ等于 ( )A.-B.C.-或D.【答案】A【解析】由题意,∵sinθ=,sin2θ<0,∴cosθ<0∴cosθ=−=−∴tanθ==−,故选A.【考点】同角三角函数间的基本关系.15.已知是第二象限角,()A.B.C.D.-【答案】D【解析】∵是第二象限角,∴,故选D.【考点】同角三角函数基本关系.16.知为锐角,且2,=1,则=()A.B.C.D.【答案】C【解析】诱导公式化简为,解得:,得,故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.17.化简:.【答案】.【解析】本小题主要考查三角函数的诱导公式、同角三角函数的基本关系式及辅助角公式,属于容易题.根据诱导公式及同角三角函数的商数关系:进行展开运算得到,再运用辅助角公式(其中)或运用两角和差公式进行化简即可.试题解析: 4分8分10分.【考点】1.诱导公式;2.同角三角函数的基本关系式;3.辅助角公式(两角和差公式);4.三角恒等变换.18.已知,则()A.B.C.D.【答案】A【解析】法一:由,而,故,;法二:.【考点】同角三角函数的基本关系式.19.已知向量与,其中.(1)问向量能平行吗?请说明理由;(2)若,求和的值;(3)在(2)的条件下,若,求的值.【答案】(1)不能平行;(2),;(3).【解析】(1)先假设,列方程得,然后利用正弦的二倍角公式化简得,再判断此方程是否有解,若有解,可判断、可能平行;若无解,则可判断、不可能平行;(2)将向量的垂直问题转化为向量的数量积问题,得到,联立方程,并结合,即可求出;(3)先由同角三角函数的基本关系式计算出,然后再根据两角和的余弦公式展开计算得的值,最后结合的取值范围确定的值即可.试题解析:解:(1)向量不能平行若平行,需,即,而则向量不能平行 4分(2)因为,所以 5分即又 6分,即,又 8分(3)由(2)知,得 9分则 11分又,则 12分.【考点】1.向量平行、垂直的判定与应用;2.同角三角函数的基本关系式;3.两角和与差的三角函数.20.函数的值域是__ ____.【答案】【解析】正切函数在是单调递增的,所以在处取得最小值,在处取得最大值.【考点】正切函数图像及性质.21.的值为________.【答案】【解析】,故.【考点】1.诱导公式;2.三角恒等变换.22.已知,求下列各式的值:(1);(2).【答案】(1)(2)【解析】(1)利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,(2) 利用分母,将原式化为关于二次齐次式,再利用,对原式分子分母同除以得关于的解析式,代入就可求出代数式的值,本题主要考查利用"弦化切"方法求值.本题也可从出发得代入(1)立得,但代入(2)后只得到,还需结合得出,才可最终求值.试题解析:(1)原式(2)原式12分【考点】同角三角函数关系,弦化切.23.已知,则________________;【答案】.【解析】利用公式,把平方得,从而,由于,则,这类问题中确定它们的正负是我们解题时要特别注意的,于是.【考点】同角三角函数关系(平方关系).24.函数的图象向右平移个单位后,与函数的图象重合,则___ .【答案】【解析】的图象向右平移个单位后,得到函数的图象,所以,,即,故。
专题五三角函数与解三角形【考情探究】课标解读考情分析备考指导主题内容一、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.4.理解同角三角函数的基本关系式.5.能利用单位圆中的三角函数线推导出π2±α、π±α的正弦、余弦、正切的诱导公式.1.本专题考查的核心素养以数学运算、逻辑推理为主,同时兼顾考查直观想象.2.从近5年高考情况来看,本专题内容为高考必考内容,以中档题为主.几种题型均有可能出现.1.在备考复习中,注意基础知识的积累,基础概念、定义要弄清楚.2.切实掌握三角函数的图象、性质以及基本变换思想.3.三角函数与解三角形的综合问题,要灵活运用正弦定理或余弦定理.注意方程思想与函数思想的应用.二、三角恒等变换1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换.三、三角函数的图象、性质及应用1.理解正弦、余弦、正切函数的性质及图象.2.能画y=Asin(ωx+φ)的图象,了解参数A、ω、φ对函数图象变换的影响.3.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.四、解三角形及综合应用1.掌握正弦定理、余弦定理,并能解决一些简单的解三角形问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的问题.【真题探秘】§5.1三角函数的概念、同角三角函数的基本关系及诱导公式基础篇固本夯基【基础集训】考点三角函数的概念、同角三角函数的基本关系及诱导公式1.单位圆中,200°的圆心角所对的弧长为()A.10πB.9πC.910π D.109π答案D2.cos 330°=()A.12B.-12C.√32D.-√32答案C3.若sin θ·cos θ<0,tanθsinθ>0,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案D4.若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=-√3x上,则角α的取值集合是()A.{α|α=2kπ-π3,k∈Z} B.{α|α=2kπ+2π3,k∈Z}C.{α|α=kπ-2π3,k∈Z} D.{α|α=kπ-π3,k∈Z}答案D5.已知扇形的周长为20 cm,当这个扇形的面积最大时,半径R的值为()A.4 cmB.5 cmC.6 cmD.7 cm答案B6.已知sin(π2+θ)+3cos(π-θ)=sin(-θ),则sin θcosθ+cos2θ=()A.15B.25C.35D.√55答案 C综合篇知能转换【综合集训】考法一 利用三角函数定义解题1.(2018河南天一大联考,2)在平面直角坐标系xOy 中,角α的终边经过点P(3,4),则sin (α-2 017π2)=( )A.-45B.-35C.35D.45答案 B2.(2018广东深圳四校期中联考,5)已知角θ的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点(1,4),则cos 2θ-sin 2θ的值为( )A.35B.-35C.717D.-717答案 D3.(2020届四川绵阳南山中学月考,4)已知角α的终边过点(-8m,-6sin 30°),且cos α=-45,则m 的值为( ) A.±12B.-12C.12D.√32答案 C考法二 同角三角函数的基本关系式的应用技巧4.(2018福建福州八校联考,8)已知sinα+3cosα2cosα-sinα=2,则cos 2α+sin αcos α=( )A.65B.35C.25D.-35答案 A5.(2019河北邯郸重点中学3月联考,5)已知3sin (33π14+α)=-5cos (5π14+α),则tan (5π14+α)=( )A.-53B.-35C.35D.53答案 A6.(2018湖北武汉调研,13)若tan α=cos α,则1sinα+cos 4α= .答案 2考法三 利用诱导公式化简求值的思路和要求7.(2020届广东珠海摸底测试,3)若角θ的终边过点(4,-3),则cos(π-θ)=( ) A.45 B.-45 C.35 D.-35答案 B8.(2018河北衡水中学2月调研,3)若cos (π2-α)=√23,则cos(π-2α)=( )A.29 B.59 C.-29 D.-59答案 D9.(2018浙江名校协作体考试,13)已知sin (-π2-α)cos (-7π2+α)=1225,且0<α<π4,则sin α= ,cos α= .答案35;45考法四同角三角函数的基本关系和诱导公式的综合应用10.(2019江西赣州五校协作体期中,15)已知角α终边上有一点P(1,2),则sin(2π-α)-sin(π2-α)cos(3π2+α)+cos(π-α)=. 答案-3【五年高考】考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2016课标Ⅲ,5,5分)若tan α=34,则cos2α+2sin2α=()A.6425B.4825C.1D.1625答案A2.(2018课标Ⅱ,15,5分)已知sin α+cosβ=1,cosα+sinβ=0,则sin(α+β)=.答案-123.(2017北京,12,5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=13,则cos(α-β)=.答案-794.(2018浙江,18,14分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(-35,-45 ).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解析(1)由角α的终边过点P(-35,-45)得sin α=-45,所以sin(α+π)=-sin α=45.(2)由角α的终边过点P(-35,-45)得cos α=-35,由sin(α+β)=513得cos(α+β)=±1213.由β=(α+β)-α得cos β=cos(α+β)cosα+sin(α+β)sinα,所以cos β=-5665或cos β=1665.思路分析(1)由三角函数的定义得sin α的值,由诱导公式得sin(α+π)的值.(2)由三角函数的定义得cos α的值,由同角三角函数的基本关系式得cos(α+β)的值,由两角差的余弦公式得cos β的值.教师专用题组考点三角函数的概念、同角三角函数的基本关系及诱导公式1.(2014大纲全国,3,5分)设a=sin 33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b答案 C2.(2011课标,5,5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=( ) A.-45B.-35C.35D.45答案 B【三年模拟】一、单项选择题(每题5分,共50分)1.(2020届吉林白城通榆一中月考,3)已知角α的终边过点(12,-5),则sin α+12cos α等于( ) A.-113 B.113 C.112 D.-112答案 B2.(2020届四川邻水实验学校月考,4)已知tan(π-θ)=3,则sin (π2+θ)-cos(π-θ)sin (π2-θ)-sin(π-θ)=( )A.-1B.-12C.1D.12答案 D3.(2020届吉林白城通榆一中月考,2)已知扇形OAB 的圆心角为2 rad,其面积是8 cm 2,则该扇形的周长是( ) A.8 cm B.4 cm C.8√2 cm D.4√2 cm 答案 C4.(2020届宁夏银川一中月考,2)已知tan α=-3,α是第二象限角,则sin (π2+α)=( ) A.-√1010B.-3√1010C.√105D.2√55答案 A5.(2020届湖南长沙一中月考,8)如图,点A 为单位圆上一点,∠xOA=π3,点A 沿单位圆按逆时针方向旋转角α到点B (-√22,√22),则sin α=( )A.-√2+√64B.√2-√64C.√2+√64D.-√2+√64答案 C6.(2019湖南衡阳一中月考,5)已知α是第三象限角,且|cos α3|=-cos α3,则α3是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 答案 C7.(2018湖北襄阳四校3月联考,8)△ABC 为锐角三角形,若角θ的终边过点P(sin A-cos B,cos A-sin C),则sinθ|sinθ|+cosθ|cosθ|+tanθ|tanθ|的值为( )A.1B.-1C.3D.-3 答案 B8.(2019广东珠海四校联考,3)设a=sin 5π7,b=cos 2π7,c=tan 2π7,则( ) A.a<b<c B.a<c<b C.b<c<a D.b<a<c 答案 D9.(2019北京师范大学附中期中,6)在平面直角坐标系中,角α的顶点在原点,始边在x 轴的正半轴上,角α的终边经过点M (-cos π8,sin π8),且0<α<2π,则α=( ) A.π8 B.3π8 C.5π8 D.7π8答案 D10.(2018江西南昌一模,3)已知角α的终边经过点P(sin 47°,cos 47°),则sin(α-13°)=( ) A.12B.√32C.-12D.-√32答案 A二、多项选择题(每题5分,共10分)11.(改编题)已知α是三角形的内角,且sin α+cos α=15,则有( ) A.sin α=45,cos α=-35B.sin α=-35,cos α=-45 C.tan α=-43D.tan α=43答案 AC12.(改编题)已知α为锐角且有2tan(π-α)-3cos (π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则有( ) A.tan α=3 B.sin β=13C.sin α=3√1010D.tan β=√24答案 ABC三、填空题(每题5分,共15分)13.(2019豫北六校精英对抗赛,13)若f(x)=cos (π2x +α)+1,且f(8)=2,则f(2 018)= . 答案 014.(2018广东佛山教学质量检测(二),14)若sin (α-π4)=7√210,α∈(0,π),则tan α= .答案 -43或-3415.(2019江西金太阳联考卷(六),15)已知sin α和cos α是方程4x 2+2√6x+m=0的两个实数根,则sin 3α-cos 3α= .答案 ±5√28四、解答题(共15分)16.(2019山东夏津一中月考,19)已知tan (π4+α)=2. (1)求tan α的值; (2)求2sin 2α+sin2α1+tanα的值.解析 (1)∵tan (π4+α)=tan π4+tanα1−tan π4·tanα=1+tanα1−tanα=2,∴tan α=13. (2)2sin 2α+sin2α1+tanα=2sin 2α+2sinαcosα1+tanα=2sin 2α+2sinαcosα(1+tanα)(sin 2α+cos 2α)=2tan 2α+2tanα(1+tanα)(tan 2α+1),由(1)知tan α=13,∴原式=2×(13)2+2×13(1+13)×[(13)2+1]=35.。
4.1 三角函数的概念、同角三角函数的关系式和诱导公式五年高考考点 三角函数的概念、同角三角函数的关系式和诱导公式 1.(2012山东.7,5分)若,8732sin ],2,4[=∈θππθ则=θsin ( )53.A 54.B 47.C 43.D2.(2011课标,5,5分)已知角p 的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线x y 2= 上,则=θ2cos ( )54.-A 53.-B 53.C 54.D 3.(2011福建.3,5分)若,3tan =α则αα2cos 2sin 的值等于 ( ) 2.A 3.B 4.C 6.D4.(2012山东.16,4分)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,的坐标为5.(2011全国,14,5分)已知,55sin ),,2(=∈αππα则α2ta n = 6.(2011天津.15,13分)已知函数).42tan()(π+=x x f(1)求f(x)的定义域与最小正周期; (2)设),4,0(πα∈若,cos 2)2(ωα=求k 的大小.解读探究智力背景华罗庚的退步解题方法(一) 有位老师,想辨别他的3个学生谁更聪明.他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2预帽子,最后叫他们睁开眼,看着别人的帽子,说出自己所戴帽子的颜色.3个学生互相看了看,都踌躇了一会,并异口同声地说出自己戴的是白帽子,为了解决上面的问题,我们先考虑“2人l顶黑帽,2顶白帽”问题.因为黑帽只有l顶,我戴了,对方立刻会说自己戴的是白帽.知识清单1.弧度的概念与公式在半径为r的圆中:2.任意角的三角函数(1)定义:设角α的终边与单位圆交于P (x ,y ),则=αsin ⑧ ⑨=αcos ,⑩=αtan , 其中,0(=/x ⋅+=)22y x r(2)三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值的正负.与坐标轴同向为正,异向为负;线段的长度是三角函数值的⑩ ,所以书写时要注意起点、终点的顺序,不能把顺序弄错了,为此,我们规定凡由原点出发的线段,以原点为始点;不从原点出发的线段,以函数线与坐标轴的交点为起点. 3.同角三角函数的基本关系 (1)平方关系: (2)商数关系: 4.诱导公式【知识拓展】1.任意角的弧度制及任意角的三角函数(1)理解弧度概念,正确利用orad 180=π进行角度与弧度的互化.(2)理解由弧度概念推导的弧长公式、扇形面积公式.(3)利用三角函数定义证明同角三角函数关系式.(4)区分象限角、范围角(如锐角、钝角)等概念.(5)能结合三角函数线解简单三角不等式,例如:解不等式⋅>21sin α2.同角三角函数的基本关系式与诱导公式(1)同角关系式及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.(2)三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:①弦切互化法:主要利用公式xxnx t cos sin .=化成正弦、余弦函数;②和积转换法:如利用.sin 21)cos (sin 2θθθ±=±θcos 的关系进行变形、转化;③巧用“1”的变换:θθ22cos sin 1+=)tan 1(cos 22θθ+=⋅+=)tan 11(sin 22θθ注意求值与化简后的结果一般要尽可能有理化、整式化.(3)证明三角恒等式的主要思路:①左右互推法:由较繁的一边向简单一边化简;②左右归一法:使两端化异为同,把左右式都化为第三个式子;③转化与化归法:先将要证明的结论恒等变形,再证明. (4)解三角函数问题时常用方法:代入法、消元法、转化与化归法、方程与分类讨论思想方法等. (5)已知一个角的某一三角函数值,求该角的其他三角函数值时,可以利用构造直角三角形,结合该角的范围求值,知识清单答案突破方法方法 同角三角函数的关系同角三角函数的关系是由任意角的三角函数的定义得出的,利用平方关系开方时要注意“±”的选取,商数关系常用于“切化弦”,其实,其商数关系αααcos sin tan =的逆用也很重要,若分式的分子、分母是关于同角的弦函数的齐次式的形式,可将分子、分母同除以弦函数的最高次数,从而转化成正切函数的形式来求值,智力背景华罗庚的退步解题方法(二 )但他踌躇了一会,可见我戴的是白帽.这样“3人2顶黑帽,3顶白帽” 的问题也就容易解决了,假设我戴的是黑帽子,则他们2人就变成“2人l 顶黑帽,2灏白帽”问题,他们可以立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自己戴的是白帽子 .例(2012山东东营二模.17,12分)已知α是三角形的内角,且⋅=+51s sin ααco (1)求αtan 的值;(2)把αα22sin cos 1-用αtan 表示出来,并求其值.解题思路 (1)由51cos sin =+αα及,1cos sin 22=+αα可求ααcos ,ms 的值; ,cos sin 1)2(22αα+=分子、分母同除以α2cos 即可.解析 (1)解法一:联立⎪⎩⎪⎨⎧=+=+②①,1cos ,51cos sin 22ααααms (2分) 由①得,sin 51cos αα-=将其代入②,整理得.012sin 5sin 252=--αα (3分)∵ α是三角形的内角,⎪⎪⎩⎪⎪⎨⎧-==∴,538,54sin ααco⋅-=∴34tan α (6分)解法二:,51cos sin =+αα,)51()cos (sin 22=+∴αα即,251cos sin 21=+αα,2524cos sin 2-=∴αα⋅=+=-=-∴254925241cos sin 21)cos (sin 2αααα (3分)02512cos sin <-=αα 且,0πα<<,0cos sin ,0cos ,0sin >-∴<>∴αααα,5cos sin =-∴αα 由⎪⎪⎩⎪⎪⎨⎧=-=+57cos sin ,51cos sin αααα得⎪⎪⎩⎪⎪⎨⎧-==,53cos ,54sin αα⋅-=∴34tan α ⋅-+=-+=-+=-αααααααααααααα22222222222222tan 11tan cos sin cos cos cos sin sin cos cos sin sin cos 1)2( (6分) ,34tan -=α (10分)⋅-=--+-=-+=-∴725)34(11)34(tan 11tan sin cos 1222222αααα (12分) 【方法点拨】 同角三角函数的关系式的应用策略(1)对于ααααααcos sin ,cos sin ,cos sin -+这三个式子,已知其中一个式子的值,其余二式的值可求.转化的公式为;cos sin 21)cos (sin 2αααα±=±(2)关于x x cos ,sin 的齐次式,往往转化为关于tanx 的式子.三年模拟A 组2011-2013年模拟探究专项基础测试时间.35分钟 分值:45分一、选择题(每题5分,共10分1.(2013四川成都一模.5)已知,41log )sin(8=-απ且∈α),0,2(π-则)2tan(απ-的值为( ) 552.-A 552.B 552.±C 25.D2.(2013吉林长春5月,3)已知,53cos =α则αα2sin 2cos +的值为( )259.A 2518.B 2523.c 2534.D二、填空题(每题5分,共15分)3.(2013北京东城高三上学期期末)若,53sin -=α且>αtan ,0则=αcos4.(2013河北唐山一模.13)已知,101lg)3sin(3=+απ则]1)[cos(cos )cos(--+απααπ)2cos()cos(cos )2cos(πααπαπα-+--+的值为5.(2012北京海淀4月模拟.11)若,21tan =α则)22cos(πα+=智力背景百鸡问题 本问题记载于我国古代约5~6世纪成书的《张丘建算经》中,是原书卷下第38题,也是全书的最后—题:“今有鸡翁一,值钱伍;鸡母一,值钱三;鸡雏三,值钱一凡百钱买鸡百只,问鸡翁、母、雏各几何?答曰:鸡翁四,值钱;十:鹂母十八,值钱五十四;鸡雏七十八,值钱二十六,又答:鸡翁八,值钱四十;鸡母十一,值钱三十三;鸡雏八十一,值被二十七又答:鸡翁十二,值钱六十;鸡母四,值钱十二;鸡雏八十四,值钱二十八”该问题引出了三元不定方程组,其重要之处在于开创“一问多答”的先例,这是过去我国古算书中所没有的.三、解答题(共20分) 6.(2013北京丰台期末)如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于A ,B 两点. (1)若点A 的横坐标是,53点B 的纵坐标是,1312求)sin(βα+的值; (2)若,23||=AB 求⋅.的值.7.(2013新疆哈密一模.17)已知,1)sin(=+βα求证:+α2(tan .0tan )=+ββB 组 2011-2013年模拟探究专项提升测试 时间:45分钟 分值:50分 一、选择题(每题5分,共15分)1.(2013湖北黄冈二模.9)已知函数++=)sin()(απx a x f ),cos(βπ+x b 且,3)4(=f 则)2013(f 的值为 ( )2.(2013海南海口一模.5)方程x x 41sin =π的解的个数是( )5.A6.B7.C8.D3.(2013山东临沂二模.11)已知)sin(cos )(],,0[x x f x =∈π的最大值为同a ,最小值为)cos(sin )(,x x g b =的最大值为c ,最小值为d ,则 ( )c ad b A <<<. a c b d B <<<. a c d b C <<<. c a b d D <<<.二.填空题 (每题5分,共10分) 4.(2013上海长宁4月.10)若),2,0(π∈x 则+⋅x tan 2)2tan(x -π的最小值为5.(2012海南万宁二模,13)已知函数.⎪⎩⎪⎨⎧>-≤=2000,122000,3cos 2)(x x x x x f π则=)]2012([f f 三、解答题(共25分)6.(2013重庆万州一模,18)设.cos sin 2sin ,0θθθπθ-+=≤≤P (1)若,8sin θθco t -=用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.7.(2013河南信阳二模,17)已知])12[(cos )()(cos )(222x n x n ms x n x f -+-⋅+=πππ ⋅∈)(z n (1)化简)(x f 的表达式; (2)求)1005502()2010(ππ+f 的值.智力背景假币谜题 有十堆银币,每堆十枚.已知一枚真币的重量,也知道每个假币比真币重量多l 克,而且 你还知道这里有一堆全是假币,你可以用一架台式盘秤来称克数,试问最少需要称几次才能确定出 假币?答案:只要称一次!。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
第四章 三角函数及三角恒等变换第一节 三角函数的概念、同角三角函数的关系和诱导公式第一部分 五年高考荟萃2009年高考题一、选择题1.(2009海南宁夏理,5).有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny3p : ∀x ∈[]0,π=sinx 4p : sinx=cosy ⇒x+y=2π其中假命题的是A .1p ,4p B.2p ,4p C.1p ,3p D.2p ,4p 答案 A2..(2009辽宁理,8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f =( )A.23-B. 23C.- 12D.12答案 C3.(2009辽宁文,8)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=( )A.43-B.54C.34-D.45答案 D4.(2009全国I 文,1)sin 585°的值为A. 2-B.2C.答案 A5.(2009全国I 文,4)已知tan a =4,cot β=13,则tan(a+β)= ( ) A.711 B.711- C. 713 D. 713- 答案 B6.(2009全国II 文,4) 已知ABC ∆中,12cot 5A =-, 则cos A = A. 1213 B.513 C.513- D. 1213-解析:已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈.12cos 13A ===-故选D. 7.(2009全国II 文,9)若将函数)0)(4tan(>+=ωπωx y 的图像向右平移6π个单位长度后,与函数)6tan(πω+=x y 的图像重合,则ω的最小值为( ) A. 61 B.41 C.31D.21答案 D8.(2009北京文)“6πα=”是“1cos 22α=”的 A . 充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件答案 A解析 本题主要考查本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断. 属于基础知识、基本运算的考查. 当6πα=时,1cos 2cos32πα==,反之,当1cos 22α=时,()2236k k k Z ππαπαπ=+⇒=+∈,或()2236k k k Z ππαπαπ=-⇒=-∈,故应选A.9.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α=”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断. 属于基础知识、基本运算的考查. 当2()6k k Z παπ=+∈时,1cos 2cos 4cos 332k ππαπ⎛⎫=+== ⎪⎝⎭ 反之,当1cos 22α=时,有()2236k k k Z ππαπαπ=+⇒=+∈, 或()2236k k k Z ππαπαπ=-⇒=-∈,故应选A.10.(2009全国卷Ⅱ文)已知△ABC 中,12cot 5A =-,则cos A = A. 1213 B. 513 C. 513- D. 1213-答案:D解析:本题考查同角三角函数关系应用能力,先由cotA=125-知A 为钝角,cosA<0排除A 和B ,再由1312cos 1cos sin ,512sin cos cot 22-==+-==A A A A A A 求得和选D 11.(2009四川卷文)已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2π]上是增函数 C .函数)(x f 的图象关于直线x =0对称 D . 函数)(x f 是奇函数 答案 D解析∵x x x f cos )2sin()(-=-=π,∴A 、B 、C 均正确,故错误的是D【易错提醒】利用诱导公式时,出现符号错误。
12.(2009全国卷Ⅱ理)已知ABC ∆中,12cot 5A =-, 则cos A =( ) A.1213B.513C.513-D. 1213-解析:已知ABC ∆中,12cot 5A =-,(,)2A ππ∴∈.12cos13A===-故选D.答案 D13.(2009湖北卷文)“sinα=21”是“212cos=α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件答案 A解析由1cos22a=可得21sin2a=±,故211sin sin24a a==是成立的充分不必要条件,故选A.14.(2009重庆卷文)下列关系式中正确的是()A.000sin11cos10sin168<< B.000sin168sin11cos10<<C.000sin11sin168cos10<<D.000sin168cos10sin11<<答案 C解析因为sin160sin(18012)sin12,cos10cos(9080)sin80︒︒︒︒︒︒︒︒=-==-=,由于正弦函数siny x=在区间[0,90]︒︒上为递增函数,因此sin11sin12sin80︒︒︒<<,即sin11sin160cos10︒︒︒<<二、填空题15.(2009北京文)若4sin,tan05θθ=->,则cosθ= .答案35-解析本题主要考查简单的三角函数的运算.属于基础知识、基本运算的考查.由已知,θ在第三象限,∴3cos5θ===-,∴应填35-.16.(2009湖北卷理)已知函数()'()cos sin,4f x f x xπ=+则()4fπ的值为 .答案 1解析 因为'()'()sin cos 4f x f x x π=-⋅+所以'()'()sincos4444f f ππππ=-⋅+'()14f π⇒=故()'()cos sin ()144444f f f πππππ=+⇒=三、解答题17.(2009江苏,15)设向量(4cos ,sin ),(sin ,4cos ),(cos ,4sin )a b c ααββββ===-(1)若a 与2b c -垂直,求tan()αβ+的值;(2)求||b c +的最大值;(3)若tan tan 16αβ=,求证:a ∥b.分析 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。
18.(2009广东卷理)(本小题满分12分)已知向量)2,(sin -=θ与)cos ,1(θ=互相垂直,其中(0,)2πθ∈.(1)求θsin 和θcos 的值;(2)若sin(),0102πθϕϕ-=<<,求cos ϕ的值. 解:(1)∵a 与b 互相垂直,则0cos 2sin =-=⋅θθb a ,即θθcos 2sin =,代入1cos sin 22=+θθ得55cos ,552sin ±=±=θθ,又(0,)2πθ∈,∴55cos ,552sin ==θθ. (2)∵20πϕ<<,20πθ<<,∴22πϕθπ<-<-,则10103)(sin 1)cos(2=--=-ϕθϕθ,∴cos ϕ22)sin(sin )cos(cos )](cos[=-+-=--=ϕθθϕθθϕθθ. 19.(2009安徽卷理)在∆ABC 中,sin()1C A -=, sinB=13. (I )求sinA 的值;(II)设∆ABC 的面积.本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力。
(Ⅰ)由2C A π-=,且C A B π+=-,∴42B A π=-,∴s i n s i n ()(c o s s i n )42222B B BA π=-=-, ∴211sin (1sin )23A B =-=,又sin 0A >,∴sin A =(Ⅱ)如图,由正弦定理得sin sin AC BCB A=∴sin 31sin 3AC ABC B===sin sin()sin cos cos sin C A B A B A B =+=+133333=+=∴11sin 22ABC S AC BC C ∆=∙∙== 20.(2009天津卷文)在ABC ∆中,A C AC BC sin 2sin ,3,5=== (Ⅰ)求AB 的值。
(Ⅱ)求)42sin(π-A 的值。
(1)解:在ABC ∆ 中,根据正弦定理,ABCC AB sin sin =,于是522sin sin ===BC ABCCAB (2)解:在ABC ∆ 中,根据余弦定理,得ACAB BC AC AB A ∙-+=2cos 222于是A A 2cos 1sin -==55, A BC从而53sin cos 2cos ,54cos sin 22sin 22=-===A A A A A A 1024sin 2cos 4cos 2sin )42sin(=-=-πππA A A 【考点定位】本题主要考查正弦定理,余弦定理同角的三角函数的关系式,二倍角的正弦和余弦,两角差的正弦等基础知识,考查基本运算能力。