高中数学选修2–1测试卷(一)
- 格式:doc
- 大小:421.00 KB
- 文档页数:8
数学选修模块测试样题选修2-1 (人教A 版)考试时间:90分钟 试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.1x >是2x >的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件2.已知命题p q ,,若命题“p ⌝”与命题“p q ∨”都是真命题,则( )A .p 为真命题,q 为假命题B .p 为假命题,q 为真命题C .p ,q 均为真命题D .p ,q 均为假命题3. 设M 是椭圆22194x y +=上的任意一点,若12,F F 是椭圆的两个焦点,则12||||MF MF + 等于( )A . 2B . 3C . 4D . 64.命题0p x x ∀∈≥R :,的否定是( )A .0p x x ⌝∀∈<R :,B .0p x x ⌝∃∈≤R :,C .0p x x ⌝∃∈<R :,D .0p x x ⌝∀∈≤R :,5. 抛物线24y x =的焦点到其准线的距离是( )A . 4B . 3C . 2D . 16. 两个焦点坐标分别是12(5,0)(5,0)F F -,,离心率为45的双曲线方程是( ) A .22143x y -= B . 22153x y -= C .221259x y -= D .221169x y -= 7. 下列各组向量平行的是( )A .(1,1,2),(3,3,6)=-=--a bB .(0,1,0),(1,0,1)==a bC .(0,1,1),(0,2,1)=-=-a bD .(1,0,0),(0,0,1)==a b8. 在空间四边形OABC 中,OA AB CB +-等于( )A .OAB .ABC .OCD .AC9. 已知向量(2,3,1)=a ,(1,2,0)=b ,则-a b 等于 ( )A .1 BC .3D .910. 如图,在三棱锥A BCD -中,DA ,DB ,DC 两两垂直,且DB DC =,E 为BC 中点,则AE BC ⋅ 等于( )A .3B .2C .1D .011. 已知抛物线28y x =上一点A 的横坐标为2,则点A 到抛物线焦点的距离为( )A .2B .4C .6D .812.设1k >,则关于x ,y 的方程222(1)1k x y k -+=-所表示的曲线是( )A .长轴在x 轴上的椭圆B .长轴在y 轴上的椭圆C .实轴在x 轴上的双曲线D .实轴在y 轴上的双曲线13. 一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85m C . 2.15m D . 2.25m14.正方体1111ABCD A B C D -中,M 为侧面11ABB A 所在平面上的一个动点,且M 到平面11ADD A 的距离是M 到直线BC 距离的2倍,则动点M 的轨迹为( ) A .椭圆B .双曲线C .抛物线D .圆二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.命题“若0a >,则1a >”的逆命题是_____________________.16.双曲线22194x y -=的渐近线方程是_____________________. 17.已知点(2,0),(3,0)A B -,动点(,)P x y 满足2AP BP x ⋅=,则动点P 的轨迹方程是 .AEDCB18. 已知椭圆12222=+b y a x 的左、右焦点分别为21,F F ,点P 为椭圆上一点,且3021=∠F PF ,6012=∠F PF ,则椭圆的离心率e 等于 .三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)设直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点. (1)求实数b 的取值范围; (2)当1b =时,求AB .20.(本小题满分10分)如图,正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点. (1)求1AD 与DB 所成角的大小; (2)求AE 与平面ABCD 所成角的正弦值.21.(本小题满分10分)已知直线y x m =-与抛物线x y 22=相交于),(11y x A ,),(22y x B 两点,O 为坐标原点. (1)当2=m 时,证明:OB OA ⊥;(2)若m y y 221-=,是否存在实数m ,使得1-=⋅?若存在,求出m 的值;若不存在,请说明理由.A BCA 1B 1C 1D 1 DE数学模块测试样题参考答案数学选修2-1(人教A 版)一、选择题(每小题4分,共56分)1. B 2. B 3.D 4.C 5.C 6.D 7. A 8. C 9. B10.D11.B12.D13.A14.A二、填空题(每小题4分,共16分)15.若1a >,则0a > 16.23y x =±17. 26y x =+ 181三、解答题(解答题共28分) 19.(本小题满分8分)解:(1)将y x b =+代入2212x y +=,消去y ,整理得2234220x bx b ++-=.① 因为直线y x b =+与椭圆2212x y +=相交于A B ,两个不同的点,所以2221612(22)2480b b b ∆=--=->, 解得b <<.所以b 的取值范围为(. (2)设11()A x y ,,22()B x y ,, 当1b =时,方程①为2340x x +=.解得1240,3x x ==-. 相应地1211,3y y ==-.所以(AB x ==.20.(本小题满分10分)解:(1) 如图建立空间直角坐标系D xyz -,则(000)D ,,,(200)A ,,,(220)B ,,,1(002)D ,,则(2,2,0)DB =,1(2,0,2)D A =-. 故1111cos ,22DB D A DB D A DB D A⋅〈〉===⋅.所以1AD 与DB 所成角的大小为60. (2) 易得(021)E ,,,所以(2,2,1)AE =-. 又1(0,0,2)DD =是平面ABCD 的一个法向量,且11121cos ,323AE DD AE DD AE DD ⋅〈〉===⨯⋅. 所以AE 与平面ABCD 所成角的正弦值为13. 21.(本小题满分10分)解:(1)当2=m 时,由⎩⎨⎧=-=,,x y x y 222得0462=+-x x ,解得 53,5321-=+=x x , 因此 51,5121-=+=y y .于是 )51)(51()53)(53(2121-++-+=+y y x x 0=, 即0OA OB ⋅=. 所以 OB OA ⊥.(2)假设存在实数m 满足题意,由于B A ,两点在抛物线上,故⎪⎩⎪⎨⎧==,,22212122x y x y 因此222121)(41m y y x x ==. 所以m m y y x x 222121-=+=⋅.由1-=⋅,即122-=-m m ,得1=m .又当1=m 时,经验证直线与抛物线有两个交点, 所以存在实数1=m ,使得1-=⋅OB OA。
高中数学选修2-1测试题全套及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出命题:“若x 2+y 2=0,则x =y =0”,在它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个2.若命题p∨q 与命题都是真命题,则( )p ⌝A .命题p 不一定是假命题 B .命题q 一定是真命题C .命题q 不一定是真命题 D .命题p 与命题q 的真假相同3.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .p :∀x ∈A ,2x ∉BB .p :∀x ∉A ,2x ∉B ⌝⌝C .p :∃x 0∉A ,2x 0∈BD .p :∃x 0∈A ,2x 0∉B⌝⌝4.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数 B .若f (x )不是奇函数,则f (-x )不是奇函数C .若f (-x )是奇函数,则f (x )是奇函数D .若f (-x )不是奇函数,则f (x )不是奇函数5.设U 为全集,A,B 是集合,则“存在集合使得是“”的C C C B C A U ⊆⊆,∅=B A ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.命题“若△ABC 有一内角为,则△ABC 的三内角成等差数列”的逆命题( )π3A .与原命题同为假命题 B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题7.若“0<x <1”是“(x -a )[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是( )A .(-∞,0]∪[1,+∞)B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)8.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p ∨q ”是真命题 B .“p ∧q ”是假命题C .p 为假命题D .q 为假命题⌝⌝9.下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数10.下面四个条件中,使a >b 成立的充分不必要的条件是( )A .a >b +1 B .a >b -1 C .a 2>b 2D .a 3>b 311.已知A :,B :,若A 是B 的充分不必要条件,则实数a 的13x -<(2)()0x x a ++<取值范围是( )A .(4,+∞)B .[4,+∞)C .(-∞,4]D .(-∞,-4)12.已知命题p:不等式(x-1)(x-2)>0的解集为A ,命题q:不等式x 2+(a -1)x -a >0的解集为B ,若p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(-2,-1] B .[-2,-1]C .[-3,1]D .[-2,+∞)二 、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是14.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.15.关于x 的方程x 2-(2a -1)x +a 2-2=0至少有一个非负实根的充要条件的a 的取值范围是________.16.给出下列四个说法:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设a ,b ∈R ,若a +b ≠6,则a ≠3或b ≠3”是一个假命题;③“x >2”是“<”的充分不必要条件;1x 12④一个命题的否命题为真,则它的逆命题一定为真.其中说法不正确的序号是________.17.已知命题p :∀x ∈[1,2]都有x 2≥a .命题q :∃x ∈R ,使得x 2+2ax +2-a =0成立,若命题p ∧q 是真命题,则实数a 的取值范围是________.18.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的__________条件.三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知命题p:若则二次方程没有实根.,0≥ac 02=++c bx ax (1)写出命题p 的否命题;(2)判断命题p 的否命题的真假, 并证明你的结论.20.(10分)已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =”是假命φ题,求实数m 的取值范围.21.(10分)已知P ={x |x 2-8x -20≤0},S ={x |1-m ≤x ≤1+m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件,若存在,求出m 的范围;若不存在,请(2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件,若存在,求出m 的范围;若不存在,请说明理由.22.(10分)已知c >0,且c ≠1,设命题p :函数y =c x 在R 上单调递减;命题q :函数f (x )=x 2-2cx +1在上为增函数,若命题p ∧q 为假,命题p ∨q 为真,求实数c 的取(12,+∞)值范围.23.(10分)已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x +2ax 0+2a ≤0,若命题p ∨q 是假命题,求a 的取值范围.2024.(10分)已知数列{a n }的前n 项和为S n ,数列{}是公比为2的等比数列.Sn +1证明:数列{a n }成等比数列的充要条件是a 1=3.参考答案1、选择题1.D2.B3.D4.B5.C6.D7.C8.B9.D 10.A 11.D 12.A提示:1.逆命题为:若x =y =0,则x 2+y 2=0,是真命题.否命题为:若x 2+y 2≠0,则x ≠0或y ≠0,是真命题.逆否命题为:若x ≠0或y ≠0,则x 2+y 2≠0,是真命题.2.“”为真命题,则命题p 为假,又p 或q 为真,则q 为真,故选B.p3.由命题的否定的定义及全称命题的否定为特称命题可得.命题p 是全称命题:∀x ∈A ,2x ∈B ,则p 是特称命题:∃x 0∈A ,2x 0∉B .故选D.4.原命题的否命题是既否定题设又否定结论,故“若f (x )是奇函数,则f (-x )是奇函数”的否命题是B 选项.5.6.原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为”,它是真命题.π37.(x -a )[x -(a +2)]≤0⇒a ≤x ≤a +2,由集合的包含关系知:⇒a ∈[-1,0].{a ≤0,a +2≥1,)8.因为当a ·b >0时,a 与b 的夹角为锐角或零度角,所以命题p 是假命题;命题q 是假命题,例如f (x )=Error!综上可知,“p 或q ”是假命题.9.对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=2+≥>0,因此选项B 是真命题;对于C ,在△ABC 中,(lg x +12)3434A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命π2题.10.a >b +1⇒a -b >1>0⇒a >b ,但a =2,b =1满足a >b ,但a =b +1,故A 项正确.对于B ,a >b -1不能推出a >b ,排除B ;而a 2>b 2不能推出a >b ,如a =-2,b =1,(-2)2>12,但-2<1,故C 项错误;a >b ⇔a 3>b 3,它们互为充要条件,排除D.11.由题知,当时,,若1324x x -<⇔-<<2a <(2)()02x x a x a ++<⇔-<<-A 是B 的充分不必要条件,则有且,故有,即;当时,A B ⊆B A ≠4a ->4a <-2a =B=,显然不成立;当时,,不可能有,φ2a >(2)()02x x a a x ++<⇔-<<-A B ⊆故.(),4a ∈-∞-12.不等式(x-1)(x-2)>0,解得x >2或x <1,所以A 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即B 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综合知-2<a ≤-1.二、填空题13.(1,4) 14.[-8,0] 15. 16.①② 17.(-∞,-2]∪{1}[-2,94]18.充分不必要提示:13.由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有,由此解得1<m <4,即实数m 的取值范{m -2<2m +2>3)围是(1,4).14.由题意知,x 为任意实数时,都有ax 2-ax -2≤0恒成立.当a =0时,-2≤0成立.当a ≠0时,由得-8≤a <0,{a <0,Δ=a 2+8a ≤0)所以-8≤a ≤0.15.设方程的两根分别为x 1,x 2,当有一个非负实根时,x 1x 2=a 2-2≤0,即-≤a ≤;当22有两个非负实根时,⇔即≤a ≤.综上,{Δ=(2a -1)2-4(a 2-2)≥0,x 1+x 2=2a -1>0,x 1x 2=a 2-2≥0){4a ≤9,a >12,a ≤-2或a ≥ 2.)294得-≤a ≤.2416.①逆命题与逆否命题之间不存在必然的真假关系,故①错误;②此命题的逆否命题为“设a ,b ∈R ,若a =3且b =3,则a +b =6”,此命题为真命题,所以原命题也是真命题,②错误;③<,则-=<0,解得x <0或x >2,所以1x 121x 122-x2x “x >2”是“<”的充分不必要条件,故③正确;④否命题和逆命题是互为逆否命1x 12题,真假性相同,故④正确.17.若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p 且q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1.三、解答题19.解:(1)命题p 的否命题为:若则二次方程有实根.,0<ac 02=++c bx ax (2)命题p 的否命题是真命题. 证明如下:,04,0,02>-=∆>-<ac b ac ac 所以所以因为所以二次方程有实根. 02=++c bx ax 故该命题是真命题.20.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U ={m |m ≤-1或m ≥}.32假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有Error!⇒Error!⇒m ≥.32又集合{m |m ≥}关于全集U 的补集是{m |m ≤-1},2所以实数m 的取值范围是{m |m ≤-1}.21.解:(1)不存在.由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},因为x ∈P 是x ∈S 的充要条件,所以P =S ,所以Error!所以Error!这样的m 不存在.(2)存在.由题意x ∈P 是x ∈S 的必要条件,则S ⊆P .所以Error!所以m ≤3.又1+m ≥1-m,所以m≥0.综上,可知0≤m ≤3时,x ∈P 是x ∈S 的必要条件.22.解:因为函数y =c x 在R 上单调递减,所以0<c <1.即p :0<c <1,因为c >0且c ≠1,所以p :c >1.⌝又因为f (x )=x 2-2cx +1在上为增函数,所以c ≤.即q :0<c ≤,因为c >0且c ≠1,(12,+∞)1212所以q :c >且c ≠1.⌝12又因为“p 或q ”为真,“p 且q ”为假,所以p 真q 假或p 假q 真.①当p 真,q 假时,{c |0<c <1}∩=.{c |c >12且c ≠1}{c |12<c <1}②当p 假,q 真时,{c |c >1}∩=∅.{c |0<c ≤12}综上所述,实数c 的取值范围是.{c |12<c <1}23.解:由2x 2+ax -a 2=0得(2x -a )(x +a )=0,所以x =或x =-a ,a2所以当命题p 为真命题时≤1或|-a |≤1,所以|a |≤2.|a2|又“只有一个实数x 0满足不等式x +2ax 0+2a ≤0”,20即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,所以Δ=4a 2-8a =0,所以a =0或a =2.所以当命题q 为真命题时,a =0或a =2.所以命题“p 或q ”为真命题时,|a |≤2.因为命题“p 或q ”为假命题,所以a >2或a <-2.即a 的取值范围为{a |a >2或a <-2}.24.证明: 因为数列{}是公比为2的等比数列,所以=·2n -1,即Sn +1Sn +1S 1+1S n +1=(a 1+1)·4n -1.因为a n ={a 1,n =1,Sn -Sn -1,n ≥2,)所以a n =显然,当n ≥2时,=4.{a 1,n =1,3(a 1+1)·4n -2,n ≥2,)an +1an ①充分性:当a 1=3时,=4,所以对n ∈N *,都有=4,即数列{a n }是等比数列.a 2a 1an +1an ②必要性:因为{a n }是等比数列,所以=4,a 2a 1即=4,解得a 1=3.3(a 1+1)a 1综上,数列{a n }成等比数列的充要条件是a 1=3.第二章 圆锥曲线与方程 测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是()A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x2.设F 1,F 2分别是双曲线x 2-=1的左、右焦点.若点P 在双曲线上,且y 29|PF 1|=5,则|PF 2|=()A .5B .3C .7D .3或73.已知椭圆+=1,F 1,F 2分别为其左、右焦点,椭圆上一点M 到F 1的距离是x 225y 292,N 是MF 1的中点,则|ON |的长为()A .1B .2C .3D .44.“2<m <6”是“方程+=1表示椭圆”的( )x 2m -2y 26-m A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.双曲线-=1(a >0,b >0)的焦距为4,一个顶点是抛物线y 2=4x 的焦点,则x 2a 2y 2b 2双曲线的离心率e 等于()A .2B .C .D .33226.已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是()A .(0,0)B .(3,2)C .(3,-2)D .(2,4)667.已知双曲线-=1(a >0,b >0)的离心率为,则椭圆+=1的离心率为x 2a 2y 2b 252x 2a 2y 2b 2()A .B .C .D .123332228.设F 1,F 2是双曲线x 2-=1的两个焦点,P 是双曲线上的一点,且y 2243|PF 1|=4|PF 2|,则△PF 1F 2的面积等于()A .4B .8C .24D .48239.已知点A (1,2)是抛物线C :y 2=2px 与直线l :y =k (x +1)的一个交点,则抛物线C 的焦点到直线l 的距离是()A .B .C .D .2222322210.若点O 和点F 分别为椭圆+=1的中心和左焦点,点P 为椭圆上的任意一点,x 24y 23则·的最大值为()OP → FP→ A .6B .3C .2D .811.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +y +4=0有且仅有一3个交点,则椭圆的长轴长为()A .3B .2C .2D .267712.双曲线-=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1作圆x 2+y 2=a 2的x 2a 2y 2b 2切线交双曲线的左、右支分别于点B 、C ,且|BC|=|CF 2|,则双曲线的渐近线方程为( )A .y=±3xB .y=±2xC .y=±(1+)xD .y=±(-1)x233 二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)13.抛物线y =4x 2的焦点到准线的距离是_____.14.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是_____.15.若点P 在曲线C 1:-=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在x 216y 29曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是_____.16.已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (,4),则|PA |+|PM |的最小值是_____.7217.已知F 1为椭圆C :+y 2=1的左焦点,直线l :y =x -1与椭圆C 交于A 、B 两点,x 22则|F 1A |+|F 1B |的值为_____.18.过抛物线y 2=2px (p>0)的焦点作斜率为的直线与该抛物线交于A ,B 两点,3A ,B 在y 轴上的正射影分别为D ,C ,若梯形ABCD 的面积为10,则p=_____.3三、解答题(本大题共6小题,共60分.解答应写出文字说明、证明过程或演算步骤)19.(10分)已知双曲线的渐近线方程为y =±x ,并且焦点都在圆x 2+y 2=100上,求43双曲线方程.20.(10分)已知点P (3,4)是椭圆+=1(a >b >0)上的一点,F 1,F 2是椭圆x 2a 2y 2b 2的左、右焦点,若PF 1⊥PF 2.试求:(1)椭圆的方程;(2)△PF 1F 2的面积.21.(10分)抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点是原点,一条直角边所在直线方程为y =2x ,斜边长为5,求此抛物线方程.1322.(10分)已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF |+|BF |=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.23.(10分)设双曲线C :-y 2=1(a >0)与直线l :x +y =1相交于两点A 、B .x 2a 2(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且=,求a 的值.PA → 512PB →24.(10分)已知椭圆C :+=1(a >b >0)的离心率为,且经过点(,).x 2a 2y 2b 2633212(1)求椭圆C 的方程;(2)过点P (0,2)的直线交椭圆C 于A ,B 两点,求△AOB (O 为原点)面积的最大值.参考答案一、选择题1.C 2.D 3.D 4.B 5.A 6.D 7.C 8.C9.B10.A11.C12.C提示:1.由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x .2.因为双曲线的定义可得||PF 1|-|PF 2||=2,所以|PF 2|=7或3.3.由题意知|MF 2|=10-|MF 1|=8,ON 是△MF 1F 2的中位线,所以|ON |=|MF 2|=4.124.若+=1表示椭圆,则有Error!所以2<m <6且m ≠4,故2<m <6是+x 2m -2y 26-m x 2m -2=1表示椭圆的必要不充分条件.y 26-m 5.依题意,得c =2,a =1,所以e ==2.ca 6.由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4).7.因为在双曲线中,e 2===1+=,所以=,在椭圆中,e 2==c 2a 2a 2+b 2a 2b 2a 254b 2a 214c 2a 2=1-=1-=,所以椭圆的离心率e =.a 2-b 2a 2b 2a 21434328.由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =×6×8=24.129.将点(1,2)代入y 2=2px 中,可得p =2,即得抛物线y 2=4x ,其焦点坐标为(1,0),将点(1,2)代入y =k (x +1)中,可得k =1,即得直线x -y +1=0,所以抛物线C 的焦点到直线l 的距离d ==.|1-0+1|2210.由椭圆方程得F (-1,0),设P (x 0,y 0),则·=(x 0,y 0)·(x 0+1,y 0)OP → FP→=x +x 0+y ,因为P 为椭圆上一点,所以+=1,所以·=x +x 0+3(1-)=2020x 204y 203OP → FP→20x 204+x 0+3=(x 0+2)2+2,因为-2≤x 0≤2,所以·的最大值在x 0=2时取得,且最x 20414OP → FP→大值等于6.11.根据题意设椭圆方程为+=1(b >0),则将x =-y -4代入椭圆方程,x 2b 2+4y 2b 23得4(b 2+1)y 2+8b 2y -b 4+12b 2=0,因为椭圆与直线x +y +4=0有且仅有一个交点,33所以Δ=(8b 2)2-4×4(b 2+1)(-b 4+12b 2)=0,即(b 2+4)·(b 2-3)=0,所以3b 2=3,长轴长为2=2.b 2+4712.根据双曲线的定义有|CF 1|-|CF 2|=2a ,而|BC|=|CF 2|,那么2a=|CF 1|-|CF 2|=|CF 1|-|BC|=|BF 1|,而又由双曲线的定义有|BF 2|-|BF 1|=2a ,可得|BF 2|=4a ,由于过F 1作圆x 2+y 2=a 2的切线交双曲线的左、右支分别于点B 、C ,那么sin ∠BF 1F 2=,那么cos ∠BF 1F 2=,根据余弦定理有cos ∠BF 1F 2==c a c b cb,整理有b 2-2ab -2a 2=0,即()2-2-2=0,解得c a a c a 222)4()2()2(222⨯⨯-+a b ab=1+(=1-<0舍去),故双曲线的渐近线方程为y=±x=±(1+)x .a b 3a b 3ab 3二、填空题13. 14.+=115.1016.17.18.318x 281y 27292823提示:13.由x 2=y 知,p =,所以焦点到准线的距离为p =.14181814.依题意知:2a =18,所以a =9,2c =×2a ,所以c =3,所以13b 2=a 2-c 2=81-9=72,所以椭圆方程为+=1.x 281y 27215.依题意得,点F 1(-5,0)、F 2(5,0)分别为双曲线C 1的左、右焦点,因此有|PQ |-|PR |≤|(|PF 2|+1)-(|PF 1|-1)|≤||PF 2|-|PF 1||+2=2×4+2=10,故|PQ |-|PR |的最大值是10.16.设抛物线y 2=2x 的焦点为F ,则F (,0),又点A (,4)在抛物线的外侧,抛1272物线的准线方程为x =-,则|PM |=d -,又|PA |+d =|PA |+|PF |≥|AF |=5,所以1212|PA |+|PM |≥.9217.设点A (x 1,y 1),B (x 2,y 2),则由Error!消去y 整理得3x 2-4x =0,解得x 1=0,x 2=,易得点A (0,-1)、B (,).又点F 1(-1,0),因此|F 1A |+|F 1B |=434313+=.12+(-1)2(73)2+(13)282318.由抛物线y 2=2px (p>0)得其焦点F (,0),直线AB 的方程为y=(x -),2p 32p设A (x 1,y 1),B (x 2,y 2)(假定x 2>x 1),由题意可知y 1<0,y 2>0,联立,⎪⎩⎪⎨⎧=-=px y p x y 22(32整理有y 2-2py -p 2=0,可得y 1+y 2=,y 1y 2=-p 2,则有x 1+x 2=,而梯形ABCD3332p 35p 的面积为S=(x 1+x 2)(y 2-y 1)==10,整理有p 2=9,而2165p212214)(y y y y -+3p>0,故p=3.三、解答题19.解:设双曲线的方程为42·x 2-32·y 2=λ(λ≠0),从而有()2+()2=100,解得λ=±576,|λ|4|λ|3所以双曲线的方程为-=1和-=1.x 236y 264y 264x 23620.解:(1)因为P 点在椭圆上,所以+=1,①9a 216b 2又PF 1⊥PF 2,所以·=-1,得:c 2=25,②43+c 43-c 又a 2=b 2+c 2,③由①②③得a 2=45,b 2=20,则椭圆方程为+=1;x 245y 220(2)S =|F 1F 2|×4=5×4=20.21F PF 1221.解:设抛物线y 2=2px (p >0)的内接直角三角形为AOB ,直角边OA 所在直线方程为y =2x ,另一直角边所在直线方程为y =-x ,12解方程组Error!可得点A 的坐标为;(p2,p )解方程组Error!可得点B 的坐标为(8p ,-4p ).因为|OA |2+|OB |2=|AB |2,且|AB |=5,13所以+(64p 2+16p 2)=325,(p 24+p 2)所以p =2,所以所求的抛物线方程为y 2=4x .22.解:设抛物线的方程为y 2=2px (p >0),其准线方程为x =-,p2设A (x 1,y 1),B (x 2,y 2),因为|AF |+|BF |=8,所以x 1++x 2+=8,即x 1+x 2=8-p ,p2p2因为Q (6,0)在线段AB 的中垂线上,所以QA =QB ,即(x 1-6)2+y =(x 2-6)2+y ,212又y =2px 1,y =2px 2,所以(x 1-x 2)(x 1+x 2-12+2p )=0,212因为x 1≠x 2,所以x 1+x 2=12-2p ,故8-p =12-2p ,所以p =4,所以所求抛物线方程是y 2=8x .23.解:(1)联立Error!消y 得x 2-a 2(1-x )2-a 2=0,即(1-a 2)x 2+2a 2x -2a 2=0,得Error!因为与双曲线交于两点A 、B ,所以Error!,可得0<a 2<2且a 2≠1,所以e 的取值范围为(,)∪(,+∞);6222(2)由(1)得Error!因为=,所以x 1=x 2,则x 2=,① PA → 512PB→5121712-2a 21-a 2 x =,②5122-2a 21-a 2由得,a 2=,①2②289169结合a >0,则a =.171324.解:(1)由e 2==1-=,得=,①a 2-b 2a 2b 2a 223ba 13由椭圆C 经过点(,),得+=1,②321294a 214b2联立①②,解得b =1,a =,3所以椭圆C 的方程是+y 2=1;x 23(2)易知直线AB 的斜率存在,设其方程为y =kx +2,将直线AB 的方程与椭圆C 的方程联立,消去y 得(1+3k 2)x 2+12kx +9=0,令Δ=144k 2-36(1+3k 2)>0,得k 2>1,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-,x 1x 2=,12k 1+3k 291+3k 2所以S △AOB =|S △POB -S △POA |=×2×|x 1-x 2|=|x 1-x 2|,12因为(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(-)2-=,12k1+3k 2361+3k 236(k 2-1)(1+3k 2)2设k 2-1=t (t >0),则(x 1-x 2)2==≤=,36t(3t +4)2369t +16t +243629t ×16t +2434当且仅当9t =,即t =时等号成立,此时k 2=,△AOB 面积取得最大值.16t 437332第三章 空间向量与立体几何一、选择题1.若A (0,-1,1),B (1,1,3),则|AB |的值是( ).A .5B .C .9D .352.化简+--,结果为( ).AB CD CB AD A .B .C .D .0AB AC AD 3.若a ,b ,c 为任意向量,m ∈R ,则下列等式不成立的是( ).A .(a +b )+c =a +(b +c ) B .(a +b )·c =a ·c +b ·cC .m (a +b )=m a +m bD .(a ·b )·=a ·(b ·c )c 4.已知+=(2,-1,0),-=(0,3,-2),则cos<,>的值为( a b a b a b ).A .B .-C .D .313233375.若P 是平面α 外一点,A 为平面 α 内一点,n 为平面α 的一个法向量,且<,n >=40º,则直线PA 与平面 α 所成的角为().PA A .40º B .50º C .40º或50ºD .不确定6.若A ,B ,C ,D 四点共面,且,则的值是( 0 + + 3+ 2+ OD x OC OB OA x ).A .4B .2C .6D .-67.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=5,∠BAD =90º,∠BAA 1=∠DAA 1=60º,则AC 1的长等于().A .85B .50C .D .58528.已知向量a =(2,-1,3),b =(-4,2,x ),c =(1,-x ,2),若(a +b )⊥,则c 等于().x A .4B .-4C .D .-6219.在正方体ABCD —A 1B 1C 1D 1中,考虑下列命题①(++)2=3()2;A A 111D A 11B A 11B A ②·(-)=0;C A 111B A A A 1③向量与向量的夹角为60º;1AD B A 1④正方体ABCD —A 1B 1C 1D 1的体积为|·1AA ·|.AB AD 错误命题的个数是( ). A .1个B .2个C .3个D .4个10.已知四边形ABCD 满足·>0,·>0,·>0,·AB BC BC CD CD DA DA >0,则该四边形为().AB A .平行四边形 B .梯形C .任意的平面四边形 D .空间四边形二、填空题11.设a =(-1,1,2),b =(2,1,-2),则a -2b = .12.已知向量a ,b ,c 两两互相垂直,且|a |=1,|b |=2,|c |=3,s =a +b +c ,则|s |= .13.若非零向量a ,b 满足|a +b |=|a -b |,则a 与b 所成角的大小 .14.若n 1,n 2分别为平面α,β 的一个法向量,且<n 1,n 2>=60º,则二面角α-l -β 的大小为 .15.设A (3,2,1),B (1,0,4),则到A ,B 两点距离相等的点P (x ,y ,z )的坐标x ,y ,z 应满足的条件是 .16.已知向量=2a ,a 与b 夹角为30º,且|a |=,则++…+n A A 1321A A 32A A 在向量的方向上的射影的模为.n n A A 1-b 三、解答题17.如图,在四棱柱ABCD —A 1B 1C 1D 1中,底面是平行四边形,O 是B 1D 1的中点.求证:B 1C //平面ODC 1.18.如图,在三棱柱ABC —A 1B 1C 1中,侧棱垂直于底面,底边CA =CB =1,∠BCA =90º,棱AA 1=2,M ,N 分别是、A A 1的中点.11B A(1)求·;BN M C 1(2)求cos<,>.1BA 1CB 19.如图,在长方体ABCD —A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离;(3)AE 等于何值时,二面角D 1—EC —D 的大小为.420.如图,在四棱锥P—ABCD中,PA⊥底面ABCD,∠DAB为直角,AB CD//,AD=CD=2AB,E,F分别为PC、CD中点.(1)试证:CD⊥平面BEF;(2)设PA=k·AB,且二面角E—BD—C的平面角大于30º,求k的取值范围.参考答案一、选择题1.D 2.A 3.D 4.B解析:两已知条件相加,得 =(1,1,-1),再得 =(1,-2,1),则a b cos<,>=-.a b ba 325.B6.D 7.C 8.B 9.B10.D 解析:由·>0得∠ABC >90º,同理,AB BC ∠BCD >90º,∠CDA >90º,∠DAB >90º,若ABCD 为平面四边形,则四个内角之和为360º,这与上述得到结论矛盾,故选D .二、填空题11.(-5,-1,6) .12..1413.90°.14.60º或120º.15.4x +4y -6z +3=0.16.3.三、解答题17.提示:∵==+=2+.C B 1D A 111C A D C 11OC D C 1∴ 直线B 1C 平行于直线OC 1与C 1D 所确定的平面ODC 1.18.(1)0.提示:可用向量计算,也可用综合法得C 1M ⊥BN ,进而得两向量数量积为0.(2) .1030提示:坐标法,以C 为原点,CA ,CB ,CC 1所在直线为x ,y ,z 轴.19.(1)提示:以D 为原点,直线DA ,DC ,DD 1分别为x ,y ,z 轴,可得·=0.1DA E D 1(2).31提示:平面ACD 1的一个法向量为n 1=(2,1,2),d ==.11n n | |1·E D 31(3)2-.3提示:平面D 1EC 的一个法向量为n 2=(2-x ,1,2)(其中AE =),利用x cosx =2-.4 320.(1)提示:坐标法,A 为原点,直线AD ,AB ,AP 分别为x ,y ,z 轴.(2)k >.15152提示:不妨设AB =1,则PA =k ,利用cos<n 1,n 2><,其中n 1,n 2分别为面23EBD ,面BDC 的一个法向量.。
本册综合素质检测(一)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.命题“∀a 、b ∈R ,如果a =b ,则a 2=ab ”的否命题是( )A .∀a 、b ∈R ,如果a 2=ab ,则a =bB .∀a 、b ∈R ,如果a 2=ab ,则a ≠bC .∀a 、b ∈R ,如果a 2≠ab ,则a ≠bD .∀a 、b ∈R ,如果a ≠b ,则a 2≠ab [答案] D[解析] 否命题既否定条件,又否定结论,故原命题的否命题是“∀a 、b ∈R ,如果a ≠b ,则a 2≠ab ”.2.下列说法中正确的是( )A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题 [答案] B[解析] 命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”,故选B.3.已知A 、B 、C 三点不共线,对于平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( )A.OM →=OA →+OB →+OC →B.OM →=2OA →-OB →-OC →C.OM →=OA →+12OB →+13OC →D.OM →=12OA →+13OB →+16OC →[答案] D[解析] 若点M 与点A 、B 、C 一定共面,则OM →=xOA →+yOB →+zOC →且x +y +z =1,故选D. 4.已知方程x 21+k +y 24-k=1表示双曲线,则k 的取值范围是( )A .-1<k <4B .k <-1或k >4C .k <-1D .k >4[答案] B[解析] 由题意,得(1+k )(4-k )<0,∴(k +1)(k -4)>0,∴k >4或k <-1.5.设l 、m 、n 均为直线,其中m 、n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A.6.设p :2x 2-3x +1≤0,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( )A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[答案] A[解析] 由2x 2-3x +1≤0,得12≤x ≤1,¬p 为x <12或x >1,由x 2-(2a +1)x +a (a +1)≤0得a ≤x ≤a +1,¬q 为x <a 或x >a +1.若¬p 是¬q 的必要不充分条件,应有⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a +1≥1,a <12,所以0≤a ≤12.故选A.7.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是( )A.12 B .55 C.13 D .22[答案] B[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55. 8.设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点P (k ,-2)与点F 的距离为4,则k 等于( )A .4B .4或-4C .-2D .-2或2[答案] B[解析] 由题设条件可设抛物线方程为x 2=-2py (p >0),又点P 在抛物线上,则k 2=4p , ∵|PF |=4∴p2+2=4,即p =4,∴k =±4.9.已知a 、b 是两异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a 、b 所成的角为( )A .30°B .60°C .90°D .45°[答案] B[解析] 由于AB →=AC →+CD →+DB →,∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B.10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) [答案] C[解析] 由抛物线方程y 2=4x 知焦点F (1,0),准线x =-1,设直线l :x =my +1,代入y 2=4x 中消去x 得,y 2-4my -4=0.由根与系数的关系得,y 1+y 2=4m ,y 1y 2=-4, 设A (x 1,y 1),B (x 2,y 2),则y 1>0>y 2, ∵|AF |=3|BF |,∴y 1=-3y 2,由⎩⎪⎨⎪⎧y 1y 2=-4y 1=-3y 2,解得y 2=-23,∴y 1=2 3.∴m =y 1+y 24=33,∴直线l 的方程为x =33y +1. 由对称性知,这样的直线有两条.11.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B .y 24-x 24=1 C.y 24-x 28=1 D .x 28-y 24=1[答案] B[解析] 由题意知,焦点在y 轴上,且2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,所以a =2,b =2.所以双曲线的标准方程为y 24-x 24=1.12.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216 B .833 C.21060D .21030[答案] D[解析] ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,建立如图所示的空间直角坐标系O -xyz . 设AB =a ,则A (22a,0,0)、B (0,22a,0)、C (-22a,0,0). 设OP =h ,则P (0,0,h ), ∵P A =2a ,∴h =142a . ∴OD →=(-24a,0,144a ).由条件可以求得平面PBC 的法向量n =(-1,1,77), ∴cos 〈OD →,n 〉=OD →·n |OD →||n |=21030.设OD 与平面PBC 所成的角为θ, 则sin θ=|cos 〈OD →,n 〉|=21030.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =34x ,则此双曲线的离心率为________.[答案] 54[解析] 由题意知b a =34,∴b 2a 2=916,∴c 2-a 2a 2=916,∴e 2=2516,∴e =54.14.已知在空间四边形OABC 中,OA →=a 、OB →=b 、OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a 、b 、c 表示MN →,则MN →等于________.[答案] -34a +12b +12c[解析] 显然MN →=ON →-OM →=12(OB →+OC →)-34OA →=12b +12c -34a .15.若双曲线x 2m -y 2m +2=1的一个焦点与抛物线y 2=8x 的焦点相同,则实数m =________.[答案] 1[解析] ∵抛物线y 2=8x 的焦点坐标为(2,0),∴双曲线x 2m -y 2m +2=1的一个焦点为(2,0),∴a 2=m ,b 2=m +2,∴c 2=2m +2=4,∴m =1.16.过二面角α-l -β内一点P 作P A ⊥α于A ,作PB ⊥β于B ,若P A =5,PB =8,AB =7,则二面角α-l -β的度数为________.[答案] 120°[解析] 设P A →=a ,PB →=b ,由条件知|a |=5,|b |=8,|AB →|=7, ∴AB 2=|AB →|2=|b -a | =|b |2+|a |2-2a ·b =64+25-2a ·b =49, ∴a ·b =20,∴cos 〈a ,b 〉=a ·b |a |·|b |=12, ∴〈a ,b 〉=60°,∴二面角α-l -β为120°.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知命题p :“方程x 2a -1+y 27-a =1表示焦点在y 轴上的椭圆”;命题q :“∃x ∈R ,使得x 2-(a -1)x +1<0”.(1)若命题p 为真命题,求实数a 的取值范围; (2)若命题p ∧q 为真命题,求实数a 的取值范围. [解析] (1)若命题p 为真命题,则有 ⎩⎪⎨⎪⎧a -1>07-a >07-a >a -1,∴1<a <4.故实数a 的取值范围是(1,4).(2)若命题p ∧q 为真命题,则p 真、q 真,由(1)知p 真,1<a <4. 若q 真,则不等式x 2-(a -1)x +1<0有解,即Δ=(a -1)2-4>0, ∴a 2-2a -3>0,∴a >3或a <-1. 又∵1<a <4,∴3<a <4. 故实数a 的取值范围是(3,4).18.(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点坐标为(2,0),短轴长为4 3.(1)求椭圆C 的标准方程及离心率;(2)设P 是椭圆C 上一点,且点P 与椭圆C 的两个焦点F 1、F 2构成一个直角三角形,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.[解析] (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1.由题意得c =2,b =23,∴a =4.故椭圆C 的标准方程为x 216+y 212=1,离心率e =c a =12.(2)当点P 为短轴的一个端点时,∠F 1PO =30°, ∴∠F 1PF 2=60°.故不论点P 在椭圆C 上的任何位置时,∠F 1PF 2≠90°. ∵|PF 1|>|PF 2|,∴∠PF 2F 1=90°. ∴|PF 2|=b 2a =124=3.又∵|PF 1|+|PF 2|=2a =8, ∴|PF 1|=5,∴|PF 1||PF 2|=53.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长|AB |=3 5.(1)求m 的值;(2)设P 是x 轴上的点,且△ABP 的面积为9,求点P 的坐标. [思路分析] (1)由弦长公式建立关于m 的方程求解; (2)设出P 点坐标,根据面积S =12|AB |·d 求解.[解析] (1)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =2x +m ,y 2=4x 得4x 2+4(m -1)x +m 2=0, 由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+22(1-m )2-4×m 24=5(1-2m ),∵|AB |=35,∴5(1-2m )=35,解得m =-4. (2)设P (a,0),P 到直线AB 的距离为d , 则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,∴2|a -2|5=2×935,∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).20.(本小题满分12分)(2015·湖南澧县一中高二期中测试)如图,四边形ABCD 是正方形,四边形BDEF 是矩形,AB =2BF ,DE ⊥平面ABCD .(1)求证:CF ∥平面ADE ; (2)求二面角C -EF -B 的余弦值. [解析] (1)∵四边形ABCD 是正方形, ∴AD ∥BC .又∵四边形BDEF 是矩形,∴BF ∥DE .又∵BC ∩BF =B ,BC ⊂平面BCF ,BF ⊂平面BCF ,AD ⊂平面ADE ,DE ⊂平面ADE , ∴平面BCF ∥平面ADE ,又∵CF ⊂平面BCF ,∴CF ∥平面ADE .(2)建立如图所示的空间直角坐标系D -xyz .设AB =a ,则BF =a2,则B (a ,-a,0)、C (a,0,0)、E (0,0,a 2)、F (a ,-a ,a2).∴CE →=(-a,0,a 2)、CF →=(0,-a ,a 2)、BE →=(-a ,a ,a 2)、BF →=(0,0,a 2).设平面CEF 的一个法向量为n 1=(x 1,y 1,z 1),平面BEF 的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎪⎨⎪⎧n 1·CE →=0n 1·CF →=0,⎩⎪⎨⎪⎧n 2·BE →=0n 2·BF →=0.即⎩⎨⎧-ax 1+a2z 1=0-ay 1+a2z 1=0,⎩⎨⎧-ax 2+ay 2+a2z 2=0a2z 2=0,解得⎩⎪⎨⎪⎧ x 1=1y 1=1z 1=2,⎩⎪⎨⎪⎧x 2=1y 2=1z 2=0.∴n 1=(1,1,2),n 2=(1,1,0). cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=223=33.∴二面角C -EF -B 的余弦值是33. 21.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1x +y =1,有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2,即离心率e 的取值范围为(62,2)∪(2,+∞) (2)设A (x 1,y 1)、B (x 2,y 2)、P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2. 消去x 2得,-2a 21-a 2=28960. 由a >0,所以a =1713.22.(本小题满分14分)(2014·天津理,17)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.[解析] 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2),由E 为棱PC 的中点, 得E (1,1,1).(1)BE →=(0,1,1)、DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .(2)BD →=(-1,2,0)、PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量,则 ⎩⎪⎨⎪⎧n ·BD →=0n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0x -2z =0,不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量,于是有 cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ),由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ),解得λ=34,即BF →=(-12,12,32).设n 1=(x 1,y 1,z 1)为平面F AB 的法向量,则 ⎩⎪⎨⎪⎧ n 1·AB →=0n 1·B F →=0,即⎩⎪⎨⎪⎧x 1=0-12x 1+12y 1+32z 1=0, 不妨令z 1=1,可得n 1=(0,-3,1)为平面F AB 的一个法向量,取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知,二面角F -AB -P 是锐角,所以其余弦值为31010.解法二:(1)证明:如图,取PD 中点M ,连接EM 、AM .由于E 、M 分别为PC 、PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD . (2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2,故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H ,因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC ,又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH ,在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP ,由于DC ∥AB ,故GF ∥AB ,所以A 、B 、F 、G 四点共面,由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG ,所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010. 所以,二面角F -AB -P 的余弦值为31010.。
数学选修2-1 综合测评时间:90分钟满分:120分一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.与向量a=(1,-3,2)平行的一个向量的坐标是()A.错误!B.(-1,-3,2)C。
错误!D.(错误!,-3,-2错误!)解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式.即b≠0,a∥b⇔a=λb,a=(1,-3,2)=-1错误!,故选C.答案:C2.若命题p:∀x∈错误!,tan x〉sin x,则命题綈p:()A.∃x0∈错误!,tan x0≥sin x0B.∃x0∈错误!,tan x0>sin x0C.∃x0∈错误!,tan x0≤sin x0D.∃x0∈错误!∪错误!,tan x0〉sin x0解析:∀x的否定为∃x0,〉的否定为≤,所以命题綈p为∃x0∈错误!,tan x0≤sin x0.答案:C3.设α,β是两个不重合的平面,l,m是两条不重合的直线,则α∥β的充分条件是()A.l⊂α,m⊂β且l∥β,m∥αB.l⊂α,m⊂β且l∥mC.l⊥α,m⊥β且l∥mD.l∥α,m∥β且l∥m解析:由l⊥α,l∥m得m⊥α,因为m⊥β,所以α∥β,故C选项正确.答案:C4.以双曲线错误!-错误!=-1的焦点为顶点,顶点为焦点的椭圆方程为()A。
错误!+错误!=1 B。
错误!+错误!=1C。
x216+错误!=1 D。
错误!+错误!=1解析:由错误!-错误!=1,得错误!-错误!=1。
∴双曲线的焦点为(0,4),(0,-4),顶点坐标为(0,2错误!),(0,-2错误!).∴椭圆方程为错误!+错误!=1。
答案:D5.已知菱形ABCD边长为1,∠DAB=60°,将这个菱形沿AC折成60°的二面角,则B,D两点间的距离为()A。
错误! B.错误! C.错误!D。
错误!解析:菱形ABCD的对角线AC与BD交于点O,则AC′⊥BD,沿AC 折叠后,有BO⊥AC′,DO⊥AC,所以∠BOD为二面角B-AC-D的平面角,即∠BOD=60°.因为OB=OD=12,所以BD=错误!.答案:B6.若双曲线错误!-错误!=1的渐近线与圆(x-3)2+y2=r2(r〉0)相切,则r=()A.错误!B.2 C.3 D.6解析:双曲线错误!-错误!=1的渐近线方程为y=±错误!x,因为双曲线的渐近线与圆(x-3)2+y2=r2(r>0)相切,故圆心(3,0)到直线y =±错误!x的距离等于圆的半径r,则r=错误!=错误!。
模块综合测试时间:90 分钟分值: 150分第Ⅰ卷 (选择题,共 60分)一、选择题 (每小题 5 分,共 60分)1.命题“对任意的 x∈R,x3-x2+1≤ 0”的否定是 ( )A .不存在 x∈R, x3-x2+ 1≤0B.存在 x∈R, x3-x2+1≤0C.对任意的 x∈R,x3- x2+1>0D.存在 x∈R, x3-x2+1>0解析:含有量词的命题的否定,一是要改变相应的量词,二是要否定结论.答案:D2.命题“若 A? B,则 A=B”与其逆命题、否命题、逆否命题这四个命题中,真命题有 ( )A.0 个B.2个C.3个D.4 个解析:逆命题与否命题正确,原命题与其逆否命题错误.答案:Bx 2y23.设椭圆的标准方程为k-x3+5-y k=1,其焦点在 x 轴上,则 k 的取值范围是 ( )A .4<k<5 B. 3<k<5C. k>3 D. 3<k<4解析:由题意知, k-3>5-k>0,解得 4<k<5. 答案:A 4.已知α,β表示两个不同的平面, m 为平面α内的一条直线,则“ α⊥β”是“ m⊥β”的 ( )A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若 m⊥β,由面面垂直的判定定理,则α⊥β,反之不成立.答案:B5.已知条件 p:|x-1|<2,条件 q:x2-5x-6<0,则 p是 q的( )A .充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分又不必要条件解析:命题 p:- 1<x<3,记 A={ x|-1<x<3} ,命题 q:- 1<x<6,记 B={x|-1<x<6} ,∵A B,∴p是 q的充分不必要条件.答案:B16.已知命题 p:“x∈ R 时,都有 x2-x+4<0”;命题q:“存在x∈R,使 sinx+ cosx= 2成立”.则下列判断正确的是 ( ) A.p∨q为假命题B.p∧q 为真命题C.綈 p∧ q 为真命题D.綈 p∨綈 q 是假命题解析:易知 p假, q真,从而可判断得 C正确.答案:Cx 2y27.以双曲线x4-y5=1 的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 ( )A.y2=12x B.y2=- 12xC.y2=6x D.y2=- 6xx 2y2解析:由4-5=1,得 a2=4,b2=5,∴c2=a2+b2=9.∴右焦点的坐标为 (3,0),故抛物线的焦点坐标为 (3,0),顶点坐标为(0,0).故p2=3.∴抛物线方程为 y2=12x.答案:A8.对于空间任意一点 O 和不共线的三点 A、B、C,有如下关系:6O→P=O→A+2O→B+3O→C,则 ( )A.四点 O、A、B、C 必共面B.四点 P、A、B、C 必共面C.四点 O、P、B、C 必共面D.五点 O、 P、A、 B、C 必共面1 1 1 1 1 1解析:由已知得 O→P=6O→A+3O→B+2O→C,而6+3+2=1,∴四点 P、A、B、C 共面.答案:B9.如图,将边长为 1的正方形 ABCD 沿对角线 BD 折成直二面角, 11 若点 P 满足B →P =12B →A -21B →C +B →D ,则|B →P|2的值为 ( )解析:由题可知 |B →A|=1,|B →C|=1,|B →D|= 2.〈B →A ,B →D 〉= 45 °, 〈 B →D ,B →C 〉= 45 °,〈B →A ,B →C 〉= 60 °.∴|B →P|2=(12B →A -12B →C +B →D)2=14B →A2+14B →C2+B →D2-12B →A ·B →C + B →A ·B →D -B →C ·B →D1 1 1 12 2 9= 4+4+2-2×1×1×2+1× 2× 2 -1× 2× 2 =4.答案:Dx2 y 210.已知 P 是双曲线 a 2-b 2=1(a>0,b>0)上的点, F 1,F 2是其焦 点,双曲线的离心率是 54,且P →F 1·P →F 2=0,若△2B3PF1F2的面积为 9,则 a+b的值为 ( )A .5 B. 6C. 7 D. 8解析: 由P →F 1·P →F 2=0,得P →F 1⊥P →F 2,设 |P →F 1|=m ,|P →F 2|=n ,不妨设 m>n ,则 m 2+n 2=4c 2,m-n = 2a , 12mn =9,c a =54,解得 a =4,c =5,故 b = 3.因此 a + b = 7,选 C. 答案:C11.在正方体 ABCD -A 1B 1C 1D 1中,直线 BC 1 与平面 A 1BD 所成 角的余弦值为 ( )B.32D.23解析:建立如下图所示的空间直角坐标系. 设正方体的棱长为 1,则 D(0,0,0), A 1(1,0,1),B(1,1,0),C 1(0,1,1). ∴DA 1=(1,0,1),DB =(1,1,0),BC 1=(-1,0,1). 设平面 A 1BD 的法向量为 n =(x , y ,z),则 n ·D →A 1=0,n ·D →B =0.A.C.答案:C12.双曲线 a x2- b y2=1(a>0, b>0)的两个焦点为 F 1、F 2,若 P 为其上一点,且 |PF 1|=2|PF 2|,则双曲线离心率的取值范围为 ( )解析: 由题意知在双曲线上存在一点 P ,使得 |PF 1|= 2|PF 2|,如右 图所示.又∵|PF 1|-|PF 2|=2a ,∴|PF 2|=2a ,即在双曲线右支上恒存在点 P 使得|PF 2|=2a ,即|AF 2|≤2a.x +z =0, x +y令 x =1,则 n =(1,- 1,-1),∴cos 〈n ,BC 1〉 n ·B →C 1 = -2=- 6|n||B →C 1| 3· 23∴直线BC 1与平面 A 1BD 所成角的正弦值为 6. 3. ∴直线BC 1与平面 A 1BD 所成角的余弦值为3.3.A .(1,3) C . (3,+B .(1,)∴|OF 2|- |OA|= c-a≤ 2a.∴c≤ 3a. 又∵c>a,∴a<c≤3a.c∴1< ≤3,即 1<e≤3.a答案:B第Ⅱ卷(非选择题,共 90 分)二、填空题(每小题 5 分,共 20分)13.命题 p:? m∈ R,方程 x2+mx+ 1=0 有实数根,则“非 p” 形式的命题是___________ ,此命题是命题(填“真”或“假” ).解析:命题 p 为特称命题,所以綈 p 是全称命题,∴ 綈 p 是? m ∈R,方程 x2+mx+1=0没有实数根.∵m≥2或m≤-2时,Δ≥0,即该方程有实数根,所以 p真,綈 p假.答案: ? m∈R,方程 x2+mx+1=0没有实数根假14.双曲线x a2-b y2=1 的离心率 e∈(1,2),则其中一条渐近线的斜率取值范围是.a2+b2b解析: e=a∈(1,2),解得 0<a b< 3,又双曲线的渐近线方 aa程为 y=±a b x,故其中一条渐近线的斜率取值范围是(0,3)或(- 3, 0)).答案:(0, 3)或(- 3,0)15.如图,在四棱锥 O —ABCD 中,底面 ABCD 是边长为 2 的正 方形, OA ⊥平面 ABCD ,OA =2,M 为 OA 的中点.则异面直线 OB 与 MD 所成角余弦值为解析:以 A 为原点建立空间直角坐标系,如图则O →B =(2,0,-2),M →D =(0,2,-1).设O →B ,M →D 所成的角为 θ,O →B ·M →D = 2 = 10. |O →B||M →D |2 2·5 10 16.若直线 y = kx -2 与抛物线 y 2=8x 交于 A ,B 两点,若线段AB 的中点的横坐标是 2,则|AB|= __ .y 2=8x , 4k +8解析: k 2x 2-(4k +8)x +4=0,x 1+x 2= k 2 =4,y = kx -2, k则 cos θ= 答案:10 10得 k =-1或 2,当 k =-1 时,x 2-4x +4=0 有两个相等的实数根,不合题意.当 k =2 时,|AB|= 1+k 2|x 1-x 2|= 5 x 1+x 2 2- 4x 1x 2= 5 16- 4=2 15.答案: 2 15三、解答题 (写出必要的计算步骤,只写最后结果不得分,共 70 分)轴上的椭圆; q :实数 t 满足不等式 t 2-(a - 1)t -a<0.(1)若 p 为真,求实数 t 的取值范围;(2)若 p 是 q 的充分不必要条件,求实数 a 的取值范围.x 2 y 2解:(1)∵方程 x + y =1 所表示的曲线为焦点在 x 轴上的椭圆,3- t t +1∴3-t>t +1>0.解得- 1<t<1.(2)∵p 是 q 的充分不必要条件,∴ { t|-1<t<1}是不等式 t 2-(a -1)t -a<0解集的真子集.解方程 t 2-(a -1)t -a =0得 t =-1或 t =a.①当 a>-1时,不等式的解集为 {t|-1<t<a},此时,a>1.②当 a =- 1时, 不等式的解集为 ?,不满足题意.③当 a<-1 时,不等式的解集为 {t|a<t< 17.(10 分)已知 p :方程 223-t +t+1 1 所表示的曲线为焦点在-1} ,不满足题意.综上, a>1.18.(12 分)ABC— A1B1C1 中, CA= CB,AB= AA1,∠ BAA1= 60°.(1)证明: AB⊥A1C;(2)若平面 ABC⊥平面 AA1B1B,AB= CB,求直线 A1C 与平面 BB1C1C 所成角的正弦值.解:(1)取 AB 的中点 O,连接 OC,OA1,A1B.因为 CA= CB,所以 OC⊥ AB.由于 AB=AA1,∠BAA1=60°,故△AA1B 为等边三角形,所以 OA1 ⊥AB.因为 OC∩OA1=O,所以 AB⊥平面 OA1C.又 A1C? 平面 OA1C,故 AB⊥ A1C.(2)由(1)知 OC⊥ AB,OA1⊥AB.又平面 ABC⊥平面 AA1B1B,交线为 AB,所以 OC⊥平面AA1B1B,故 OA ,OA 1,OC 两两相互垂直.以 O 为坐标原点, O →A 的方向为 x 轴的正方向, |O →A|为单位长,建 立如图所示的空间直角坐标系 O - xyz.由题设知 A (1,0,0),A 1(0, 3, 0), C (0,0,3),B (-1,0,0).则B →C =(1,0, 3),B →B 1= A →A 1=(-1, 3,0),A →1C =(0,- 3, 3).设 n =(x ,y ,z )是平面 BB 1C 1C 的法向量,n ·B →C =0x + 3z = 0 则 → ,即n ·B →B 1=0 -x + 3y = 0可取 n =( 3,1,- 1).所以 A 1C 与平面 BB 1C 1C 所成角的正弦值为 19.(12 分)已知定点 F (0,1)和定直线 l 1:y =- 1,过定点 F 与直 线 l 1 相切的动圆圆心为点 C.(1)求动点 C 的轨迹方程;(2)过点 F 的直线 l 2交轨迹于两点 P ,Q ,交直线 l 1于点 R ,求R →P ·R →Q 的最小值.解:(1)由题意,点 C 到点 F 的距离等于它到 l 1的距故 cos n , A →1C n ·A →1C =- 10 |n||A →1C| 5 105离,∴点C 的 轨迹是以 F 为焦点, l 1 为准线的抛物线.∴所求轨迹的方程为 x 2=4y.(2)由题意,直线 PQ 的斜率存在,且不为 0,设直线 l 2 的方程为 y =kx +1(k ≠ 0),与抛物线方程联立消去 y ,得 x 2- 4kx -4=0.记 P (x 1, 2y 1),Q (x 2,y 2),则 x 1+ x 2=4k ,x 1x 2=- 4.易得点 R 的坐标为 -k ,-1 , → → 2 2 2 2∴R →P ·R →Q = x 1+ k , y 1+ 1 ·x 2+k ,y 2+1 = x 1+ k x 2+k + (kx 1+2)(kx 2 + 2)= (1 + k 2)x 1x 2 + k 2+2k (x 1 + x 2) + k 42 + 4 = - 4(1 + k 2) + 2 4 1 14k k +2k +k 2+4= 4 k 2+k 2 +8,∵k 2+k 2≥ 2,当且仅当 k 2=1 时取到 等号,∴R →P ·R →Q ≥4×2+8=16,即 R →P ·R →Q 的最小值为 16.x 2y220.(12 分)设 F 1,F 2 分别是椭圆: a 2+b 2= 1(a>b>0)的左、右焦 点,过 F 1倾斜角为 45°的直线 l 与该椭圆相交于 P ,Q 两点,且 |PQ| 4=3a.(1)求该椭圆的离心率.(2)设点 M (0,- 1)满足|MP|=|MQ|,求该椭圆的方程. 解:(1)直线 PQ 斜率为 1,设直线 l 的方程为 y= x+c,其中 c= a2-b2.y=x+c,设 P(x1,y1),Q(x2,y2),则 P,Q 两点坐标满足方程组 x2 y2+b2=1,a2化简得(a2+ b2)x2+2a2cx+a2(c2- b2)=0,- 2a2c a2c2-b2则 x1+ x2= 2 2, x1x2= 2 2.a2+b2a2+ b2所以 |PQ|= 2|x2-x1|= 2[ x1+ x2 2-4x1x2] =34a.4 4ab2得34a=a42+ab b2,故a2=2b2,(2)设 PQ 的中点为 N(x0,y0),2x1+ x2 -a2c 2 c y0=x0+c=3由|MP|= |MQ|得 k MN=- 1.y0+1即0x+01=-1,得 c=3,从而 a=3 2,b= 3.x 2y2 故椭圆的方程为1x8+y9=1.21.(12 分)所以椭圆的离如图所示,在四棱锥 P-ABCD 中, PA⊥平面 ABCD,AC⊥AD, AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(1)求证: PC⊥AD;(2)求二面角 A- PC-D 的正弦值;(3)设E为棱 PA上的点,满足异面直线 BE与 CD所成的角为 30°,求 AE 的长.解:如右图所示,以点 A 为原点建立空间直角坐标系,依题意得11A(0,0,0), D(2,0,0),C(0,1,0),B -2,2,0 ,P(0,0,2).(1)证明: P→C=(0,1,-2),A→D=(2,0,0),所以P→C·A→D=0,所以PC ⊥AD.(2)解:P →C =(0,1,-2),C →D =(2,-1,0). 设平面 PCD 的法向量为 n = (x , y , z ),故平面 PCD 的一个法向量为 n =(1,2,1).可取平面 PAC 的法向量为 m =(1,0,0).所以二面角 A —PC — D 的正弦值为 630.(3)解:设点 E 的坐标为 (0,0,h ),其中 h ∈[0,2] ,→1 1→ 由此得B →E = 2,-2,h ,又C →D =(2,-1,0),以 = cos30 =°2 ,解得 h = 10 h =- 1100舍去 ,即AE =10+20h2 2 10 1010.10 .22.(12分)(2014 大·纲全国卷 )已知抛物线 C :y 2=2px (p>0)的焦点5n ·PC =0, n ·C →D =0, y -2z =0, 即 2x -y =0.不妨令 z = 1,则 x =1, y = 2, 于是 cos m , n m ·n 1 6|m| ·|n|= 6=,从而 sinm ,n 30=6,故 cos 〈 B →E ,C →D 〉 =B →E ·C →D |B →E| ·|12+h 2× 5 10+ 20h 2为 F,直线 y=4 与 y 轴的交点为 P,与 C 的交点为 Q,且|QF|=4|PQ|.(1)求 C 的方程;(2)过 F 的直线 l 与 C 相交于 A,B 两点,若 AB 的垂直平分线 l′ 与 C相交于 M,N两点,且 A,M,B,N四点在同一圆上,求 l 的方程.8解:(1)设 Q(x0,4),代入 y2= 2px 得 x0=p.8 p p 8 所以|PQ|=p,|QF|=2+x0=2+p.p 8 5 8由题设得2p+8p=45×p8,解得 p=- 2(舍去)或 p=2.所以 C 的方程为 y2=4x.(2)依题意知 l 与坐标轴不垂直,故可设 l 的方程为 x = my+ 1(m≠0).代入 y2=4x 得 y2- 4my- 4= 0.设 A(x1,y1),B(x2,y2),则 y1+y2=4m,y1y2=-4.故 AB 的中点为 D(2m2+1,2m),|AB|= m2+1|y1- y2|=4(m2+ 1).1又 l′的斜率为- m,所以 l′的方程为 x=-m y+2m2+3.4将上式代入 y2= 4x,并整理得 y2+m y-4(2m2+3)=0.4设 M(x3,y3),N(x4,y4),则 y3+y4=-m,y3y4=- 4(2m2+3). 22故 MN 的中点为 E m2+2m2+3,-m,1 4 m 2+1 2m2+ 1|MN|= 1+m2|y3-y4|=m2 .由于 MN 垂直平分 AB,故 A,M,B,N 四点在同一圆上等价于 |AE|1 1 1=|BE|=2|MN|,从而4|AB|2+|DE|2=4|MN|2,22即 4(m2+1)2+ 2m+m2+m2+ 2 24 m2+1 2 2m2+ 1=m4,化简得 m2-1=0,解得 m=1 或 m=- 1.所求直线 l 的方程为 x-y-1=0 或 x+y-1=0.。
1高二理科数学选修2-1综合测试题(一)一、选择题1.命题“∃x 0∈R,2x 0-3>1”的否定是( )A .∃x 0∈R,2x 0-3≤1B .∀x ∈R,2x -3>1C .∀x ∈R,2x -3≤1D .∃x 0∈R,2x 0-3>1 2.命题p :若0a b ⋅> ,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .﹁p 为假命题D .﹁q 为假命题3.抛物线y =ax 2的准线方程是y =2,则a 的值为( )A .18B .-18 C .8 D .-84.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真5.已知空间向量a =(1,n,2),b =(-2,1,2),若2a -b 与b 垂直,则a 等于( )A .5 32B .212C .372D .3 526.下列结论中,正确的为( ) ①“p 且q ”为真是“p 或q ”为真的充分不必要条件;②“p 且q ”为假是“p 或q ”为真的充分不必要条件;③“p 或q ”为真是“¬p ”为假的必要不充分条件;④“¬p ”为真是“p 且q ”为假的必要不充分条件. A .①② B .①③ C .②④ D .③④ 7.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A .316B .38C .163D .838.若直线y =2x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共点,则双曲线的离心率的取值范围为( )A .(1,5)B .(5,+∞)C .(1, 5 ]D .[5,+∞) 9.已知F 1(-3,0),F 2(3,0)是椭圆x 2m +y 2n =1的两个焦点,点P 在椭圆上,∠F 1PF 2=α.当α=2π3时,△F 1PF 2面积最大,则m +n 的值是( )A .41B .15C .9D .1 10.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为( )A .55 B .33 C .255 D .6311.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A .54 B .52 C .322D .5412.已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A .14B .13C .24D .23二、填空题13.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足4OP OA ⋅=,则动点P 的轨迹方程是________.14.命题“∃x 0∈R,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是_____.15.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.16.正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,则EF 与平面CDD 1C 1所成角的正弦值为________.三、解答题(解答时写出必要的文字说明、证明过程或演算步骤) 17.已知命题p :方程x 22+y 2m=1表示焦点在y 轴上的椭圆;命题q :∀x ∈R,4x 2-4mx +4m -3≥0.若(¬p )∧q 为真,求m 的取值范围.18.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,AC =AA 1= 3,∠ABC =60°.(1)证明:AB ⊥A 1C ;(2)求二面角A -A 1C -B 的正切值大小.19.在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,AC =BC =BD =2AE ,M 是AB 的中点,建立适当的空间直角坐标系,解决下列问题:(1)求证:CM ⊥EM ;(2)求CM 与平面CDE 所成角的大小.320. 如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.21.如图,已知点E (m ,0)为抛物线y 2=4x 内的一个定点,过E 作斜率分别为k 1,k 2的两条直线分别交抛物线于点A ,B ,C ,D ,且M ,N 分别是线段AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值; (2)若k 1+k 2=1,求证:直线MN 过定点.22.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),A (2,0)是长轴的一个端点,弦BC 过椭圆的中心O ,且AC ·BC =0,|OC -OB |=2|BC -BA |. (1)求椭圆的标准方程;(2)设P ,Q 为椭圆上异于A ,B 且不重合的两点,若∠PCQ 的平分线总是垂直于x 轴,则是否存在实数λ,使得PQ =λAB ?若存在,求出λ的最大值;若不存在,请说明理由.4高二理科数学选修2-1综合测试题(二) 一、选择题:1、命题“若3=x ,则01892=+-x x ”的逆命题、否命题和逆否命题中,假命题的个数为( )A 、0B 、1C 、2D 、3 2、过点(0,2)与抛物线x y 82=只有一个公共点的直线有( ) A 、1条 B 、2条 C 、3条 D 、无数条 3、“0≠k ”是“方程b kx y +=表示直线”的( )A 、必要不充分条件B 、充分不必要条件C 、充要条件D 、既不充分也不必要条件4、如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A 、()+∞,0B 、()2,0C 、()+∞,1D 、()1,0 5、已知P 在抛物线x y 42=上,那么点P 到点Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A 、)1,41(- B 、)1,41( C 、)2,1( D 、)2,1(-6、在平面直角坐标系xOy 中,双曲线的中心在坐标原点,焦点在y 轴上,一条渐近线的方程为02=-y x ,则它的离心率为( )A 、5B 、25C 、3D 、2 7、下列结论中,正确的结论为( )①“q p ∧”为真是“q p ∨”为真的充分不必要条件; ②“q p ∧”为假是“q p ∨”为真的充分不必要条件; ③“q p ∨”为真是“p ⌝”为假的必要不充分条件; ④“p ⌝”为真是“q p ∧”为假的必要不充分条件. A 、①② B 、③④ C 、①③ D 、②④ 8、设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26 ,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为( )A 、1342222=-y xB 、1542222=-y xC 、14132222=-y xD 、112132222=-y x9、已知空间四边形ABCD 的每条边和对角线的长都为1,点E 、F 分别是AB 、AD 的中点,则DC EF ∙等于( )A 、41 B 、43 C 、 43- D 、41-10、⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为( )A 、41B 、4C 、5D 、52 11、设P 是双曲线x 2a 2-y2b 2 =1(a >0 ,b >0)上的点,F 1、F 2是焦点,双曲线的离心率是54 ,且∠F 1PF 2=90°,△F 1PF 2面积是9,则a + b =( )A 、4B 、5C 、6D 、75BA 。
人教版选修2-1综合测试卷及答案已知命题p:“对于任意正整数n,都存在一个正整数m,使得m>n”,命题q:“存在一个正整数k,使得对于任意正整数m,都有m<k”,则下列说法正确的是(。
)。
A。
命题p是真命题,命题q是假命题B。
命题p是假命题,命题q是真命题C。
命题p和命题q都是真命题D。
命题p和命题q都是假命题答案:A解析:命题p中的“存在”可以换成“对于任意”,即“对于任意正整数n,都有一个正整数m,使得m>n”。
这是显然成立的,因为可以取m=n+1.所以命题p是真命题。
命题q中的“存在”不能换成“对于任意”,因为这样的话就是命题p了。
所以命题q是“存在一个k,使得对于任意m,都有m<k”的形式,即“存在一个正整数k,使得k是正整数中的最小值”。
这是显然不成立的,因为正整数中是没有最小值的。
所以命题q是假命题。
因此选A。
1、双曲线的离心率为$\sqrt{3}$。
2、抛物线方程为$y=ax^2$。
3、直线AE与平面AED所成角的大小为45°。
4、y轴与平面$\alpha$所成的角的大小为$\frac{\pi}{4}$。
5、k的值为$\frac{2}{\sqrt{5}}$。
6、2a-b的最大值为$5$。
7、椭圆的离心率为$\frac{1}{\sqrt{2}}$。
8、正确命题的序号为①、②、③、④。
9、解:由题意得$$\begin{cases}2x-1\frac{1}{2a}-1.\end{cases}$$ 因为$p\lor q$为真命题,所以$p$和$q$至少有一个为真命题。
若$p$为真命题,则$\frac{1}{2a}-10$。
综上可得,$a\in(0,\frac{1}{4})$。
10、解:由题意得$$\begin{cases}b=k\lambda a,\\ka\cdot b+kb\cdot a=18,\\(ka+b)\cdot(ka-b)=0.\end{cases}$$ 将第一条式子代入第二条式子,得$k\lambda a^2+kb^2=18$,即$k\lambda+k\frac{b^2}{a^2}=18$。
选修2-1综合测试一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.已知p :2x -3<1,q :x 2-3x <0,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线y =14x 2的焦点坐标为( ) A .(116,0) B .(-116,0) C .(0,1) D .(0,-1)3.已知命题p :3是奇数,q :3不是质数.由它们构成的“p ∨q ”“p ∧q ”“非p ”形式的命题中真命题有( )A .0个B .1个C .2个D .3个4.双曲线x 24+y 2k=1的离心率e ∈(1,2),则k 的取值范围是( ) A .(-∞,0) B .(-3,0) C .(-12,0) D .(-60,-12)5.下列结论正确的个数是( )①命题“所有的四边形都是平行四边形”是特称命题;②命题“∀x ∈R ,x 2+1>0”是全称命题;③若p :∃x ∈R ,x 2+2x +1≤0,则非p :∀x ∈R ,x 2+2x +1≤0.A .0B .1C .2D .36.设α,β,γ是互不重合的平面,m ,n 是互不重合的直线,给出下列命题:①若m ⊥α,m ⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若m ⊥α,m ∥β,则α⊥β;④若m ∥α,n ⊥α,则m ⊥n .其中真命题的个数是( )A .1B .2C .3D .47.已知a =(m +1,0,2m ),b =(6,2n -1,2),若a ∥b ,则m 与n 的值分别为( ) A.15,12 B .5,2 C .-15,-12D .-5,-2 8.若双曲线x 23-16y 2p 2=1的左焦点在抛物线y 2=2px 的准线上,则p 的值为( ) A .2 B .3 C .4 D .4 29.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1、F 2,点P 在双曲线上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.32C.53D .210.如图所示,在直三棱柱ABC -A 1B 1C 1中,AB =BC =AA 1,∠ABC =90°,点EF 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45°B .60°C .90°D .120°11.给出下列曲线,其中与直线y =-2x -3有交点的所有曲线是( )①4x +2y -1=0;②x 2+y 2=3;③x 22+y 2=1;④x 22-y 2=1. A .①③ B .②④ C .①②③ D .②③④12.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,设线段P 1P 2的中点为P .若直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1·k 2等于( )A .-12 B.12C .-2D .2 二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.命题“存在一个三角形没有外接圆”的否定是________.14.已知命题p :1≤x ≤2,q :a ≤x ≤a +2,且綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.15.已知直线l 1的一个方向向量为(-7,4,3),直线l 2的一个方向向量为(x ,y,6),且l 1∥l 2,则x =________,y =________.16.如图在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则AC 1与平面ABCD 所成角的余弦值为________.三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :f (x )=-(5-2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.18.(12分)求证:a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.(12分)抛物线y =-x 22与过点M (0,-1)的直线l 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线l 的方程.20.(12分)已知椭圆C 的中心为平面直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.21.(12分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点,点E 在A 1C 1上,且DE ⊥AE .(1)证明:平面ADE⊥平面ACC1A1;(2)求直线AD和平面ABC1所成角的正弦值.22.(12分)如图所示,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1—BD—C1的余弦值.1.解析 p :x <2,q :0<x <3.∴pD ⇒/q ,qD ⇒/p .∴p 是q 的既不充分也不必要条件.答案 D2.解析 由y =14x 2,得x 2=4y ,∴焦点坐标为(0,1).答案 C2.解析 命题p 为真,q 为假,∴“p ∨q ”为真,“p ∧q ”、“綈p ”为假,故应选B.答案 B4.解析 由x 24+y 2k =1表示双曲线知,k <0,且a 2=4,b 2=-k ,∴e 2=c 2a 2=4-k 4,∵1<e <2,∴1<4-k 4<4.∴4<4-k <16,∴-12<k <0.答案 C5.解析 ①是全称命题,②是全称命题,③綈p :∀x ∈R ,x 2+2x +1>0.∴①不正确,②正确,③不正确.答案 B6.解析 ①正确,②不正确,③正确,④正确.答案 C7.解析 ∵a ∥b ,∴a =λb ,∴⎩⎪⎨⎪⎧ m +1=6λ,0=λ(2n -1),2m =2λ,解得⎩⎪⎨⎪⎧ m =15,n =12,λ=15.∴m =15,n =12.答案 A 8.解析 设双曲线的焦距为2c ,由双曲线方程知c 2=3+p 216,则其左焦点为(-3+p 216,0).由抛物线方程y 2=2px 知其准线方程为x =-p 2,由双曲线的左焦点在抛物线的准线上知,3+p 216=p 24,且p >0,解得p =4.答案 C9.解析 由双曲线的定义知,|PF 1|-|PF 2|=2a ,又|PF 1|=4|PF 2|,∴|PF 1|=8a 3,|PF 2|=2a 3.又|PF 2|≥c -a ,即2a 3≥c -a .∴c a ≤53.即e ≤53.答案 C10.解析 建立空间直角坐标如图所示.设AB =2,则EF →=(0,-1,1).BC 1→=(2,0,2),∴cos 〈EF →·BC 1→〉=EF →·BC 1→|EF →||BC 1→|=28·2=12, 故EF 与BC 1所成的角为60°.答案 B11.解析 直线y =-2x -3与4x +2y -1=0平行,所以与①不相交.②中圆心(0,0)到直线2x +y +3=0的距离d =35< 3.所以与②相交.把y =-2x -3代入x 22+y 2=1,得x 22+4x 2+12x +9=1,即9x 2+24x +16=0,Δ=242-4×9×16=0,所以与③有交点.观察选项知,应选D.答案 D12.解析 设直线l 的方程为y =k 1(x +2),代入x 2+2y 2=2,得(1+2k 21)x 2+8k 21x +8k 21-2=0,设P 1(x 1,y 1),P 2(x 2,y 2),则x 1+x 2=-8k 211+2k 21, 而y 1+y 2=k 1(x 1+x 2+4)=4k 11+2k 21. ∴k 2=y 1+y 22x 1+x 22=-12k 1,∴k 1·k 2=-12. 答案 A13.解析 命题“存在一个三角形没有外接圆”是特称命题,它的否定是全称命题“任意一个三角形都有外接圆.”答案 任意一个三角形都有外接圆14.解析 “p 是q 的必要不充分条件”的逆否命题是“q 是p 的必要不充分条件”.∴{x |1≤x ≤2}{x |a ≤x ≤a +2},∴0≤a ≤1. 答案 0≤a ≤115.答案 -14 816.解析 由题意知,AC 1=22+22+1=3,AC =22+22=22,在Rt △AC 1C 中,cos ∠C 1AC =AC AC 1=223.答案 22317.解 由|x -1|>m -1的解集为R ,知m -1<0,∴m <1.即p :m <1.又f (x )=-(5-2m )x 是减函数,∴5-2m >1,即m <2,即q :m <2.若p 真q 假,则⎩⎨⎧ m <1,m ≥2,m 不存在. 若p 假q 真,则⎩⎨⎧ m ≥1,m <2,∴1≤m <2.综上知,实数m 的取值范围是[1,2).18.证明 充分性:当b =0时,如果a +2b =0,那么a =0,此时直线ax +2y +3=0平行于x 轴,直线x +by +2=0平行于y 轴,它们互相垂直;当b ≠0时,直线ax +2y +3=0的斜率k 1=-a 2,直线x+by +2=0的斜率k 2=-1b ,如果a +2b =0,那么k 1k 2=(-a 2)×(-1b )=-1.故两直线互相垂直.必要性:如果两条直线互相垂直且斜率都存在,那么k 1k 2=(-a 2)×(-1b )=-1,所以a +2b =0,若两条直线中有直线的斜率不存在,且互相垂直,则b =0,且a =0,所以a +2b =0.综上可知,a +2b =0是直线ax +2y +3=0和直线x +by +2=0互相垂直的充要条件.19.解 显然直线l 垂直于x 轴不合题意,故设所求的直线方程为y =kx -1,代入抛物线方程化简,得x 2+2kx -2=0.由根的判别式Δ=4k 2+8=4(k 2+2)>0,于是有k ∈R .设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),则y 1x 1+y 2x 2=1.① 因为y 1=kx 1-1,y 2=kx 2-1,代入① ,得2k -(1x 1+1x 2)=1.② 又因为x 1+x 2=-2k ,x 1x 2=-2,代入②得k =1.所以直线l 的方程为y =x -1.20.解 (1)设椭圆长半轴长及半焦距分别为a ,c 由已知得⎩⎨⎧ a -c =1,a +c =7,解得⎩⎨⎧ a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4].由已知得x 2+y 21x 2+y 2=e 2.而e =34,故16(x 2+y 21)=9(x 2+y 2).① 由点P 在椭圆C 上得y 21=112-7x 216,代入①式并化简得9y 2=112,所以点M 的轨迹方程为y =±473(-4≤x ≤4),它是两条平行于x轴的线段.21.解 (1)证明:由正三棱柱ABC -A 1B 1C 1的性质知AA 1⊥平面A 1B 1C 1.又DE ⊂平面A 1B 1C 1,所以DE ⊥AA 1.而DE ⊥AE ,AA 1∩AE =A ,所以DE ⊥平面ACC 1A 1.又DE ⊂平面ADE ,故平面ADE ⊥平面ACC 1A 1.(2)如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D (32,-12,2).易知AB →=(3,1,0),AC 1→=(0,2,2),AD →=(32,12,2).设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎨⎧n ·AB →=3x +y =0,n ·AC 1→=2y +2z =0.解得x =-33y ,z =-2y .故可取n =(1,-3,6).所以cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2310×3=105.由此可知,直线AD和平面ABC1所成角的正弦值为10 5.22.解(1)证明:在图中连接B,E,则四边形DABE为正方形,∴BE=AD=A1D1,且BE∥AD∥A1D1.∴四边形A1D1EB为平行四边形.∴D 1E ∥A 1B .又D 1E ⊄平面A 1BD ,A 1B ⊂平面A 1BD ,∴D 1E ∥平面A 1BD .(2)以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,不妨设DA =1,则D (0,0,0),A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2).∴DA 1→=(1,0,2),DB →=(1,1,0).设n =(x ,y ,z )为平面A 1BD 的一个法向量,由n ⊥DA 1→,n ⊥DB →,得⎩⎨⎧x +2z =0,x +y =0,取z =1,则n =(-2,2,1).又DC 1=(0,2,2),DB →=(1,1,0),设m =(x 1,y 1,z 1)为平面C 1BD 的一个法向量,由m ⊥DC 1→,m ⊥DB →, 得⎩⎨⎧ 2y 1+2z 1=0,x 1+y 1=0,取z 1=1,则m =(1,-1,1).设m 与n 的夹角为α,二面角A 1-BD -C 1为θ,显然θ为锐角,∴cos α=m ·n |m ||n |=-39×3=-33.∴cosθ=3 3,即所求二面角A1-BD-C1的余弦值为3 3.。
高中数学选修2-1 学期综合测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.若抛物线的准线方程为x=1,焦点坐标为(-1,0),则抛物线的方程是() A.y2=2x B.y2=-2xC.y2=4x D.y2=-4x答案D解析∵抛物线的准线方程为x=1,焦点坐标为(-1,0),∴抛物线的开口方向向左且顶点在原点,其中p=2,∴抛物线的标准方程为y2=-4x.2.有下列四个命题:①“若x2+y2=0,则xy=0”的否命题;②“若x>y,则x2>y2”的逆否命题;③若“x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.3答案A解析对于①,否命题是“若x2+y2≠0,则xy≠0”,例如,x=-3,y=0时,x2+y2≠0,但xy=0,是假命题;对于②,逆否命题是“若x2≤y2,则x≤y”,例如x=0,y=-1时,x2≤y2,但x>y,是假命题;对于③,否命题为“若x>3,则x2-x-6≤0”,例如x=4时,x2-x-6>0,是假命题;对于④,“对顶角相等”的逆命题为“相等的角是对顶角”,是假命题.所以真命题的个数为0.故选A.3.命题“∃x0∈R,2x0-3>1”的否定是()A .∃x 0∈R,2x 0-3≤1B .∀x ∈R,2x -3>1C .∀x ∈R,2x -3≤1D .∃x 0∈R,2x 0-3>1答案 C解析 由特称命题的否定的定义即知.4.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,它的一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为( )A.316B.38C.163D.83 答案 A解析 抛物线y 2=4x 的焦点坐标为(1,0),故在双曲线x 2m -y 2n =1中,m >0,n >0且m +n =c 2=1.① 又双曲线的离心率e =cm =m +nm =2,②联立方程①②,解得⎩⎪⎨⎪⎧m =14,n =34.故mn =316.5.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真答案 C解析 函数y =sin2x 的最小正周期为2π2=π,所以命题p 为假;函数y =cos x 的图象的对称轴为x =k π,k ∈Z ,所以命题q 为假,所以綈q 为真,p ∧q 为假,p ∨q 为假.6.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 应满足的条件是( )A .k >3B .2<k <3C .k =2D .0<k <2答案 C解析 由题意可知k >0且9-k 2=k +3,所以k =2.7.k =±52是直线y =kx -1与曲线x 2-y 2=4仅有一个公共点的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件答案 A解析 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=4,得(1-k 2)x 2+2kx -5=0.当k 2=1,即k =±1时,有唯一解.当k 2≠1且Δ=0时,也有唯一解,此时k =±52 所以k =±52是直线y =kx -1与曲线x 2-y 2=4, 仅有一个公共点的充分不必要条件.8.已知F 1(-3,0),F 2(3,0)是椭圆x 2m +y 2n =1的两个焦点,点P 在椭圆上,∠F 1PF 2=α.当α=2π3时,△F 1PF 2面积最大,则m +n 的值是( )A .41B .15C .9D .1 答案 B解析 由S △F 1PF 2=12|F 1F 2|·y P =3y P ,知P 为短轴端点时,△F 1PF 2面积最大.此时∠F 1PF 2=2π3,得a =m =2 3 ,b =n =3,故m +n =15.9.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足BP →=12BA →-12BC →+BD →,则|BP →|2的值为( )A.32 B .2 C.10-24 D.94 答案 D解析 由题可知|BA →|=1,|BC →|=1,|BD →|= 2. 〈BA →,BD →〉=45°,〈BD →,BC →〉=45°,〈BA →,BC →〉=60°. ∴|BP →|2=⎝ ⎛⎭⎪⎫12BA →-12BC →+BD →2=14BA →2+14BC →2+BD →2-12BA →·BC →+BA →·BD →-BC →·BD →=14+14+2-12×1×1×12+1×2×22-1×2×22=94.10.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2|AC |=|AA 1|=|BC |=2.若二面角B 1-DC -C 1的大小为60°,则|AD |的长为( )A. 2B.3 C .2 D.22 答案 A解析 如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Cxyz ,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则D 点的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设m =(x ,y ,z )为平面B 1CD 的法向量. 则⎩⎨⎧m ·CB 1→=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得 m =(a,1,-1),又平面C 1DC 的一个法向量为n =(0,1,0),则由cos60°=|m·n ||m ||n |,得1a 2+2=12,即a =2,故AD =2,故选A. 11.过点P (-4,0)的直线l 与曲线C :x 2+2y 2=4交于A ,B 两点,则AB 中点Q 的轨迹方程为( )A .(x +2)2+2y 2=4B .(x +2)2+2y 2=4(-1<x ≤0)C .x 2+2(y +2)2=4D .x 2+2(y +2)2=4(-1<x ≤0) 答案 B解析 设A (x 1,y 1),B (x 2,y 2),Q (x ,y ), 则x 1+x 2=2x ,y 1+y 2=2y ,⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4⇒x 22-x 21=-2(y 22-y 21) ⇒y 2-y 1x 2-x 1=-12⎝ ⎛⎭⎪⎪⎫x 2+x 1y 2+y 1⇒k AB=-x 2y ⇒k PQ =y x +4=-x2y ⇒(x +2)2+2y 2=4,AB 中点Q 的轨迹方程为(x +2)2+2y 2=4(-1<x ≤0).12.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,若四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x24-y24=1 D.x24-y212=1答案D解析根据圆和双曲线的对称性,可知四边形ABCD为矩形.双曲线的渐近线方程为y=±b2x,圆的方程为x2+y2=4,不妨设交点A在第一象限,由y=b2x,x2+y2=4得x A=44+b2,y A=2b4+b2,故四边形ABCD的面积为4x A y A=32b4+b2=2b,解得b2=12,故所求的双曲线方程为x24-y212=1,选D.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知p(x):x2+2x-m>0,如果p(1)是假命题,p(2)是真命题,那么实数m的取值范围是________.答案[3,8)解析因为p(1)是假命题,所以1+2-m≤0,即m≥3.又因为p(2)是真命题,所以4+4-m>0,即m<8.故实数m的取值范围是[3,8).14.以等腰直角三角形ABC的两个底角顶点为焦点,并且经过另一顶点的椭圆的离心率为________.答案2 2解析设等腰直角三角形的直角边长为l,则其斜边长为2l,由题意可知,焦距2c=2l,c=22l,由椭圆的定义可知2a=2l,a=l,所以离心率e=ca=22.15.已知点M(-3,0),N(3,0),B(1,0),动圆C与直线MN相切于点B,过M,N与圆C相切的两直线相交于点P,则点P的轨迹方程为________.答案x2-y28=1(x>1)解析设圆与直线PM,PN分别相切于E,F,则|PE|=|PF|,|ME|=|MB|,|NB|=|NF|.∴|PM|-|PN|=|PE|+|ME|-(|PF|+|NF|)=|MB|-|NB|=4-2=2,∴点P的轨迹是以M(-3,0),N(3,0)为焦点的双曲线的右支,且a=1,c=3,∴b2=8.故双曲线的方程是x 2-y 28=1(x >1).16.已知A (0,-4),B (3,2),抛物线y 2=x 上的点到直线AB 的最短距离为________.答案355解析 直线AB 的方程为2x -y -4=0,设抛物线y 2=x 上的点P (t ,t 2),则点P 到直线AB 的距离d =|2t -t 2-4|5=t 2-2t +45=(t -1)2+35≥35=355.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a ∥b ,b ⊥c ,求:(1)a ,b ,c ;(2)a +c 与b +c 所成角的余弦值.解 (1)因为a ∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1),又因为b ⊥c ,所以b ·c =0,即-6+8-z =0,解得z =2,于是c =(3,-2,2).(2)由(1)得a +c =(5,2,3),b +c =(1,-6,1),因此a +c 与b +c 所成角的余弦值=5-12+338×38=-219.18.(本小题满分12分)已知命题p :方程x 22+y 2m =1表示焦点在y 轴上的椭圆;命题q :∀x ∈R,4x 2-4mx +4m -3≥0.若(綈p )∧q 为真,求m 的取值范围.解 p 真时,m >2.q 真时,4x 2-4mx +4m -3≥0在R 上恒成立,即 Δ=16m 2-16(4m -3)≤0,解得1≤m ≤3. ∵(綈p )∧q 为真,∴p 假,q 真. ∴⎩⎪⎨⎪⎧m ≤2,1≤m ≤3,即1≤m ≤2.∴所求m 的取值范围为[1,2].19.(本小题满分12分)在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:(1)CE ∥平面C 1E 1F ; (2)平面C 1E 1F ⊥平面CEF .证明 如图所示,以D 为原点,DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1⎝ ⎛⎭⎪⎫1,12,2.(1)设平面C 1E 1F 的法向量n =(x ,y ,z ). ∵C 1E 1→=⎝ ⎛⎭⎪⎫1,-12,0,FC 1→=(-1,0,1),∴⎩⎨⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎨⎧x -12y =0,-x +z =0.取n =(1,2,1).∵CE →=(1,-1,1),n ·CE →=1-2+1=0,∴CE →⊥n . 又∵CE ⊄平面C 1E 1F ,∴CE ∥平面C 1E 1F . (2)设平面EFC 的法向量为m =(a ,b ,c ), 由EF →=(0,1,0),FC →=(-1,0,-1), ∴⎩⎨⎧m ·EF →=0,m ·FC →=0,即⎩⎪⎨⎪⎧b =0,-a -c =0.取m =(-1,0,1).∵m·n=1×(-1)+2×0+1×1=-1+1=0,∴平面C1E1F⊥平面CEF.20.(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=3,∠ABC=60°.(1)证明:AB⊥A1C;(2)求二面角A-A1C-B的正切值大小.解解法一:(1)证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AB⊥AA1.在△ABC中,AB=1,AC=3,∠ABC=60°.由正弦定理得∠ACB=30°,∴∠BAC=90°,即AB⊥AC,∴AB⊥平面ACC1A1.又A1C⊂平面ACC1A1,∴AB⊥A1C.(2)如图,作AD⊥A1C交A1C于D点,连接BD.∵AB ⊥A 1C ,AD ∩AB =A ,∴A 1C ⊥平面ABD . ∴BD ⊥A 1C .∴∠ADB 为二面角A -A 1C -B 的平面角. 在Rt △AA 1C 中,AD =AA 1·AC A 1C =3×36=62.在Rt △BAD 中,tan ∠ADB =AB AD =63, ∴二面角A -A 1C -B 的正切值为63.解法二:(1)证明:∵三棱柱ABC -A 1B 1C 1为直三棱柱,∴AA 1⊥AB ,AA 1⊥AC . 在△ABC 中,AB =1,AC =3,∠ABC =60°. 由正弦定理得∠ACB =30°, ∴∠BAC =90°,即AB ⊥AC . 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),C (0,3,0),A 1(0,0,3), ∴AB →=(1,0,0),A 1C →=(0,3,-3). ∵AB →·A 1C →=1×0+0×3+0×(-3)=0, ∴AB ⊥A 1C .(2)取m =AB →=(1,0,0)为平面AA 1C 1C 的法向量. 由(1)知,BC →=(-1,3,0),设平面A 1BC 的法向量n =(x ,y ,z ), 则⎩⎨⎧n ·BC →=0,n ·A 1C →=0,∴⎩⎪⎨⎪⎧-x +3y =0,3y -3z =0,∴x =3y ,y =z . 令y =1,则n =(3,1,1), ∴cos 〈m ,n 〉=m ·n|m ||n | =3×1+1×0+1×012+02+02·(3)2+12+12=155,∴sin 〈m ,n 〉=1-⎝ ⎛⎭⎪⎫1552=105,∴tan 〈m ,n 〉=63. ∴二面角A -A 1C -B 的正切值为63.21.(本小题满分12分)如图,已知点E (m,0)为抛物线y 2=4x 内的一个定点,过E 作斜率分别为k 1,k 2的两条直线分别交抛物线于点A ,B ,C ,D ,且M ,N 分别是线段AB ,CD 的中点.(1)若m =1,k 1k 2=-1,求△EMN 面积的最小值; (2)若k 1+k 2=1,求证:直线MN 过定点. 解 (1)当m =1时,E 为抛物线y 2=4x 的焦点. ∵k 1k 2=-1,∴AB ⊥CD .由题意,知直线AB 的方程为y =k 1(x -1), 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k 1(x -1),y 2=4x ,得k 1y 2-4y -4k 1=0,∴y 1+y 2=4k 1,y 1y 2=-4.又线段AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,∴M ⎝ ⎛⎭⎪⎫2k 21+1,2k 1. 同理点N (2k 21+1,-2k 1). ∴S △EMN =12|EM |·|EN |=12⎝ ⎛⎭⎪⎫2k 212+⎝ ⎛⎭⎪⎫2k 12·(2k 21)2+(-2k 1)2=2k 21+1k 21+2≥22+2=4,当且仅当k 21=1k21,即k 1=±1时等号成立, ∴△EMN 面积的最小值为4.(2)证明:由题意,得直线AB 的方程为y =k 1(x -m ),设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k 1(x -m ),y 2=4x ,得k 1y 2-4y -4k 1m =0,∴y 1+y 2=4k 1,y 1y 2=-4m .又线段AB 的中点为M ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,∴M ⎝ ⎛⎭⎪⎫2k 21+m ,2k 1.同理点N ⎝ ⎛⎭⎪⎫2k 22+m ,2k 2.∴k MN =y M -y Nx M -x N =k 1k 2k 1+k 2=k 1k 2,∴直线MN 的方程为y -2k 1=k 1k 2⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫2k 21+m ,即y =k 1k 2(x -m )+2, ∴直线MN 恒过定点(m,2).22.(本小题满分12分)如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),A (2,0)是长轴的一个端点,弦BC 过椭圆的中心O ,且AC →·BC →=0,|OC →-OB →|=2|BC →-BA →|.(1)求椭圆的标准方程;(2)设P ,Q 为椭圆上异于A ,B 且不重合的两点,若∠PCQ 的平分线总是垂直于x 轴,则是否存在实数λ,使得PQ →=λAB →?若存在,求出λ的最大值;若不存在,请说明理由.解 (1)∵AC →·BC →=0, ∴AC →⊥BC →,∠ACB =90°.又|OC →-OB →|=2|BC →-BA →|,即|BC →|=2|AC →|, ∴|OC →|=|AC →|.∴△AOC 是等腰直角三角形. ∵A (2,0),∴C (1,1). 又点C 在椭圆上,a =2, ∴1a 2+1b 2=1,∴b 2=43.∴所求椭圆的标准方程为x 24+y 243=1.(2)对于椭圆上两点P ,Q , ∵∠PCQ 的平分线总是垂直于x 轴, ∴PC 与CQ 所在直线关于直线x =1对称. 设k PC =k (k ≠0且k ≠±1),则k CQ =-k , 则直线PC 的方程为y -1=k (x -1)⇒y =k (x -1)+1,① 直线CQ 的方程为y -1=-k (x -1)⇒y =-k (x -1)+1,②将①代入x 24+3y 24=1,得(1+3k 2)x 2-6k (k -1)x +3k 2-6k -1=0.③ ∵C (1,1)在椭圆上,∴x =1是方程③的一个根,∴x P =3k 2-6k -11+3k 2.以-k 替换k ,得到x Q =3k 2+6k -13k 2+1.则k PQ =y P -y Q x P -x Q =k (x P +x Q )-2kx P -x Q =k ·6k 2-21+3k 2-2k -12k 1+3k 2=-4k 1+3k 2-12k 1+3k 2=13.又k AB =13,∴k PQ =k AB ,∴PQ ∥AB . ∴存在实数λ,使得PQ →=λAB →. 又|PQ →|=(x P -x Q )2+(y P -y Q )2=⎝ ⎛⎭⎪⎪⎫-12k 1+3k 22+⎝ ⎛⎭⎪⎪⎫-4k 1+3k 22 =160k 2(1+3k 2)2=1609k 2+1k 2+6≤2303, 当且仅当9k 2=1k 2,即k 2=13,k =±33时取等号. 又|AB →|=10,∴λmax =230310=233.。
高中数学选修2–1测试卷(一)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的,请把正确答案的代号填入下面答题卡中.1. 已知命题tan 1p x R x ∃∈=:,使,其中正确的是 ( ) (A) tan 1p x R x ⌝∃∈≠:,使(B) tan 1p x R x ⌝∃∉≠:,使 (C) tan 1p x R x ⌝∀∈≠:,使(D) tan 1p x R x ⌝∀∉≠:,使 2.抛物线24(0)y ax a =<的焦点坐标是 ()(A )(a , 0) (B )(-a , 0) (C )(0, a ) (D )(0, -a )3. “a ≠1或b ≠2”是“a+b ≠3”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 ( ) (A )2 (B )3 (C )4 (D )55. 如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。
若a AB =,b AD =,c AA =1则下列向量中与BM 相等的向量是( )(A ) ++-2121 (B )c b a ++2121(C )c b a +--2121 (D )c b a +-21216. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是 ( )(A )1203622=+y x (x ≠0) (B )1362022=+y x (x ≠0) (C )120622=+y x (x ≠0) (D )162022=+y x (x ≠0) 7.过抛物线)0(2>=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与FQ 的长分别为p 、q ,则qp 11+等于( ) A .2a B .a 21 C .4a D .a4 8.已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A.2B.3C.115D.3716(A )12 (B )(C )13(D二、填空题(本大题有7小题,每小题5分,共35分,请将答案写在题中横线上)C110.已知三点)3,0,0(),0,2,0(),0,0,1(C B A ,且点)6,4,(x P 在平面...ABC 内.,则=x 。
11.焦点在直线01243=--y x 上,且顶点在原点的抛物线标准方程为 。
12.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则x y =___________。
13.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。
当水面升高1米后,水面宽度是________米。
14. 如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是_______。
15.①一个命题的逆命题为真,它的否命题也一定为真;②在ABC ∆中,“︒=∠60B ”是“C B A ∠∠∠,,三个角成等差数列”的充要条件. ③12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的充要条件;④“am 2<bm 2”是“a <b ”的充分必要条件.以上说法中,判断错误的有___________.三、解答题16.是否存在实数p ,使4x+P < 0是022>--x x 的充分条件?如果存在,求出P的取值范围;否则,说明理由.17. 已知点A,B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2.(Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程.18、在直角坐标系xOy中,点P到两定点(0,,(0的距离之和等于4,设点P的轨迹为C,过点(0的直线C交于A,B两点.(1)写出C的方程;(2)设d为A、B两点间的距离,d是否存在最大值、最小值,若存在,求出d的最大值、最小值.19.如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=22.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B余弦值的大小;(3)求点C到平面PBD的距离.C20.如图,在三棱锥ABC P -中,BC AB ⊥,kPA BC AB ==, 点D O 、分别是PC AC 、的中点,⊥OP 底面ABC . (1)当21=k 时,求直线PA 与平面PBC 所成角的余弦值; (2)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?21.如图,直角梯形ABCD 中,3190,//,2,,22oDAB AD BC AB AD BC ∠==== 椭圆F 以B A 、为焦点且过点D ,(1)建立适当的直角坐标系,求椭圆的方程; (2)若点E 满足21=是否存在斜率0≠k 的直线L 与椭圆F 交于N M 、两点,且NE ME =,若存在,求k 的取值范围;若不存在,说明理由。
高中数学选修2–1测试卷(一)参考答案一、选择题: CAAD ABCA二、填空题:9.1 10. 3- 11、212x y =-或216y x = 12、213、24 14、 082=-+y x 15、③④三、解答题16.解:由022>--x x ,解得x>2或x<-1,令A=}12{-<>x x x 或,……3分由04<+p x ,得B=}4{px x -<, 当A B ⊆时,即14-≤-p,即4≥p , 此时02142>--⇒-≤-<x x px , ∴当4≥p 时,02042>--<+x x p x 是的充分条件. 17. 解: (Ⅰ)设(,)M x y ,因为2AM BM k k ⋅=-,化简得:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,直线l 的方程为12x =,则11((,22C D ,其中点不是N,不合题意。
设直线l 的方程为11()2y k x -=- 。
将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:121212121222()21()21y y x x k x x y y ⨯⨯-+==-=-=--+⨯ 直线l 的方程为11()2y x -=--,即所求直线l 的方程为2230x y +-=18、解:(1)设P( x ,y ),由椭圆定义可知,点P 的轨迹C是以(0 ,,(0为焦点,长半轴为2的椭圆.它的短半轴1b ==,故曲线C 的方程为2214y x +=. (2)①设过点(0的直线方程为1122()()A x y B x y ,,,,其坐标满足2214y x y kx ⎧+=⎪⎨⎪=+⎩,消去y并整理得22(4)10k x ++-=.2∴ 221212||()()2()a a d AF BF e y e y a e y y c c =+=-+-=-+=422334k k +-+ =21244k -+。
∵20k ≥,∴k=0时,d 取得最小值1 。
② 当k 不存在时,过点(0的直线方程为x=0,交点A 、B 分别为椭圆C 的长轴端点,显然此时d 取最大值4.19、解:方法一:证:⑴在R t △BAD 中,AD =2,BD =22, ∴AB =2,ABCD 为正方形,因此BD ⊥AC .∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .又∵PA ∩AC =A ∴BD ⊥平面PAC . 解:(2)由PA ⊥面ABCD ,知AD 为PD 在平面ABCD 的射影,又CD ⊥AD , ∴CD ⊥PD ,知∠PDA 为二面角P —CD —B 的平面角. 又∵PA =AD ,∴∠(3)∵PA =AB =AD =2,∴PB =PD =BD =22 ,设C 到面PBD 由PBD C BCD P V V --=,有d S PA S PBD BCD ∙∙=∙∙∆∆3131, 即d ∙∙∙=⨯⨯⨯∙0260sin )22(21312222131,得332=d 方法二:证:(1)建立如图所示的直角坐标系, 则A (0,0,0)、D (0,2,0)、P (0,0,2).略(2)由(1)得)0,0,2(),2,2,0(-=-=. 设平1,则0,011=∙=∙CD n PD n ,即⎩⎨⎧=++-=-+00020220x z y ,∴⎩⎨⎧==zy x 0故平面PCD 的法向量可取为)1,1,0(1=n ∵PA ⊥平面ABCD ,∴)01,0(=为平面ABCD 的法向量.设二面角P —CD —B 的大小为θ,依题意可得22cos ==θ . (3)由(Ⅰ)得)2,2,0(),2,0,2(-=-=,设平面PBD 的法向量为),,(2z y x n =,则0,022=∙=∙n n ,即⎩⎨⎧=-+=-+02200202z y z x ,∴x =y =z ,故可取为)1,1,1(2=n . 11分∵)2,2,2(-=PC ,∴C 到面PBD 的距离为332==d 20. OP ABC ⊥ 平面,,OA OC AB BC ==,,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,,A B C ⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设OP h =,则()0,0,P h (1)12k =,即2,,,P A a a a ⎫=∴=∴=⎪⎪⎝⎭ ,可求得平面PBC 的法向量1,n ⎛=- ⎝,cos ,30||||PA n PA n PA n ⋅∴〈〉==⋅设PA 与平面PBC 所成的角为θ,则sin |cos ,|PA n θ=〈〉= ,PA ∴与平面PBC 所成角的余弦值为30690(2)PBC ∆的重心1,663G a h ⎛⎫- ⎪ ⎪⎝⎭,1,,663OG a a h ⎛⎫∴=- ⎪ ⎪⎝⎭ ,,OG PBC OG PB ⊥∴⊥平面,又22110,,,0,2632PB a h OG PB a h h a ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,设()()2211,,y x N y x M 、 ,MN 的中点为()00,y x P NE ME =等价于MN PE ⊥22210434 4382k kmx k km x x x +-=∴+-=+=200436k mm kx y +=+=∴MNPE ⊥得kx y 12100-=-得2432k m +-= 代入3422>+-m k 得412<k 或者用点差法。