输电线路精确故障定位在线监测装置的应用
- 格式:pdf
- 大小:604.86 KB
- 文档页数:8
特高压输电线路在线监测技术的应用发布时间:2021-08-06T17:01:26.450Z 来源:《中国电业》2021年四月10期作者:董帅帅,王绍翰[导读] 根据我国地势分布和城市发展情况,特高压输电线路通常建设于人迹罕致地区董帅帅,王绍翰山东送变电工程有限公司,山东省济南市250000摘要:根据我国地势分布和城市发展情况,特高压输电线路通常建设于人迹罕致地区,其极易受到各种外力因素的影响而处于不安全状态,如杆塔倾斜、线路断线或停电等,从而造成人身伤害和巨大的经济损失。
因此,采取有效手段对架空输电线路进行监测十分必要。
关键词:特高压;输电线路;在线监测技术;应用引言电力输送过程需基于高压输电线路完成,作为智能电网的核心构成,高压输电线路的安全稳定运行与否会对整个电网产生直接影响,规模及范围不断扩大的电力系统对高压输电线路的监测提出了更高的要求,设计并完善高压输电线路的在线监测系统仍然是目前研究的重点领域。
1高压输电线路在线监测系统架构根据监测需求为依据对监测点(即无线传感器节点)进行部署,无需各级杆塔均安装,例如在水塘附近为防被水侵蚀将图像采集终端安装于杆塔上以便监测塔基;在跨越立交桥部分为防导线下垂将采集终端安装于导线上以便监测导线弧垂等。
监测子站通常安装在杆塔上且需位于无线传感器节点附近,在对附近传感器监测数据进行收集的同时,使呈现为簇头节点的监测子站形成了无线多跳网络,由连接网络的汇聚节点(监测网关,通常设在高压变电站)将接收到的数据向后端的监控中心传送。
支持远距离传输的监测子站能够以监测点的布局为依据对监测子站进行灵活部署,确保各监测点均有能多跳连接到监测网关的监测子站相对应,使用监测子站最少。
2特高压输电线路在线监测技术的应用2.1故障识别受到安装位置、实施技术、外部环境等诸多因素的影响,输电线路在线监测装置第一时间检测到故障的几率较低,即便在第一时间发现了故障,也很难及时对故障进行类型判断与原因查找。
线路故障指示器简介线路故障指示器(Circuit Fault Indicator,CFI)是一种用于自动检测输电线路故障的设备。
它能够实时监测输电线路的状态,并在检测到故障时通过信号指示器通知运维人员和用户,快速识别和定位故障点,实现故障快速定位、修复和恢复供电。
工作原理CFI通过检测线路的电流变化、电压变化和电磁场变化等多个信号特征来判断线路是否存在故障。
当线路发生故障时,如短路、接地或过载等情况,会导致线路的电流、电压或电磁场出现异常波动。
CFI通过内部的信号检测模块对这些特征进行分析,并通过信号指示器或无线通信系统向运维人员发送相关的故障信息。
优点CFI具有以下优点:自动化运行CFI作为一种自动化监测设备,能够实时、准确地检测输电线路的状态,并在发生故障时以指示灯或报警器等方式通知运维人员和用户,无需人工巡视和监测。
故障定位精准CFI能够在检测到故障时立即进行报警和定位,快速识别故障位置,使运维人员能够快速采取合适的措施,减少故障导致的停电时间和损失。
安装简单CFI具有安装简单、维护方便的特点,机械结构紧凑,安装后对输电线路本身几乎不产生影响。
成本低廉CFI的成本相对较低,减少了人工监测和巡视成本,同时也降低了因输电线路故障而导致的停电损失。
应用范围CFI广泛应用于输电和配电线路的监测、故障诊断和维修。
其主要应用场景包括:高压输电线路高压输电线路是电力系统中最关键的组成部分之一,而其维护和修复也是最为困难的任务之一。
CFI能够有效地监测高压输电线路的状态,提高维修效率和安全性。
配电线路CFI也广泛应用于配电线路的监测和故障诊断中,能够实现快速、准确地诊断故障,降低停电时间。
风电、太阳能等新能源随着新能源发电的快速发展,CFI也在逐渐应用于风电、太阳能等新能源输电和智能配电中,实现自动化、智能化的监测和管理。
总结CFI作为一种高效、自动化的输电线路故障监测设备,在电力系统、新能源领域等广泛使用。
输电线路故障检测与定位技术研究引言随着电力供应的日益重要,输电线路的可靠性和稳定性成为现代社会不可或缺的基础设施。
然而,由于各种原因,输电线路可能出现故障,如短路、接地故障等,这些故障不仅会导致电力供应中断,还可能损坏设备和威胁人们的生命安全。
因此,对于输电线路的故障检测与定位技术的研究具有重要意义。
主体一、故障检测技术的研究与应用1.1 传统故障检测方法在过去的几十年里,人们主要采用人工巡线的方式来检测输电线路的故障。
这种方法需要大量的人力和时间,并且存在一定的安全风险。
随着科技的发展,人们开始研究利用传感器等技术手段来监测输电线路的状态,以实现故障的自动检测。
1.2 无线传感器网络技术在故障检测中的应用无线传感器网络技术是近年来迅速发展的一种技术,它可以实时监测输电线路的温度、振动等参数,并将数据传输到操作中心进行处理。
利用无线传感器网络技术,可以实现对输电线路故障的快速检测和自动定位,提高了检测效率和准确性。
二、故障定位技术的研究与应用2.1 电磁波法故障定位技术电磁波法故障定位技术是一种常用且有效的故障定位方法。
它利用输电线路上的故障点产生的电磁信号进行定位,通过测量信号的传播速度和到达时间差来确定故障点的位置。
这种方法准确度高,能够满足大部分输电线路故障的定位需求。
2.2 超声波法故障定位技术超声波法故障定位技术是一种利用超声波传导的原理来确定故障点位置的方法。
通过在输电线路上设置传感器,可以监测到故障点产生的超声波信号,并利用信号的传播速度和到达时间差来定位故障点。
这种方法适用于检测一些绝缘子串、绝缘子爬纵、接地故障等。
三、现有技术的挑战与未来发展3.1 数据处理与分析能力的提升随着传感器技术的不断进步,传感器采集到的数据量越来越大。
如何高效地处理和分析这些数据,成为现有技术面临的挑战之一。
未来的研究可以集中在数据处理算法的研究上,以提高数据的利用率和故障定位的准确性。
3.2 多传感器协同检测技术的应用目前的故障检测与定位技术主要依赖于单一传感器的监测。
输电线路故障定位技术的研究与应用一、背景介绍输电线路作为能源传输的关键环节,在日常生产中承载着重要的作用。
然而,尽管我们对它进行精确设计和周密布置,线路故障仍时有发生。
由于电力输送带来的热力和电磁影响,输电线路经常暴露在极端环境下,在此情况下,比如线路受力不均衡导致的命令、灾害性天气和各种动植物的破坏,导致线路故障的概率大大增加。
对线路故障的定位技术的研究和应用,是保障电网安全、节约能源、满足人们生产生活使用需求的重要手段。
二、输电线路故障定位技术的分类目前,常见的输电线路故障定位技术分为以下两类:1. 传统的基于测量方法的检修与维修技术这类技术是传统的、被广泛使用的定位技术,它们的基本原理是通过测量得到被动和主动信号,来判断线路是否工作正常。
这些被动或主动信号包括高阻、低阻、自感、互感信号、故障电流、故障电压等等。
这些信号与物理参数之间的相互关系,可以通过测量来估计线路状态,并找出故障点。
这些测量方法包括:故障定位阻抗法、电磁波故障定位法、故障电压比较法、故障电流切比较法等等。
这类技术的优点是技术比较成熟,实现简单,可靠性好,但缺点是精度较低,精细的故障点无法准确定位,所以在检修中比较有限。
2. 基于计算机技术的高精度故障定位技术随着计算机技术的不断发展,计算机技术已经成为电力系统的重要辅助手段,在电力系统的故障诊断与定位方面,计算机技术的应用也日益增多。
此类技术的主要思想是通过传感器和数据采集设备获取目标信号,并将其转化为高精度的数字量,利用数学模型,在线路和系统等级上自动执行科学的数据处理和分析算法,精确定位故障点。
这类技术包括:人工智能算法、神经网络算法、遗传算法、模糊综合评估算法、模型预测控制算法、小波变换等等。
这类技术优点是精度高,无需人工干预,可靠且高效。
三、输电线路故障定位技术的应用如今,随着传感器技术、通信技术的快速发展,输电线路故障定位技术的应用被广泛关注,取得了显著的成效。
输电线路行波故障定位技术及其应用输电线路是电力系统的重要组成部分,其安全稳定运行对于保障电网供电可靠性至关重要。
然而,在输电过程中可能会发生各种故障,其中的行波故障是一种常见且严重的故障类型。
为了及时准确地定位行波故障,保障电网的稳定运行,研究人员和工程师们提出了多种行波故障定位技术,并将其广泛应用于电力系统中。
本文将从行波故障的基本概念入手,介绍行波故障定位的原理、方法及其应用情况。
一、行波故障定位技术的基本概念行波故障(Travelling wave fault)是指当输电线路发生故障时,在正常运行电压上以一定速度通过的电压和电流波动现象。
行波故障定位是指通过对行波信号的测量,通过分析行波信号的传播速度、传播路径等特性来确定故障点所在位置的技术。
行波故障定位技术具有定位精度高、实时性强、适用于高压大电流故障等优点。
二、行波故障定位技术的原理和方法1. 行波信号特性分析a. 行波信号的频谱分析:通过对行波信号的频谱特性进行分析,可以得到故障点所产生的频谱成分,从而判断故障类型。
b. 行波信号的传播速度分析:通过测量行波信号在输电线路上的传播速度,可以确定故障点的位置。
2. 行波故障定位方法a. 单端法:通过在故障发生点的一侧测量行波信号,根据行波的传播速度和传播时间计算得到故障点所在位置。
b. 双端法:通过在故障发生点两侧分别测量行波信号,根据行波信号的传播时间差和传播速度计算得到故障点位置。
三、行波故障定位技术的应用情况1. 定位器件的选择与设计a. 行波定位器件的选择:根据定位精度要求和电力系统特点选择合适的行波定位器件。
b. 行波定位器件的设计:根据输电线路的特点和故障类型设计行波定位器件,包括传感器、数据采集与处理装置等。
2. 实时监测与故障跟踪系统a. 行波信号的实时监测:通过在线监测行波信号,及时发现故障并识别故障类型。
b. 故障跟踪系统的建立:通过实时监测行波信号,并结合GIS(地理信息系统)技术等,建立故障跟踪系统,快速准确地定位故障点。
电缆故障定位技术的应用案例在现代社会中,电力供应的稳定性和可靠性对于各个领域的正常运转至关重要。
而电缆作为电力传输的重要载体,其故障的及时定位和修复是保障电力系统正常运行的关键环节。
本文将通过几个实际的应用案例,深入探讨电缆故障定位技术的实际应用效果和重要性。
案例一:城市配电网中的电缆故障定位在某繁华的城市商业区,一次突然的停电事件给众多商家和居民带来了极大的不便。
电力维修人员迅速响应,经过初步排查,确定是一段地下配电网电缆出现了故障。
技术人员首先使用了经典的电桥法进行初步定位。
电桥法是基于电缆的电阻特性来计算故障距离的,虽然相对简单,但对于低阻故障有较好的效果。
通过电桥法,大致确定了故障点在距离变电站约 2 公里的范围内。
然而,由于城市地下管网复杂,电缆敷设路径曲折,单纯依靠电桥法无法精确确定故障位置。
于是,技术人员引入了脉冲反射法。
通过向故障电缆发送脉冲信号,并接收反射回来的信号,根据信号的时间和传播速度,精确计算出故障点的距离。
经过多次测量和分析,最终将故障点锁定在一个狭小的地下管廊内。
在找到故障点附近区域后,技术人员使用了音频感应法进行最后的精确定位。
这种方法通过在电缆一端施加特定频率的音频信号,然后使用感应接收器在地面上探测信号的强度,当信号强度达到最大值时,下方即为故障点。
经过一番努力,终于找到了故障点,原来是电缆由于长期受到地下水的侵蚀,导致绝缘层破损,引发短路故障。
维修人员迅速对故障电缆进行修复,及时恢复了供电,将停电对城市商业和居民生活的影响降到了最低。
案例二:工业厂区的电缆故障定位在一家大型工业厂区,一条为重要生产设备供电的电缆发生故障,导致整个生产线停止运行。
由于生产任务紧迫,需要尽快恢复供电。
技术人员到达现场后,首先对电缆进行了绝缘电阻测试,发现电阻值极低,判断为短路故障。
然后,他们使用了时域反射法(TDR)进行定位。
TDR 类似于脉冲反射法,但能够提供更详细的故障特征信息。
电力系统中的线路故障定位与在线监测概述:电力系统是现代社会不可或缺的基础设施之一,而电力线路故障是电力系统运行中常见的问题之一。
电力线路故障无论是对电力公司还是用户来说都带来了很大的困扰,因此,如何快速准确地定位线路故障成为了电力系统运行中的重要任务之一。
本文将探讨电力系统中的线路故障定位及在线监测技术,并介绍相关的应用和发展趋势。
一、电力线路故障定位技术1.1 传统的线路故障定位方法传统的线路故障定位方法主要依靠人工巡线和故障指示器进行故障点的定位。
人工巡线需要专业人员配备测量仪器进行巡检,效率低且存在一定的安全风险。
而故障指示器是一种装置,通常安装在线路上,可以通过指示灯或声音发出故障报警,但这种方法只能粗略地定位故障点,无法提供精确的位置信息。
1.2 现代的线路故障定位方法随着科技的发展,现代的线路故障定位方法取得了巨大的进步。
其中,利用数字保护装置的方法是最为常见的。
这些装置可以实时监测电力线路中的电流、电压等参数,并通过信号处理技术计算出故障点的位置。
此外,还有一些基于智能算法的方法,如遗传算法、模糊逻辑等,可以进一步提高定位的准确性。
二、电力线路故障在线监测技术2.1 在线监测系统的构成电力线路故障在线监测系统主要由传感器、数据采集单元、数据传输单元和数据处理与分析单元组成。
传感器主要用于采集线路中的电流、电压、温度等参数,数据采集单元通过AD转换将模拟信号转化为数字信号,然后通过数据传输单元将数据发送到数据处理与分析单元进行处理和分析。
2.2 在线监测技术的应用在线监测技术可以实时监测电力线路中的参数,及时发现故障点,并提供相关的信息给工作人员进行处理。
这种技术可以减少人工巡线的工作量,提高定位的准确性,并且能够快速判断线路运行状态,以防止故障的扩散。
三、电力系统中的线路故障定位与在线监测的发展趋势3.1 智能化与自动化随着人工智能和物联网技术的不断发展,线路故障定位与在线监测技术将趋向智能化和自动化。