初中数学分数指数幂练习题(含解析)
- 格式:docx
- 大小:22.19 KB
- 文档页数:8
初三指数幂的运算练习题及答案指数幂在数学中是一个重要的概念,它可以用来表示重复的乘法运算。
在初三数学学习中,掌握指数幂的运算是非常重要的。
本文将为同学们提供一些初三指数幂的运算练习题及其答案,帮助大家巩固学习。
1. 计算以下各题:a) 2³ = ?b) 5² = ?c) 6⁰ = ?d) 4⁵ = ?e) (3³)² = ?f) (2²)³ = ?答案:a) 2³ = 2 × 2 × 2 = 8b) 5² = 5 × 5 = 25c) 6⁰ = 1 (任何数的0次方都等于1)d) 4⁵ = 4 × 4 × 4 × 4 × 4 = 1024e) (3³)² = 3³ × 3³ = 27 × 27 = 729f) (2²)³ = 2² × 2² × 2² = 4 × 4 × 4 = 642. 计算以下各式的值:a) 2⁴ × 2² = ?b) 3⁵ ÷ 3³ = ?c) 5² × 5³ = ?d) 10⁻² × 10⁴ = ?e) 2⁸ ÷ 2⁵ = ?答案:a) 2⁴ × 2² = (2 × 2 × 2 × 2) × (2 × 2) = 16 × 4 = 64b) 3⁵ ÷ 3³ = (3 × 3 × 3 × 3 × 3) ÷ (3 × 3 × 3) = 243 ÷ 27 = 9c) 5² × 5³ = (5 × 5) × (5 × 5 × 5) = 25 × 125 = 3125d) 10⁻² × 10⁴ = 1 ÷ (10²) × (10 × 10 × 10 × 10) = 1 ÷ 100 × 10000 = 100e) 2⁸ ÷ 2⁵ = (2 × 2 × 2 × 2 × 2 × 2 × 2 × 2) ÷ (2 × 2 × 2 × 2 × 2) = 256 ÷ 32 = 83. 计算下列各题中的幂:a) 9⁴ = ?b) 6⁻³ = ?c) 0.5² = ?d) 7⁰ = ?e) (-2)³ = ?答案:a) 9⁴ = 9 × 9 × 9 × 9 = 6561b) 6⁻³ = 1 ÷ (6 × 6 × 6) ≈ 0.00463(保留小数点后五位)c) 0.5² = 0.5 × 0.5 = 0.25d) 7⁰ = 1 (任何数的0次方都等于1)e) (-2)³ = (-2) × (-2) × (-2) = -84. 计算下列各题中的指数幂:a) ∛8 = ?b) ∛(-27) = ?c) ∛1 = ?d) ∛125 = ?e) ∛0.001 = ?答案:a) ∛8 = 2 (2 × 2 × 2 = 8)b) ∛(-27) = -3 (-3 × -3 × -3 = -27)c) ∛1 = 1 (1 × 1 × 1 = 8)d) ∛125 = 5 (5 × 5 × 5 = 125)e) ∛0.001 = 0.1 (0.1 × 0.1 × 0.1 = 0.001)通过以上的练习题,我们可以加深对指数幂的概念和运算规律的理解,并且巩固计算指数幂的能力。
第十二章实数专题12.4 分数指数幂基础巩固一、单选题(共6小题)1.下列运算错误的是()A.=4B.=C.=﹣3D.=2【答案】B【分析】分别计算算术平方根、负指数幂、立方根即可判断.【解答】解:A.=4,故A正确B.===,故B错误;C.=﹣3,故C正确;D.,故D正确.故选:B.【知识点】算术平方根、分数指数幂、立方根2.下列计算中正确的是()A.=﹣2B.=±5C.=3﹣πD.【答案】D【分析】由二次根式的性质,=|a|,可以分别判断每个选项.【解答】解:=2,所以A错误;=5所以B错误;=π﹣3,所以C错误;故选:D.【知识点】分数指数幂、实数的运算3.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.a=D.(﹣a﹣2)3=﹣【答案】D【分析】根据合并同类项,同底数幂的除法,分数指数幂,积的乘方,可得答案【解答】解:A、2a+3a=5a,故A不符合题意;B、x8÷x2=x6,故B不符合题意;C、a=,故C不符合题意;D、(﹣a﹣2)3=﹣a﹣6=﹣,故D符合题意;故选:D.【知识点】同底数幂的除法、负整数指数幂、幂的乘方与积的乘方、合并同类项、分数指数幂4.下列计算中,错误的是()A.20180=1B.﹣22=4C.=2D.3﹣1=【答案】B【分析】根据零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算即可.【解答】解:A、20180=1,故原题计算正确;B、﹣22=﹣4,故原题计算错误;C、=2,故原题计算正确;D、3﹣1=,故原题计算正确;故选:B.【知识点】分数指数幂、零指数幂、负整数指数幂、实数的运算5.下列计算中正确的是()A.B.C.D.【答案】D【分析】A、B根据合并同类二次根式的法则计算,C根据同底数幂的乘法法则计算,D根据二次根式的除法法则计算.【解答】解:A、+=+,此选项错误;B、2﹣=,此选项错误;C、计算错误,指数应该相加,不是相乘,此选项错误;D、=,此选项正确.故选:D.【知识点】分数指数幂、二次根式的混合运算6.2等于()A.B.﹣C.D.﹣【答案】C【分析】根据分数指数幂和负整数指数幂的意义即可求出答案.【解答】解:原式===,故选:C.【知识点】分数指数幂二、填空题(共6小题)7.用幂的形式表示:=.【分析】根据分数指数幂,即可解答.【解答】解:=,故答案为:.【知识点】分数指数幂8.计算:=.【答案】2【分析】根据幂的意义解答即可.【解答】解:∵.故答案为:2【知识点】分数指数幂9.的四次方根是.【分析】因为,所以的四次方根是.【解答】解:∵,∴的四次方根是.故答案为:.【知识点】分数指数幂10.1的四次方根是.【答案】±1【分析】根据四次方根的意义得出±,求出即可.【解答】解:1的四次方根是:±=±1.故答案为:±1.【知识点】分数指数幂11.计算:=.【答案】3【分析】利用=(a≥0)进行计算即可.【解答】解:==3,故答案是3.【知识点】分数指数幂12.把表示成幂的形式是.【答案】723【分析】根据分数指数幂的意义直接解答即可.【解答】解:根据分数指数幂的意义可知,=.故答案为.【知识点】分数指数幂拓展提升三、解答题(共6小题)13.计算:()﹣1+﹣+|1﹣|.【分析】直接利用二次根式的性质和绝对值的性质、分数指数幂的性质分别化简得出答案.【解答】解:原式==2+3+3﹣2+﹣1=.【知识点】负整数指数幂、实数的运算、分数指数幂14.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.【解答】解:原式==﹣1﹣2﹣++4=.【知识点】负整数指数幂、分数指数幂15.计算:.【分析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式==﹣2++1=﹣1.【知识点】实数的运算、零指数幂、负整数指数幂、分数指数幂16.计算:.【分析】直接利用二次根式的性质以及分数指数幂的性质分别化简得出答案.【解答】解:原式==3﹣2+4+﹣1﹣2=.【知识点】分数指数幂、负整数指数幂17.比较,,的大小,并用“<”连接.【分析】先利用幂的乘方得到()6=8,()6=9,所以<,再利用同样方法得到>,从而得到,,的大小关系.【解答】解:∵()6=23=8,()6=32=9,∴<,∵()10=25=32,()10=52=25,∴>,∴<<.【知识点】分数指数幂、实数大小比较18.计算:(﹣1)0+|1﹣|+()﹣1+8.【分析】直接利用绝对值的性质、负整数指数幂的性质、分数指数幂的性质分别化简得出答案.【解答】解:原式=1+﹣1+3+2=5.【知识点】零指数幂、实数的运算、分数指数幂、负整数指数幂。
分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x+a -x)(a 2x-a x·a -x+a -2x)a x +a -x=a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.(一)阅读下面文章,完成第1—7题。
上海市七年级第二学期数学专题03 分数指数幂【考点剖析】1.分数指数幂:分数指数幂就是一个数的指数为 . 即 叫分数指数幂. 整数指数幂和分数指数幂统称为 .=(0a ≥)=(0a >)。
2.有理数指数幂的运算性质: 设0,0,a b >>,p q 为有理数,那么 (1)p q a a g =,p q a a ÷=;(2)()p qa =;(3)_______(),_______pp a ab b ⎛⎫== ⎪⎝⎭【典例分析】例1 (松江2018期末7)计算:1416= . 例2 (浦东2018期末9)计算:113339⨯= .例3 (崇明2018期中8)把257写成方根的形式是 .例4 (普陀2018期末20例5 (浦东2018期末20)利用幂的性质计算(写出计算过程)【真题训练】 一、填空题1.(长宁2018期末4)计算:238= .2.(浦东四署2019期中9)把345表示成幂的形式是 . 3.(杨浦2019期中3)把753化成幂的形式是 .4.(松江2018期中4)523表示为分数指数幂是 .5.(闵行2018期末11)把写成幂的形式: .6.(金山2018期中11347化成幂的形式是 .7.(浦东四署2019期中12)计算:1233)8+= .8.(杨浦2019期中4)计算:324()9-= .9.(普陀2018期中9)计算:1264-= . 10.(杨浦2019期末3)计算:2327= . 11.(宝山2018期末3)计算:113248⨯= . 三、解答题12.(浦东四署2019期中2136927313.(崇明2018期中19)计算:(4626482;(利用幂的运算性质计算)14.(松江2018期中2463816215.(虹口2018期中25)计算:11632(32)-⨯.16.(金山2018期中23)计算:1131322211()(2)()28-÷⨯.(结果表示为含幂的形式)17.(杨浦2018期末23)用幂的运算性质计算:111362132()()()2427-⨯÷.(结果表示为含幂的形式)18.(浦东四署2019期中22)计算:1201901(1)43-⎛⎫--+⨯ ⎪⎝⎭.19.(崇明2018期中19)计算:(5)123081(2272-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭.20.(松江2018期中211301(3.14)27π-⎛⎫-+ ⎪⎝⎭.21.(长宁2019期末21)计算:(2)1301()20.1252019|1|2--⨯++-;22.(闵行2018期末22)计算:111111332222(53)(53)-⨯+;23.(长宁2018期末20)利用幂的运算性质进行计算:3.24.(杨浦2018期末21)计算:012)--+-.专题03 分数指数幂【考点剖析】1.分数指数幂:分数指数幂就是一个数的指数为分数. 即m m nna a -和叫分数指数幂.整数指数幂和分数指数幂统称为有理数指数幂.mna =(0a ≥)m na-=(0a >)。
12.7分数指数幂同步习题一、填空题1.计算:214_______.2.计算:_____921-.3.计算:71128-)(4.计算:________0.00132.5.将方根化成幂的形式:______6-13.6.将方根化成幂的形式:3)52(=_______. 7.把分数指数幂写成带根号的形式:3157-)(=_________.8.把分数指数幂写成带根号的形式:51-a =__________.9.计算:421333236=____________.10.计算:112211()(2)1214=____________.二、选择题11.下列说法正确的是()A.n mn m a a ,a 可以为任意实数B.如果n ,m 不互素,n ma 计算前可以n ,m 先约分C.n m n ma a ,a ≥0D.分数指数幂和整数指数幂统称为实数指数幂12.如果419a ,213b ,那么a ,b 的关系是()A.a=b B. a >bB.a <b D. ab=1 13.下列等式从左到右成立的是()A.316299-)(B.2-5-1021C.a a 33 D.-28-612)(三、解答题14.计算:512132-2515.计算:21210225-813-22-3)()(16.计算:1113124322()(2)(4)a b a a b (,a b 全为正数)17.已知11223,x x 求12282x x x x 的值.18.伞兵在高空跳离飞机往下降落,在打开降落伞前,下降的高度h(米)与下降的时间t (秒)的关系可以近似地表示为h=4.9t2(不计空气阻力)。
一个伞兵在打开降落伞前的一段时间内下降了1980米,这段时间是多少秒?参考答案一、填空题1. 22.313.-2 4.0.015.31-6-6.32527.357-8.5a19.3131610.332二、选择题11. C12. A13. C三、解答题14.-10 15.5-316.3525b 4a -17.3118.20秒。
分数指数幂练习题分数、指数和幂是数学中非常重要的概念,它们在各个领域中都有广泛的应用。
本文将通过一系列练习题来帮助读者巩固和加深对分数、指数和幂的理解。
1. 简化下列分数:(1/2)^3解析:(1/2)^3 = 1/2 * 1/2 * 1/2 = 1/82. 计算下列指数:2^4解析:2^4 = 2 * 2 * 2 * 2 = 163. 计算下列幂:(-3)^2解析:(-3)^2 = (-3) * (-3) = 94. 简化下列分数:(3/4)^2解析:(3/4)^2 = 3/4 * 3/4 = 9/165. 计算下列指数:5^0解析:任何非零数的0次方都等于1,所以5^0 = 16. 计算下列幂:(-2)^3解析:(-2)^3 = (-2) * (-2) * (-2) = -8通过以上的练习题,我们可以看到分数、指数和幂的运算规律。
在分数的指数运算中,分子和分母都会被指数影响,而在指数和幂的运算中,底数会被指数影响。
接下来,我们将继续探索一些更加复杂的练习题。
7. 简化下列分数:(2/3)^-2解析:分母的指数为负数时,可以将其转化为分子的指数为正数,即(2/3)^-2= (3/2)^2 = 9/48. 计算下列指数:(-1/2)^3解析:(-1/2)^3 = -1/2 * -1/2 * -1/2 = -1/89. 计算下列幂:(4/5)^-1解析:分母的指数为负数时,可以将其转化为分子的指数为正数,即(4/5)^-1= (5/4)^1 = 5/410. 简化下列分数:(1/2)^0解析:任何非零数的0次方都等于1,所以(1/2)^0 = 111. 计算下列指数:(-3)^4解析:(-3)^4 = (-3) * (-3) * (-3) * (-3) = 8112. 计算下列幂:(-4/5)^2解析:(-4/5)^2 = (-4/5) * (-4/5) = 16/25通过以上的练习题,我们可以进一步巩固对分数、指数和幂的运算规律的理解。
分数指数幂1.下列命题中,正确命题的个数是__________. ①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________. ①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b =__________.4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723②(614)12③(49)-32(2)解方程:①x -3=18②x =914.(1)(0.027)23+(12527)13-(279)0.5(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.(1)5x -23y 12(-14x -1y 12)(-56x 13y -16)(2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1②(a 6b -9)-23=a -4b 6 ③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c 54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值: (1)a 2·5a 310a 7·a ,其中a =8-53;(2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5(2)(279)0.5+0.1-2+(21027)-23-3π0+3748(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x-12=3,求x32+x-32+2x2+x-2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确; ∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确; ∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错; ②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对; ③x -13=1x 13=13x ,∴③错; ④3x·4x =x 13·x 14=x 13+14=x 712, ∴④错;⑤(x y )-34=(y x )34=4(y x)3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错. ∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1). 7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32)=(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342. 10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14. 11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16; (2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升12.22 原式=2-12=12=22. 13.a 4 原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误. 15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3, ∴①不正确;当a <0,n 为奇数时,n a n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧ x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞), ∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得(x)2-2xy -15(y)2=0,∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y =50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2)2.∴a 2+1+a =2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n. ∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7. ∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25.- 11 -拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
基础题 一、填空题:1、把433化成幂的形式为 。
2、计算:4181-= 。
3、计算:23234)52(⨯= 。
二、解答题:4、213235333⨯÷ 5、2122)44(--÷ 6、43666⋅⋅7、4343428⨯⨯ 8、22121)273(+9、410064.010、21212313273181⋅-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--11、2025435-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯+-提高题:12、75.024431)161()5.0()2()827(--÷---⨯基础题 一、填空题:1、用计算机计算(保留三位小数):123345⨯= 。
2、计算,结果用幂的形式表示:133477⨯= 。
3= 。
二、解答题:4、用计算器计算(结果保留三位有效数字) 1132715-5、计算(结果用幂的形式表示)6、计算:11222(23)-11322(510)-÷7的整数部分是a ,小数部分是b ,求(ab 的平方根。
提高题 8、已知111225,a aa a ---=+求。
练习题(二)12.4------12.7一、填空题1.与数轴上的点一一对应的是 2.计算238= 12100- =22135-3.实数a 、b 在数轴上的位置如图所示,请化简:22b a a --=_____________. 4.2-3的相反数是 ;绝对值是 .5.化简(1)52- = ; (2)π-3= . 633270x -=,则x = .713a 与正的纯小数b (10<<b )的和, 那么a = ,b = .84b -1a -ab = . 9. 大于1711的所有整数的和 .10.近似数3.007万精确到 位,有 个有效数字。
11.数轴上到原点距离为3的点表示的数是 。
12. 433-表示为根式 ,325表示为幂的形式13.上海浦东磁悬浮铁路长31千米,单程运行时间为7.9分钟,其平均速度约为 米/分,(结果保留两个有效数字) 14.计算(1)113553= (2)20062007(21)21)+⨯= 15.设长方形的周长是25厘米,宽是5厘米,它的面积比一个正方形的面积小44平方厘米,则正方形的边长约等于 厘米(结果精确到十分位) 二、选择题16.“数轴上的点并不都表示有理数,如图中数轴上的点P 2”,这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .换元法C .数形结合D .分类讨论17.125-开立方得( )A .5±B .5-C .5D .125± 18.在实数中,绝对值等于它本身的数有( )个A .1个B .2个C .3个D .无数个 19.下列说法中,正确的是( ).A .不带根号的数不是无理数B .8的立方根是2±C .绝对值是3的实数是3D .每个实数都对应数轴上一个点20.若0≠a ,且a 、b 互为相反数,则下列各组数中不是互为相反数的一组是( )A .a 2和b 2B .a -和b -C .2a 和2b D .3a 和3b三、解答题 21.(1)已知328x =,求x 的5次方根;(2)求2(16)-的8次方根。
分数指数幂1.下列命题中,正确命题的个数是.① n n = a 2 0= 1 a ② 若 a ∈R ,则 (a -a + 1) ③ 3 x + y = x + y ④ 3 - 5=6- 5243432.下列根式、分数指数幂的互化中,正确的序号是.1(x ≠ 0) ②x x = x 3③ x - 1 =- 3341x )- 3 = ① - x = (- x)4 3 x④ x · x = x12 ⑤ ( 42y 4y 3⑥621(xy ≠ 0)y =y (y<0)x3c b3.若 a = 2, b = 3, c =- 2,则 (a ) = __________. 4.根式 aa 的分数指数幂形式为.4 25.- 25 = __________.- (2k +1)-(2k - 1)-2k6. 2- 2 + 2 的化简结果是. 7. (1)设 α, β是方程 2x 21 + +3x + 1= 0 的两个根,则 ( ) α β= __________.4 x y 1 (2)若 10 = 3,10 = 4,则 10x - 2y = __________. 8. (1)求下列各式的值: 2 1 14 3 ① 27 ; ②(6 ) ; ③ ( )- .3 4 29 2 -31 1 (2)解方程: ① x=8;② x = 94.9.求下列各式的值:2125 1 7 0.5(1)(0.027) 3+ ( 27 )3- (29) ;1 117 13- 1 3 3 1 -1 (2)(3)2+3·( 3-2) - (164)4- (3 )4- (3) .11-110.已知 a2+a-2= 4,求 a+ a的值.11.化简下列各式:2 15x-3y2(1)1 -1 1 5 1 1;-4x y2-6 x3y-6m+ m -1+ 2(2)1 1 . m-2+m 2.2112. [(- 2) ] -2的值是.36369494的结果是.13.化简 ( a ) ·( a )14.以下各式,化简正确的个数是.211①a5a-3 a-15= 16- 92-46②(a b)-= a b3111212③(- x4y-3)(x-2 y3)(- x4y3)= y 1 1 3-15a 2b3c-43④1 1 5=-5ac25a - b c2 3 415. (2010 山东德州模拟, 4 改编 )如果 a3= 3, a10=384 ,则 a3[(a101 n.a) ] 等于316.化简3a- b3a- 2b2.+的结果是17.下列结论中,正确的序号是.233①当 a<0 时, (a ) = a2②na n= |a|(n>1 且 n∈ N * )10③函数 y= (x-2)- (3x- 7) 的定义域是 (2,+∞ )2④若 100a= 5,10b= 2,则 2a+ b =118. (1) 若 a= (2+- 1-1- 2+ (b+ 1)- 2.3) , b = (2-3),则 (a+ 1)的值是.(2)若 x> 0, y> 0,且 x(x+y)= 3y( x+ 5y),则2x+ 2xy+ 3y的值是.x- xy+ y112 009 n- 2 009 -n*2+1 +a)n.19.已知 a=(n∈ N ),则 ( a的值是21111120.若 S= (1+2-32 )(1+ 2-16)(1+ 2-8)(1+ 2-4)(1+ 2-2),那么 S 等于.21.先化简,再求值:2535a · a(1),其中 a=8 -3;107a · a3x- 3xa + a2xx- x22.(易错题 )计算:3 0- 2 1 10.5(1)(25) + 2 ·(24)-2- (0.01);7 0.5- 210 2037 (2)(29) + 0.1+ (227)-3- 3π+48;17 0-1[81- 0.253111(3)(0.008 1) --[3× ( ) ]×+ (3 )- ]-- 10×0.027 .4883233311x2+ x-2+ 223.已知 x2+x-2= 3,求x2+x-2+3的值.24.化简下列各式:x- 2- 2- 2- 2+ yx- y(1)22-22;x - 3+ y - 3 x - 3- y - 341(2)a 3-8a 3b3 b3 a.÷(1- 2)× 23 2aa + 2 ab + 4b 33答案与解析基础巩固nna ,当 n 为奇数时, 1. 1 ∵ a =|a|,当 n 为偶数时,∴① 不正确;21 23∵a ∈ R ,且 a - a + 1= (a - ) + ≠0 ,∴② 正确;4 3∵ x + y 为多项式, ∴③ 不正确; ④中左边为负,右边为正显然不正确. ∴只有 ② 正确.12.②⑤ ① - x =- x 2, ∴① 错;1 1 1 3 1 3② x x = (x x) = (x ·x ) = (x ) = x , ∴② 对;2 2 2 2 2 41 1 1 ③ x -3= 1=, ∴③ 错;x 3 3x④ 34 1 1 1 1 7x · x = x ·x 4= x + = x ,3 3412∴④ 错;x3 y 3= 4y 3⑤( )- = ( )x ,y4 x 4∴⑤ 对;⑥ 6211y = |y|3 =- y 3(y<0) , ∴⑥ 错.∴②⑤ 正确.3. 1c bbc3×(- 2)- 61 1(a ) = a=2 = 2 = 6=.642 643 11 34. a 2 a a = a ·a 2= a1+2= a 2.5. 5 - 25 = 4 25 = 45 = 5.4 2 2 46.- 2- (2k + 1)- (2k + 1)- (2k - 1)-2k -2k -1- 2k1-2k1 - 2k1 - 2k∵ 2- 2+2= 2·2 - 2 ·2 + 2 =( - 2 + 1)·2 =-2 ·22=- 2 -(2k + 1).337. (1)8(2)2 (1)由根与系数的关系,得 α+ β=- 2 ,1 +1 3 - 23 3∴( ) α β)- = 2 =8.= ( )- = (244 22xy1x1 xy 11 3(2)∵ 10 = 3,10 = 4, ∴ 10x - 2y = 10 ÷102y =10 ÷(10 )2= 3÷42= 2.2 3 2 2 28.解: (1)① 273= (3 )3= 33×3 = 3 = 9.1 1 25 1② (64 )2 =( 4 )25 2 15 15 = [( 2) ]2 = (2)2× 2= 2.432 3③ (9)- 2= (3)2× (- 2)2 - 33 327 =(3) = (2) = 8 . - 3 1 - 3(2)①∵ x = 8= 2 , ∴x = 2.②∵ x = 9 1 , 4∴( 2 1 21 x) = (9 ) = 9 .42 2 1∴ x =(3 )2= 3.9.解:32 125 125 1 95 5 9(1)原式= (0.3 ) + (27 ) - (9 ) =+ - =.332100331001 381 12 31(2)原式= 3-2 + 3- 2 - (64)4-(3- 3)4- 333 4 1 1= 3 +3( 3+ 2)- [4(4) ]4 -3 -2- 333 3=3 + 3+ 6- 2 ·- - 34 36 32.= -41 110.解: ∵a 2+ a - 2= 4.∴两边平方,得 a + a -1+ 2= 16.∴a + a -1= 14.11.解: (1)原式=24 2 1 1 1 1 01 1 × 5× x -+ 1- × y - + = 24xy = 24y ;53322 666(2)原式1 2111 2m 2 + 2m 2·m - 2+ m - 2=11m - 2+ m 2 11 2m 2+ m - 211=1 1 = m 2+ m - 2. m 2+m - 2能力提升21 1 212. 2原式= 2- 2= 2 = 2 .439 4 69 43 1 41 4 1 4 1 42 2 4原式= ( 13. aa ) ·(a) =(a ×) ·(a3× 6 ) = (a ) ·(a ) =a ·a = a .632 32214. 3 由分数指数幂的运算法则知 ①②③ 正确;对④ , ∵ 左边=-3 1 1 1 13 53 1 0 - 2 3- 25 a + b- c - - =-a b c =- ac ≠ 右边, ∴④ 错误.2 23 344 55n384 1 n 1 n1 nn15. 3·2原式= 3·[( 3 )7] = 3·[(128) 7] =3 ·(27× 7) = 3·2 .16. b 或 2a - 3ba -b + 2b - a , a < 2bb , a <2b ,原式= a - b + |a - 2b| == 2a - 3b , a ≥ 2b.a -b + a - 2b , a ≥ 2b2321 333 317. ④ ①中,当 a < 0 时, (a )2 =[(a )2] =(|a|) = (- a) =- a ,∴① 不正确;当 a < 0, n 为奇数时, nna = a ,∴② 不正确;x - 2≥ 0, ③中,有3x - 7≠ 0,7即 x ≥ 2 且 x ≠ 3,7 7故定义域为 [2, 3)∪ (3 ,+ ∞ ),∴③ 不正确;④中, ∵ 100a = 5,10b =2 ,∴ 102a =5,10 b = 2,102a × 10b = 10.∴ 2a + b =1.∴④ 正确.21118. (1) 3 (2)3(1)a = 2 + 3 =2 - 3, b = 2- 3 = 2+ 3 ,∴(a + 1) -2 + (b + 1) -2 = (3 - 3 ) -2 + (3 + 3 ) -2=1 2 + 1 2 =3 - 3 3+ 33 + 3 2+ 3- 323- 3 22·3+ 3223 + 2·3 · 3+ 3+ 3 - 2·3· 3+ 3= [ 3 - 3 3+ 23 ]2 × 9+ 6 24 2 =9- 3 2=36 = 3.(2)由已知条件,可得( x)2- 2 xy -15(y)2= 0,∴ x + 3 y = 0 或 x -5 y = 0.∵ x >0, y > 0,∴ x = 5 y , x =25y.50y + 2 25y 2+ 3y∴原式=2+ y25y - 25y 50y + 10y + 3y 63y= = = 3.25y - 5y + y 21y1 12 009 n - 2 009- n19. 2 009 ∵ a =2,22∴ a 2+ 1= 1+2 009n +2 009 - n -241 21 22 009n +2+ 2 009 - n=411 2 009n+ 2 009 -n2=() .2∴2a + 1+ a1111 2 009 n+ 2 009-n 2 009 n- 2 009 -n=2+21=2 009 n .2n 1 n∴( a+ 1+ a) = (2 009n) = 2 009.11 -120.2(1- 2-32)原式=111111 1- 2-32 1+ 2-32 1+ 2 -16 1+ 2-81+ 2-41+ 2-211 - 2-32111111- 2-16 1+ 2-16 1+ 2-8 1+ 2-4 1+ 2-2=11- 2-3211111- 2-81+ 2-8 1 +2 -4 1 +2 -2=11- 2-321111- 2-41+ 2-4 1 +2 -2=11 -2 -32111- 2-21+ 2-2=11- 2-32-11 - 21 1 -1=1=2(1- 2-32) .1- 2-323 7121.解: (1)原式= a2 +5-10-27 5 7=a5=(8-3)5737- 71=8 -3= (2 )-3= 2=128.x 3-x 3a + a(2)原式= x - xa + ax - x2x x -x- 2xa + aa - a ·a+a=x- xa + a2x-2x1 1=a - 1+ a = 5- 1 + = 4 .5 51 4 1 -( 1 1 12 1 1 1 1 122.解: (1)原式= 1 + ·( ) 100 ) = 1+ × - ( )2× = 1+ - 10 = 1 .4 9 2 2 4 3 10 2 6 15 25 1 1 - 2 64 2 37(2)原式= ( 9 )2+ (10) +(27)- 3- 3× 1+ 485 4 - 2 37= 3 + 100+ (3 ) - 3+ 4859 37 = 3 + 100+ 16- 3+48= 100.(3)原式= [(0.3)41- 1 41 27 1 1 31]- - 3 × [(3 )- + (8)- ]- - 10× [(0.3) ]44323- 11 - 13 -11=0.3 - 3[3 +(2) ]- 2- 10× 0.310 1 1 2 1 10 1= 3 - 3(3+3 )-2 -3 = 3 - 3- 3= 0.1123.解: ∵x 2 +x - 2= 3, ∴ (x 1+ x - 1)2= 9.22 ∴ x +x -1= 7.1 31 3∴原式= x 2 + x -2 + 22- 2x + x + 31 1 -1 + x - x - 1+ x + 2x 2 2 =- 1 2x + x - 2+ 3 3 × 7- 1 + 2 2 =72- 2+ 3 = 5.拓展探究2 32 32 3 2 3x - 3+ y - 3x - 3 - y - 32 22 2 2 224.解: (1)原式=2 2 -22=(x - 3) - x -3 ·y - 3+ (y - 3) - (x -x -3 + y - 3 x -3 -y - 32 22 22 22 3) - x - 3·y -3- (y - 3) =- 2(xy)-3 .11 3 131a 3[ a 3 - 2b 3 ]b 31(2)原式= 21 11 2÷(1-2 1 )× a 3a 3 +2a 3b 3+ 2b 3 a 31 1 12 1 1a 3 a 3 -2b 3 [a 3+ 2a 3b 3+= 2 1 11 2a 3+ 2a 3b 3+ 2b 31 1 1a 3·a 3 ·a 3= a.1 2 1 1 1 1 1 12b 3 ] a 3- 2b 3 1 a 3 a 3- 2b 3 ·1a 31÷ 1 ×a = 1 × 1× a =313a 3a 3- 2b 3。
分数指数幂1.下列命题中,正确命题的个数是__________.①na n=a ②若a∈R,则(a2-a+1)0=1③3x4+y3=x43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x=(-x)12(x≠0) ②x x=x34③x-13=-3x ④3x·4x=x112⑤(xy)-34=4(yx)3(xy≠0) ⑥6y2=y13(y<0)3.若a=2,b=3,c=-2,则(a c)b=__________.4.根式a a的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k+1)-2-(2k-1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x2+3x+1=0的两个根,则(14)α+β=__________.(2)若10x=3,10y=4,则10x-12y=__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x-3=18;②x=914.9.求下列各式的值:(1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3②na n=|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a=5,10b=2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________. (2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n 2(n ∈N *),则(a 2+1+a)n的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a310a 7·a,其中a =8-53;(2)a 3x+a -3xa x +a -x ,其中a 2x=5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵na n=⎩⎨⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x ·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x ·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x )3, ∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a ·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k=-12·2-2k =-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确; 对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n=3·2n.16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎨⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎨⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n=a , ∴②不正确;③中,有⎩⎨⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确; ④中,∵100a =5,10b=2,∴102a =5,10b =2,102a ×10b=10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23. (2)由已知条件,可得 (x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0, ∴x =5y ,x =25y. ∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n=(2 0091n )n =2 009.20.12(1-2-132)-1原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x+a -x)(a 2x-a x·a -x+a -2x)a x +a -x=a 2x-1+a-2x=5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3.. =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。
初中数学分数指数幂练习题(含解析)分数指数幂1.下列命题中,正确命题的个数是__________.①n a n =a ②若a ∈R ,则(a 2-a +1)0=1 ③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x④3x·4x =x 112⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0)3.若a =2,b =3,c =-2,则(a c )b =__________.4.根式a a 的分数指数幂形式为__________.5.4(-25)2=__________.6.2-(2k +1)-2-(2k -1)+2-2k 的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723②(614)12③(49)-32(2)解方程:①x -3=18②x =914.(1)(0.027)23+(12527)13-(279)0.5(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.(1)5x -23y 12(-14x -1y 12)(-56x 13y -16)(2)m +m -1+2m -12+m 12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________.①a 25a -13a -115=1②(a 6b -9)-23=a -4b 6 ③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c 54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________.17.下列结论中,正确的序号是__________.①当a<0时,(a 2)32=a 3 ②n a n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3y x -xy +y的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值: (1)a 2·5a 310a 7·a ,其中a =8-53;(2)a 3x +a -3xa x +a-x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5(2)(279)0.5+0.1-2+(21027)-23-3π0+3748(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(3 38)-13]-12-10×0.02713.23.已知x 12+x-12=3,求x32+x-32+2x2+x-2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x·4x =x 13·x14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确.3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32. 5.54(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k =2-2k ·2-1-2-2k ·21+2-2k =(12-2+1)·2-2k =-12·2-2k =-2-(2k +1). 7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32. 8.解:(1)①2723=(33)23=33×23=32=9. ②(614)12=(254)12=[(52)2]12=(52)2×12=52. ③(49)-32=(23)2×(-32)=(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2. ②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3. 9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100. (2)原式=3-12+33-2-(8164)14-(3-23)34-31 =33+3(3+2)-[4(34)4]14-3-12-3 =33+3+6-2·34-33 -3 =6-342. 10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16.∴a +a -1=14. 11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m 12=(m 12+m -12)2m 12+m -12=m 12+m -12. 能力提升12.22 原式=2-12=12=22. 13.a 4 原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n . 16.b 或2a -3b 原式=a -b +|a -2b|= a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,n a n =a ,∴②不正确;③中,有?x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10.∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2 =32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2 =2×9+6(9-3)2=2436=23. (2)由已知条件,可得(x)2-2xy -15(y)2=0,∴x +3y =0或x -5y =0.∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y 25y -25y 2+y =50y +10y +3y 25y -5y +y =63y 21y=3. 19.2 009 ∵a =2 0091n -2 009-1n 2,∴a 2+1=1+2 0092n +2 009-2n -24=(2 0091n )2+2+(2 009-1n )24=(2 0091n +2 009-1n 2 )2.∴a 2+1+a =2 0091n +2 009-1n 2+2 0091n -2 009-1n 2=2 0091n. ∴(a 2+1+a)n =(2 0091n)n =2 009. 20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128. (2)原式=(a x )3+(a -x )3a x +a -x =(a x +a -x )(a 2x -a x ·a -x +a -2x )a x +a -x=a 2x -1+a -2x =5-1+15=415. 22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115. (2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748=53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7. ∴原式=(x 12)3+(x -12)3+2x 2+x -2+3=(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3=3×(7-1)+272-2+3=25.拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x -23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13 =a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a 13=a.。