物理吸声
- 格式:ppt
- 大小:797.00 KB
- 文档页数:18
1.吸声材料和吸声结构的分类?①多孔材料,板状材料,穿孔板,成型顶棚吸声板,膜状材料,柔性材料吸声结构:共振吸声结构,包括1。
空腔共振吸声结构,2。
薄膜,薄板共振吸声结构。
其他吸声结构:空间吸声体,强吸声结构,帘幕,洞口,人和家具,空气吸收(空气热传导性,空气的黏滞性和分子的弛豫现象,前两种比第三种的吸收要小得多)。
吸声与隔声有什么区别?吸声量与隔声量如何定义?它们与那些因素有关?答:吸声指声波在传播途径中,声能被传播介质吸收转化为热能的现象。
隔声指防止声波从构件一侧传向另一侧。
吸声量:指材料的吸声面积与其吸声系数的乘积,单位为m2。
隔声量:指建筑构件的传声损失,,单位为(dB)。
它们主要与构件的透射系数有关,和构件的反射系数和吸声系数有关。
2. 衍射的定义:当声波在传播过程中遇到障碍物的起伏尺寸与波长大小接近或更小时,将不会形成定向反射,而是声能散播在空间中,这种现象称为散射,或衍射。
影响因素:障碍物的尺寸或缝孔的宽度与波长接近或更小时,才能观察到明显的衍射现象,不是决定衍射能否发生的条件,仅是使衍射现象明显表现的条件,波长越大,越容易发生衍射现象。
3.解释“波阵面”的概念,在建筑声学中引入“声线”有什么作用?答:声波从声源发出,在某一介质内向某一方向传播,在同一时刻,声波到达空间各点的包迹面称为“波阵面”,或“波前”。
“声线”主要是可以较方便地表示出声音的传播方向;利用作图法确定反射板位置和尺寸。
波阵面为平面的称为“平面波”,波阵面为球面的称为“球面波”。
4.什么是等响线?从等响线图说明人耳对声音的感受特性。
答:等响线是指响度相同的点所组成的频谱特征曲线,从等响线图可知:1.人耳在高声压级下,对声音频率的响应较一致;2.在低声压级下,人耳对于低于1000Hz的声音和高于4000Hz的声音较不敏感,而对1000Hz~ 4000Hz的声音感受最为敏锐;3.在同一频率下,声压级提高10dB,相对响度提高一倍。
八年级物理隔音材料知识点物理是一门没什么实际用途的学科?错!在生活中,物理知识无处不在,比如音频产品中的隔音材料。
今天,我们就来探讨一下八年级物理隔音材料知识点。
一、隔音材料的作用隔音材料是指那些能够降低声波传播的材料。
在生活中,隔音材料被广泛应用于音频产品和汽车等领域。
作为消费者,我们每天都在使用隔音材料改善生活品质。
隔音材料主要有两个作用:一是隔绝外界的噪声干扰,二是防止音波在室内反射,降低室内噪声。
二、隔音材料的分类根据隔音材料的特性,我们可以将其分为吸声材料和隔声材料两种类型。
吸声材料组成:多孔性材料(如海绵、羊毛等)或纤维性材料(如玻璃棉、岩棉等)。
吸声材料的作用是吸收入射声波的能量,从而达到降低噪声的目的。
吸声材料通常被应用于音箱、电影院和录音室等场合。
隔声材料组成:导声体(如钢、铝、铁等)和隔声屏(如活动隔声屏、固定隔声屏等)。
隔声材料的作用是阻隔声波的传播,减少声波的反射和漏洞,从而达到隔音的目的。
隔声材料通常被应用在汽车、船舶以及建筑领域。
三、隔音效果的影响因素隔音材料的效果受到多种因素的影响,主要有声波频率、厚度、密度和复合层数等。
声波频率:不同材料对各频率声波的吸声效果不同。
比如木材和钢铁对不同频率的声波的隔音效果不同。
厚度:材料的厚度对隔音效果影响较大。
一般来说,隔音材料厚度越大,隔音效果越好。
密度:密度越大的材料,隔音效果越好。
复合层数:单层材料往往无法满足隔音需求,在多层材料的复合下,隔音效果会增强。
四、隔音材料的应用隔音材料被广泛应用于电影院、录音室、家庭影院、专业演出以及汽车、飞机和地铁等交通工具。
在家庭影院中,为了达到最佳的音质效果,我们可以使用吸声材料和隔声材料相结合的方法进行装修。
在汽车行业,常用的隔音材料是隔音棉、隔音毡、隔音胶等。
总之,隔音材料的应用广泛,其发展也在不断提升。
了解隔音材料的知识,将更好地满足我们的生活需求。
声音的反射和声音的吸收声音是我们日常生活中常见的物理现象之一,也是我们进行沟通和交流的重要方式。
声音在传播过程中会遇到各种物体和媒介,其中最常见的两种现象是声音的反射和声音的吸收。
本文将从物理角度探讨声音的反射和吸收的机制以及其在现实生活中的应用。
一、声音的反射声音的反射是指声波遇到界面时的现象,当声波传播到某个物体或者界面上时,一部分声波被物体或者界面反射回去,而另一部分声波则被继续传播。
根据物体的表面状况和材料特性不同,声音的反射程度也不同。
1.1 反射的原理声音的反射原理可以用光的反射来类比理解。
和光一样,声音也遵循入射角等于反射角的定律。
当声波垂直入射到界面上时,大部分声波会被反射回去;当声波以一个角度入射到界面上时,入射角与反射角之间的关系也是一样的。
声波被反射的程度与物体的表面粗糙度、材料的特性以及声波的频率有关。
1.2 声音反射的应用声音的反射在日常生活中有着广泛的应用。
例如,为了提高大型音乐厅的音质和听觉效果,设计师通常会使用吸声板和演奏壁,调整声音的反射和抑制。
此外,在建筑物、电视台、录音棚等场所,合理的声音反射设计也可以提升声音的清晰度和传播效果。
二、声音的吸收声音的吸收是指声音传播过程中的能量损耗,即部分声波被物体吸收并转化为其他形式的能量。
不同材质的物体对声音的吸收程度是不同的,通常用吸音系数来表示。
2.1 吸音的原理声音的吸收原理与材料的特性相关。
通常情况下,软质材料(如海绵、纤维布等)和多孔材料(如泡沫、纤维板等)对声音的吸收性能要优于刚性材料。
当声波进入材料内部时,声波能量会引起材料颗粒的振动和空气流动,从而使一部分声波的能量被损耗掉。
2.2 声音吸收的应用声音吸收在音频设备、汽车内部、音乐房间和家庭影音设备等方面有着广泛的应用。
通过在这些环境中使用吸声材料,可以有效地减少噪音、改善声音的质量和清晰度,从而提高听觉体验。
三、声音的反射和吸收在室内设计中的应用声音的反射和吸收在室内设计中起到十分重要的作用。
初中八年级物理声现象知识点总结人教版初中八年级物理声现象知识点总结在年少学习的日子里,大家都背过各种知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在为没有系统的知识点而发愁吗?下面是店铺收集整理的人教版初中八年级物理声现象知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助!一、声音是什么(一)声音的产生1、声音是由物体振动产生的。
2、正在发声的物体叫声源。
固体、液体、气体都可以做声源。
(二)声音的传播声音传播需要介质。
声音可以在气体、液体、固体中传播,但不能在真空中传播。
(三)声速1、声音在不同介质中传播速度不同。
2、在气体中传播速度最慢(空气中约340m/s),在液体中较快(水中约1500m/s),在固体中最快(钢铁中约5200m/s)。
3、声音(声波)具有能量,这种能量叫做声能。
二、乐音的特征乐音是声源做规则振动产生的,可以用响度、音调、音色来描述它的特征。
人们常将响度、音调、音色称为乐音的三要素。
(一)响度1、声音的强弱(大小)叫做响度。
2、振动的幅度叫做振幅。
3、响度与振幅有关。
振幅越大,响度越大;振幅越小,响度越小。
(二)音调1、声音的高低叫做音调。
2、每秒振动的次数称为频率,单位赫兹,用符号Hz表示。
3、音调与声源振动的'频率有关。
频率越高,音调越高;频率越低,音调越低。
4、弦类乐器,弦越紧、越短、越细,发出的声音音调就越高。
(三)音色1、不同的声源,由于他们的材料、结构不同,因此发出的音色不同。
2、人们常说的“未见其人,先闻其声”就是根据每个人不同的音色来分辨的。
根据音色,人们能够分辨不同声源发出的声音。
三、噪声及其控制(一)噪声的来源1、从物理学角度来说,噪声的波形是无规则的。
2、从环保角度来说,凡是影响人们正常生活、学习、工作的声音都属于噪声。
(如:交通噪声、工业噪声、建筑施工噪声)3、有些声音从物理学角度来看属于乐音,但从环保角度来说属于噪声。
物理声学复习资料物理声环境设计的基本知识⼀、名词解释:1. 波阵⾯:声波从声源发出,在某⼀介质内向某⼀⽅向传播,在同⼀时间到达空间各点的包络⾯称为波阵⾯。
形象地描述声波传播情况。
2. 声线:假想的⽤于描述声⾳传播⽅向的⽅向线,垂直于波阵⾯⽽离开声源。
3. 吸声量:是指材料的吸声⾯积与其吸声系数之乘积单位为m 2。
不同材料,不同的构造对声⾳具有不同的性能。
在隔声中希望⽤透射系数⼩的材料防⽌噪声。
在⾳质设计中需要选择吸声材料,控制室内声场。
4. 声透射:是指声能透过建筑物体⽽传递的现象。
透射系数表⽰建筑构件的透射能⼒。
5. 隔声量:是指建筑构件的传声损失。
(dB )6. 声功率:单位时间内物体向外辐射的能量W 。
(⽡或微⽡)7. 声强:单位时间内通过声波传播⽅向垂直单位⾯积上的声能。
对于点声源:对⾯声源: 对线声源:8. 声压:空⽓质点由于声波作⽤⽽产⽣振动时所引起的⼤⽓压⼒起伏,有两层意思:(1)瞬时声压,是指某时刻媒质中的压⼒超过静压⼒的值即压差;(2)有效声压,即在⼀段时间(⼏个周期)内,各瞬时值平⽅的算术平均的平⽅根,不影响计算过程。
符号P ,单位N/m 2(⽜顿/⽶2)或Pa(帕斯卡)声强与声压的关系:9. 声功率级:取Wo 为10-12W,任⼀声功率W 的声功率级Lw 为: 10. 声强级:取参考声压为Io=10-12W/m 2为基准声强。
11. 声压级倍频程:取后⼀频率为前⼀频率的21(两)倍。
通常将可闻频率20~20KHz 分为⼗个倍频带,其中⼼频率按2倍增长,共⼗⼀个,为:16 31.5 63 125 500 1K 2K 4K 8K 16K 12. 1/3倍频程:取后⼀频率为前⼀频率的2 1/3倍,将倍频程再分成三个更窄的频带,使频率划分更加细化,其中⼼频率按倍频的1/3增长,为:12.5 16 20 25 31.5 40 50 63 80 100 125 160… 13. 响度:指⼈感受到的声⾳的响亮程度,单位为宋。
声学⼩知识分享:隔声、吸声、消声原理及阻尼减振1、声波的产⽣①声⾳的三个基本要素:频率:每秒振动的次数。
可听声的频率在20-20KHz频率:波长:波长:声源完成⼀周的振动,声波所传播的距离。
可听声的波长在17m-17mm。
声速:每秒钟传播的距离。
声速与温度有关,c=331.4+0.6t m/s,其中:c=fλ。
声速:②频谱:频谱:通常噪声都是由许多频率组成的复合声。
声⾳不同,其组成的频率和能量的分布也不同。
正因如此,才能区别各⾊各样的声⾳,声⾳的这些组成频率和能量分布的关系,称为这⼀声⾳的频谱,不同的声⾳具有不同的频谱。
例如,⽤频率为横坐标,以声压级为纵坐标,即可做出此声⾳的声谱图。
声压:有声波时媒质中的压⼒和静压⼒的差值。
单位为Pa。
③声压:频谱:通常噪声都是由许多频率组成的复合声。
声⾳不同,其组成的频率和能量的分布也不④频谱:同。
正因如此,才能区别各⾊各样的声⾳,声⾳的这些组成频率和能量分布的关系,称为这⼀声⾳的频谱,不同的声⾳具有不同的频谱。
2、噪声污染①什么是噪声?噪声是⼈们不需要的声⾳,噪声是物理污染,噪声是现代⼯业化带来的后果,同时,噪声和噪声控制技术的进步也促进⼯业⽣产和交通运输的发展。
②噪声控制:噪声控制是研究如何获得适当声学环境的技术科学,即达到经济上、技术上和要求上合理的声学环境。
③噪声降低的标准《声环境质量标准》GB3096-2008《社会⽣活环境噪声排放标准》GB22337-2008《⼯业企业⼚界噪声标准》GB12348-2008ETSI 300 735欧洲通讯设备测量标准和限制噪声标准分三类:听⼒保护标准环境保护标准机电产品标准④噪声的危害噪声⾸先是对听⼒的影响,作⽤是累计性的。
噪声性⽿聋是不可逆的。
当对500、1000、2000HZ三个频率损失的平均值超过25—40分贝时,为轻度⽿聋;40--65分贝时为中度⽿聋;65分贝以上是重度⽿聋。
噪声对神经系统的影响,使⼤脑⽪层的兴奋和抑制平衡失调,长久接触产⽣头痛、头晕、⽿鸣、失眠多梦、记忆⼒减退称为神经衰弱或神经官能症。
物理实验技术中的实验室的噪音控制与隔声技术应用引言在物理实验中,实验室的噪音控制是一个重要的问题,因为噪音会干扰实验的精度和准确性。
为了保证实验结果的可靠性,必须采取一些隔声技术来降低噪音对实验的干扰。
本文将介绍实验室噪音的来源、对实验的影响以及一些常用的隔声技术应用。
一、实验室噪音的来源实验室噪音的来源主要有两类:内部噪音和外部噪音。
内部噪音主要来自实验设备、仪器仪表以及人员活动等。
例如,实验设备的运转声、电机噪音、仪器仪表的震动振动等都会产生噪音。
人员活动也会产生一定的噪声,例如脚步声、谈话声等。
外部噪音则主要来自于实验室周围环境,如道路交通声、建筑施工声、附近机械设备的运转声等。
二、噪音对实验的影响噪音对实验的影响主要表现在两个方面:一是干扰实验结果的准确性,二是可能对实验人员的健康产生不良影响。
首先,噪音会干扰实验的准确性。
实验室中进行的实验通常需要对细微的信号或数据进行采集和分析,噪音会掩盖这些信号,使实验结果产生误差。
特别是在一些精密实验领域,噪音的干扰会对实验结果的可靠性和精度产生明显的影响,甚至可能导致实验失败。
其次,噪音可能对实验人员的健康产生不良影响。
长期暴露在高强度的噪音环境下,人们容易出现耳鸣、听力下降等听觉问题,甚至引发心理压力、失眠等身心健康问题。
三、隔声技术的应用为了降低实验室噪音对实验产生的影响,引入隔声技术是一种常用的解决方法。
下面将介绍几种常见的隔声技术应用。
1. 声音吸收材料的应用声音吸收材料是一种能够吸收声波能量的材料,通常应用于实验室的各种表面和墙壁。
这些材料可以通过减少声波的反射来降低实验室内部的噪音水平。
常见的声音吸收材料有吸声板、吸音毯等。
它们具有良好的吸音性能,可以有效地减少噪音对实验的干扰。
2. 隔声门窗的应用在实验室的门窗上安装隔声材料,是另一种有效的隔声技术应用。
隔声门窗可以有效地阻挡外部噪音的进入实验室内部,降低噪音的传播。
隔声材料通常由多层玻璃、夹层玻璃等组成,具有良好的隔声效果。
声吸收的名词解释声吸收指的是声波在遇到物体时,一部分能量被吸收而转化为其他形式的能量,使声音衰减的过程。
在许多实际场景中,如会议室、剧院、录音室等,声吸收的控制是至关重要的,以确保良好的声学效果和舒适的环境。
本文将从物理角度出发,对声吸收的机制、标准和应用进行探讨。
首先,了解声吸收的机制对于设计合适的吸声材料至关重要。
吸声材料能够将声波能量吸收并转化为其他形式的能量,如热能。
它们通常由多孔性材料组成,具有大量的细小孔隙和纤维状结构,这有助于声波在材料内部发生多次反射和散射。
通过这种反射和散射,声波能够在材料中行进更长的距离,从而使能量转化的过程更加高效。
其次,声吸收的标准对于评估和比较吸声材料的性能起到重要的指导作用。
常用的声学参数之一是声吸收系数,它表示材料表面吸收声波的能力。
声吸收系数的取值范围在0到1之间,其中0代表完全反射,1代表完全吸收。
一般来说,良好的吸声材料应具有较高的声吸收系数,以最大限度地降低声波的反射。
除了声吸收系数,材料的厚度和密度也会影响声波的吸收效果。
一般而言,较厚的吸声材料在较低频率范围内吸收效果较好,而较薄的材料在较高频率范围内表现更出色。
此外,材料的密度越高,声波在材料中传播时遇到的障碍越多,从而增加了吸收的机会。
因此,设计合适的吸声材料需要对频率、厚度和密度进行综合考虑。
在实际应用中,声吸收材料被广泛应用于各种场景。
例如,在会议室中使用吸声材料可以减少回声和噪音,提高语音清晰度和听觉舒适性。
在剧院和音乐厅中,合理配置吸声材料可以优化音质,使演出更加动人。
在录音室和广播室中,吸声材料的运用可以减少外界噪音的干扰,提高录制和播放的质量。
此外,吸声材料还广泛应用于工业生产环境中,用于控制噪音和震动,保护工人的听觉健康。
然而,要设计和应用适当的吸声材料并非易事。
不同场景下的声学需求各异,需要综合考虑材料的吸声性能、装饰效果、经济性等方面因素。
幸运的是,随着科学技术的发展,吸声材料的种类和性能不断得到改进和创新,为解决各种实际问题提供了更多的选择。