三角函数最值问题的几种常见解法
- 格式:doc
- 大小:157.00 KB
- 文档页数:5
三角函数最值问题的常见类型及解法作者:陈德堂来源:《中学课程辅导高考版·教师版》2010年第04期摘要:归纳出三角函数最值问题常见的七种类型及解法。
关键词:三角函数;最值中国分类号:G424 文献标识码:A文章编号:1992-7711(2010)4-015-02一、形如y=a sin x+b cos x型的函数(化归思想)特点是含有正、余弦函数,并且是一次式.解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数.应用公式y=a2+b2sin(x+φ)即可,其中tanφ=ba.然后利用三角函数的有界性求最值.例1.求函数y=sin x+3cos x,x∈\π2\〗的最值.分析:由于a sin x+b cos x=a2+b2sin(x+φ),其中tanφ=ba,此结论在运用是时需注意自变量x的取值范围.所以y=sin x+3cos x=2sin(x+π3)因为0≤x≤π2;所以x+π3∈\π3,5π6\〗由三角函数的图象或单调性可知y min=1,y max=2.二、形如y=a sin x+b sin x cos x+c cos x2型的函数(化归思想)特点是含有sin x,cos x的二次式,处理方式是降幂,再化为型一的形式来解.例2.求y=sin2+2sin x cos x+3cos2x的最小值,并求y取最小值时的x 的集合.解:y=sin2x+2sin x cos x+3cos2x=(sin2x+cos2x)+sin2x+2cos2x=1+sin2x+1+cos2x=2+2sin(2x+π4)当sin(2x+π4)=-1时,y取最小值2-2,此时x的集合{x|x=kπ-38π,k∈Z}.三、形如y=a sin2x+b cos c+c型的函数(化归思想和换元思想)特点是含有sin x,cos x,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解.例3.求函数y=cos2x-2a sin x-a(a为常数)的最大值M.解:y=1-sin2x-2a sin x-a=-(sin x+a)2+a2+1-a令sin x=t,则y=-(t+a)2+a2+1-a,(-1≤t≤1)(1)若-a1时, 在t=-1时,取最大值M=a.(2)若-1(3)若-a>1,即a四、形如y=a sin x+cb cos x+d型的函数(化归思想或数形结合思想)特点是一个分式,分子、分母分别会有正、余弦的一次式.几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种.例4.求函数y=2-sin x2-cosx的最大值和最小值.解法1:原解析式即:sin x-y cos x=2-2y,即sin(x+φ)=2-2y1+y2,∵|sin(x+φ)|≤1,∴2-2y1+y2≤1,解出y的范围即可.解法2:2-sin x2-cos x表示的是过点(2, 2)与点(cos x,sin x)的斜率,而点(cos x,sin x)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值.解法3:应用万能公式设t=tan x2,则y=2t2-2t+23t2+1,即(2-3y)t2-2t+2-y=0,根据Δ≥0解出y的最值即可.五、形如y=sin x cos x型的函数(化归思想或不等式思想)它的特点是关于sin x,cos x的二次式,此类函数用均值不等式求解大为简捷.例5.在直角三角三角形中,两锐角为A和B,则sin A sin B()A.有最大值12和最小值0B.有最大值12,但无最小值C.既无最大值也无最小值D.有最大值1,但无最大值解法1:∵A+B=π2,0∴sin A>0,cos A>0,即sin A cos A>0,又sin AsinB=sin A cos A=12sin2A≤12.故选B.解法2:sin A sin B≤sin2A+sin2B2=sin2A+cos2A2=12.又∵A,B≠0,∴选B.六、含有sin x与cos x的和与积型的函数式(换元思想)其特点是含有或经过化简整理后出现sin x±cos x与sin x cos x的式子,处理方式是应用(sin x±cos x)2进行转化,转化为二次函数的问题.例6.求y=2sin x cos x+sin x+cos x的最大值.解:令sin x+cos x=t(-2≤t≤2),则1+2sin x cos x=t2,所以2sin x cos x=t2-1,所以y=t2-1+t=(t+12)2-54,根据二次函数的图象,解出的最大值是1+2.七、形如y=sin x+a sin x型的函数(分类讨论思想)若0由以上的几种形式可以归纳出解三角函数最值的基本方法:一是应用正弦、余弦函数的有界性来求;二是利用二次函数闭区间内求最大、最小值的方法;此外可以利用重要不等式或利用数形结合的方法来解决.。
求三角函数最值的四种方法求解三角函数最值问题的基本途径与其他函数最值问题相同,一方面要利用三角函数的特殊性质,例如有界性,另一方面要将问题转化为我们熟悉的函数的最值问题。
以下介绍几种常见的求解三角函数最值的策略。
1.配方转化策略对于能够化为形如y = a sin x + b sin x + c或y = a cos x +b cos x + c的三角函数最值问题,可以将其看作是sin x或cosx的二次函数最值问题,常常利用配方转化策略来解决。
例如,对于函数y = 5 sin x + cos 2x的最值问题,可以将其转化为y = -2 sin x + 5 sin x + 1,然后利用sin x的范围[-1.1]求得最小值为-6,最大值为4.2.有界转化策略对于能够通过变形化为形如y = A sin(ωx + φ)等形式的三角函数,可以利用其有界性来求解最值。
这是常用的求解三角函数最值问题的策略之一。
3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略。
对于三角函数来说,常常是先化为y = A sin(ωx + φ) + k的形式,然后利用三角函数的单调性求解。
4.导数法对于一些较为复杂的三角函数最值问题,可以利用导数法求解。
通过对函数求导,找到其临界点,然后比较临界点和函数在端点处的取值,即可求得函数的最值。
在求解三角函数最值问题时,需要注意将三角函数准确变形为sin x或cos x的二次函数的形式,正确配方,并把握sinx或cos x的范围,以防止出错。
1,即y=−x+2设点P的坐标为(x,y),则y−0=y−yPx−2=x−xP解得xP=cosx,yP=sinx代入直线方程得y=−(cosx−2)+2=4−cosx所以y的最小值为3,当x=π/2时取到最小值。
答案]3。
三角函数的导数计算与最值问题解答三角函数是数学中重要的函数之一,涉及到其导数计算和最值问题的解答也是数学学习中的重点内容。
本文将介绍三角函数的导数计算方法和最值问题的解答策略。
1. 正弦函数的导数计算正弦函数是三角函数中最基本的函数之一,其导数计算如下:设函数$f(x) = \sin(x)$,则$f'(x) = \cos(x)$。
2. 余弦函数的导数计算余弦函数是三角函数中另一个常见的函数,其导数计算如下:设函数$g(x) = \cos(x)$,则$g'(x) = -\sin(x)$。
3. 同时涉及正弦函数和余弦函数的导数计算当函数中同时涉及正弦函数和余弦函数时,可以利用导数的运算法则进行计算,例如:设函数$h(x) = \sin(x) + \cos(x)$,则$h'(x) = \cos(x) - \sin(x)$。
4. 导数相关的最值问题解答在解答最值问题时,通常需要利用导数的性质进行分析。
以下是两种常见的最值问题解答策略:(1) 寻找函数的驻点首先,寻找函数的导数零点或不存在的点,即所谓的驻点。
通过求解导数的零点方程或导数不存在的点,可以确定函数的驻点。
然后,对驻点进行分析,确定最值点的位置。
例如,设函数$f(x)$在区间$(a,b)$上连续可导,并且在$(a,b)$的内部存在驻点$x_0$,则在$(a,b)$上,$f(x)$的最值要么出现在$x_0$处,要么出现在函数的端点$a$和$b$上。
(2) 利用导数的符号变化确定最值点在函数连续可导的情况下, 导数的正负性可以帮助我们确定函数的增减趋势。
通过分析导数的符号变化,可以确定函数在各个区间上的单调性,从而得出函数的最值点。
例如,设函数$g(x)$在区间$(c,d)$上连续可导,且在$(c,d)$的内部,导数$g'(x)>0$在一段区间上,$g'(x)<0$在另一段区间上,则在$(c,d)$上,$g(x)$在单调递增区间上取得最小值,而在单调递减区间上取得最大值。
三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
初中数学如何求解三角函数的最值问题在三角函数中,最值问题是一个常见的问题,需要我们通过一些方法来求解。
下面将介绍如何求解三角函数的最值问题。
1. 求取最大值和最小值的方法-方法一:求导数对于一个连续可导的函数f(x),其最大值和最小值必定出现在导数为零的点或者在导数不存在的点处。
因此,我们可以通过求取导数来求取最大值和最小值。
-方法二:区间分析法对于一个周期函数f(x),其最大值和最小值必然出现在一个周期内的某个点上。
因此,我们可以通过区间分析法来求取最大值和最小值。
-方法三:三角函数的性质对于一些特殊的三角函数,我们可以通过观察函数图像或者利用其性质来求取最大值和最小值。
2. 求解最大值和最小值的步骤-步骤一:确定函数的定义域。
-步骤二:求导数或者利用区间分析法,找出导数为零的点或者周期内的最值点。
-步骤三:判断导数为零的点是否为局部最值点,并确定最大值和最小值。
-步骤四:检验求出的最值是否为全局最值。
3. 例题分析例1:求函数f(x)=2sin(x)-cos(x)在区间[0,2π]内的最大值和最小值。
解:首先,求出函数的导数:f'(x)=2cos(x)+sin(x)令导数为零,得到2cos(x)+sin(x)=0cos(x)=-sin(x)因此,最值点为x=π/4和5π/4。
然后,我们可以通过判断二阶导数来确定这两个点是否为函数的最值点。
f''(x)=-2sin(x)+cos(x)当x=π/4时,f''(π/4)<0,因此x=π/4为函数的最大值点;当x=5π/4时,f''(5π/4)>0,因此x=5π/4为函数的最小值点。
最终,得到f(x)在区间[0,2π]内的最大值为3,最小值为-1。
例2:求函数f(x)=cos2x+sin2x在区间[0,π/2]内的最大值和最小值。
解:由三角恒等式,cos2x+sin2x=1,因此f(x)=1。
求三角函数最值的四种方法解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性如有界性等,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数二次函数等最值问题.下面介绍几种常见的三角函数最值的求解策略1.配方转化策略对能够化为形如y =a sin 2x +b sin x +c 或y =a cos 2x +b cos x +c 的三角函数最值问题,可看作是sin x 或cos x 的二次函数最值问题,常常利用配方转化策略来解决.[典例1] 求函数y =5sin x +cos 2x 的最值.[解] y =5sin x +()1-2sin 2x =-2sin 2x +5sin x +1=-2⎝⎛⎭⎪⎫sin x -542+338. ∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π-π2,k ∈Z 时, y min =-2×8116+338=-6;当sin x =1,即x =2k π+π2,k ∈Z 时,y max =-2×116+338=4.[题后悟道]这类问题在求解中,要注意三个方面的问题:其一要将三角函数准确变形为sin x 或cos x 的二次函数的形式;其二要正确配方;其三要把握三角函数sin x 或cos x 的范围,以防止出错,若没有特别限制其范围是[-1,1].2.有界转化策略对于所给的三角函数能够通过变形化为形如y =A sin(ωx +φ)等形式的,常常可以利用三角函数的有界性来求解其最值.这是解决三角函数最值问题常用的策略之一.[典例2] 设函数f (x )=4cos ⎝⎛⎭⎪⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. 求函数y =f (x )的最值.[解] f (x )=4⎝ ⎛⎭⎪⎫32cos ωx +12sin ωx sin ωx +cos 2ωx =23sin ωx cos ωx +2sin 2ωx +cos 2ωx -sin 2ωx=3sin 2ωx +1,因为-1≤sin 2ωx ≤1,所以函数y =f (x )的最大值为3+1,最小值为1- 3.[题后悟道]求解这类问题的关键是先将所给的三角函数化为一个角的三角函数问题,然后利用三角函数的有界性求其最值.3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略.对于三角函数来说,常常是先化为y =A sin(ωx +φ)+k 的形式,再利用三角函数的单调性求解.[典例3] 函数f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,17π12上的最大值为________,最小值为________.[解析] 由π≤x ≤17π12,得5π4≤x +π4≤5π3. 因为f (x )=22sin ⎝ ⎛⎭⎪⎫x +π4-32在⎣⎢⎡⎦⎥⎤π,5π4上是减函数,在⎣⎢⎡⎦⎥⎤5π4,17π12上是增函数,且f (π)>f ⎝ ⎛⎭⎪⎫17π12,所以当x =5π4时,f (x )有最小值为22sin ⎝⎛⎭⎪⎫5π4+π4-32=-22-32. 当x =π时,f (x )有最大值-2.[答案] -2 -22-32[题后悟道]这类三角函数求最值的问题,主要的求解策略是先将三角函数化为一个角的三角函数形式,然后再借助于函数的单调性,确定所求三角函数的最值.4.数形结合转化策略对于形如y =b -sin x a -cos x 的三角函数最值问题来说,常常利用其几何意义,将y =b -sin x a -cos x 视为定点(a ,b )与单位圆上的点(cos x ,sin x )连线的斜率来解决.[典例4] 求函数y =-sin x 2-cos x(0<x <π)的最小值. [解] 将表达式改写成y =0-sin x 2-cos x,y 可看成连接点A (2,0)与点P (cos x ,sin x )的直线的斜率.由于点(cos x ,sin x )的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小.设过点A 的直线与半圆相切于点B ,则k AB ≤y <0.可求得k AB =tan 5π6=-33. 所以y 的最小值为-33⎝ ⎛⎭⎪⎫此时x =π3.[题后悟道]这类三角函数的最值问题,求解策略就是先将函数化为直线斜率的形式,再找出定点与动点满足条件的图形,最后由图形的几何意义求出三角函数的最值.。
三角函数最值问题的几种常见解法一 、配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1 函数3cos 3sin 2+--=x x y 的最小值为( ).A . 2B . 0C . 41- D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,因含有cosx 的二次式,可换元,令cosx=t ,则,23,112+-=≤≤-t t y t 配方,得41232-⎪⎭⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0min =y ,选B.例2 求函数y=5sinx+cos2x 的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
()48331612,,221sin 683316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 222=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ 二 、引入辅助角法例3已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫ ⎝⎛+=++=+⋅++⋅=y z k k x k x x x x x x x x y ππππππ三 、利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
求解三角函数最值的常用方法 核心提示:三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。
解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。
求三角函数的最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。
一.使用配方法求解三角函数的最值
例1
.已知函数的最大值为1,求的值
解:
结论
:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑
的取值及的条件,才能正确求出最值。
二.使用化一法求解三角函数的最值
例2
.求函数的值域。
分析
:降幂后发现式中出现了
和,这时再化成一个角的三角函数便可求
得。
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
三.使用基本不等式法求解三角函数的最值
例3.求函数的值域
解:
四.使用数形结合法求解三角函数的最值
例4.求函数的值域
解:
五.使用换元法求解三角函数的最值
例5.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:。
三角函数的最值问题分类例析三角函数式的最值问题是函数最值的重要组成部分,也是历屉高考的热点之一。
三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次议程、不等式及某些几何知识的联系也很密切。
因此,三角函数的最值问题的求解,往往要综合应用多方面的知识。
三角函数的最值问题的类型很好,其常见类型有以下几种: 一、y=asinx+b (或y=acosx+b )型 处理方法:利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
例1 函数y =a cos x +b (a 、b 为常数),若-7≤y ≤1,求b sin x +a cos x 的最大值. 剖析:函数y =a cos x +b 的最值与a 的符号有关,故需对a 分类讨论.解:当a >0时,⇒⎩⎨⎧=+-=+71b a b a a =4,b =-3; 当a =0时,不合题意;当a <0时,⇒⎩⎨⎧-=+=+-71b a b a a =-4,b =-3. 当a =4,b =-3时,b sin x +a cos x =-3sin x +4cos x =5sin (x +ϕ)(tan ϕ=-34); 当a =-4,b =-3时,b sin x +a cos x =-3sin x -4cos x =5sin (x +ϕ)(tan ϕ=34). ∴b sin x +a cos x 的最大值为5.例2.例3已知函数()b a x x a x a x f++--=2cos sin 322cos 的定义域为⎥⎦⎤⎢⎣⎡20π,,值域为[5,1]-,求常数a 、b 的值. 解:∵()b a x a x a x f++--=22sin 32cos ,b a x a ++⎪⎭⎫ ⎝⎛--=232cos 2π .∵20π≤≤x ,∴32323πππ≤-≤-x ,∴1 32cos 21≤⎪⎭⎫ ⎝⎛-≤-πx .当0a >时,()3b f x a b ≤≤+.∴⎩⎨⎧-==+.513b b a ,解得⎩⎨⎧-==.52b a ,当0a <时,3()a b f x b +≤≤.∴⎩⎨⎧=-=+.153b b a ,解得⎩⎨⎧=-=.12b a ,故a 、b 的值为⎩⎨⎧-==52b a 或⎩⎨⎧=-=12b a感悟:分类讨论是重要的数学思想方法,本例若不对常数a 进行讨论,将会出错。
三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。
1
三角函数最值问题的几种常见解法
宜兴市丁蜀高级中学 谈琴
三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。
这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。
解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。
下面就介绍几种常见的求三角函数最值的方法:
一 配方法
若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。
例1 函数3cos 3sin 2+--=x x y 的最小值为( ).
A . 2
B . 0
C . 41-
D . 6 [分析]本题可通过公式x x 22cos 1sin -=将函数表达式化为2cos 3cos 2+-=x x y ,
因含有cosx 的二次式,可换元,令cosx=t ,则,23,112
+-=≤≤-t t y t 配方,得41232
-⎪⎭
⎫ ⎝⎛-=t y , ∴≤≤-,11t 当t=1时,即cosx=1时,0m in =y ,选B. 例2 求函数y=5sinx+cos2x 的最值
[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。
()48331612,,221sin 68
3316812,,22,1sin ,1sin 183345sin 21sin 5sin 2sin 21sin 5max min 2
22=+⨯-=∈+=∴=-=+⨯-=∈-=-=∴≤≤-+⎪⎭⎫ ⎝
⎛--=++-=-+=y z k k x x y z k k x x x x x x x x y ππππ
2
二 引入辅助角法
例3已知函数()R x x x x y ∈+⋅+=1cos sin 2
3cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 2
2cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
解: ().47,6,2262,4562sin 21452sin 232cos 2121452sin 432cos 41122sin 2322cos 121max =∈+=∴+=+∴+⎪⎭⎫ ⎝⎛+=+⎪⎪⎭
⎫ ⎝⎛+=++=+⋅++⋅=
y z k k x k x x x x x x x x y ππππππ
三 利用三角函数的有界性
在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。
例4求函数1
cos 21cos 2-+=x x y 的值域 [分析] 此为d
x c b x a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。
或者也可先用反解法,再用三角函数的有界性去解。
解法一:原函数变形为1cos ,1cos 221≤-+
=x x y ,可直接得到:3≥y 或.31≤y 解法一:原函数变形为()()∴≤-+∴≤-+=,1121,1cos ,121cos y y x y y x 3≥y 或.3
1≤y 例5 (2003年高考题)已知函数())cos (sin sin 2x x x x f +=,求函数f(x)的最小正周期和
最大值。
[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。
3
解:()⎪⎭⎫ ⎝
⎛-+=+-=+=42212sin 2cos 1cos sin 2sin 22πx sn x x x x x x f ∴ f(x)的最小正周期为π,最大值为21+。
四 引入参数法(换元法)
对于表达式中同时含有sinx+cosx ,与sinxcosx 的函数,运用关系式(),cos sin 21cos sin 2x x x x ±=± 一般都可采用换元法转化为t 的二次函数去求最值,但必须要注意换元后新变量的取值范围。
例6 求函数y=sinx+cosx+sinxcosx 的最大值。
[分析]解:().c o s s i n 21c o s s i n 2x x x x +=+令sinx+cosx=t ,则[]()t t y t t x x +-=∴-∈-=21,2,221c o s s i n 22,其中[]
2,2-∈t 当.221,14sin ,2max +=∴=⎪⎭⎫ ⎝
⎛+=
y x t π 五 利用基本不等式法
利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区。
例7 求函数x
x y 22cos 4sin 1+=
的最值。
解:x x y 22cos 4sin 1+==()9225tan 4cot 5tan 14cot 12222=⨯+≥++=+++x x x x 当且仅当,tan 4cot 22x x =即2cot ±=x 时,等号成立,故9m in =y 。
六 利用函数在区间内的单调性
例8 已知()π,0∈x ,求函数x x y sin 2sin +
=的最小值。
[分析] 此题为x a x sin sin +
型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最
4
值,适合用函数在区间内的单调性来求解。
设()t
t y t t x 1,10,sin +=≤<=,在(0,1)上为减函数,当t=1时,3m in =y 。
七 数形结合
由于1cos sin 22=+x x ,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得。
例9 求函数()π<<--=
x x
x y 0cos 2sin 的最小值。
[分析] 法一:将表达式改写成,cos 2sin 0x x y --=y 可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率。
由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y 的最小值就是在这个半圆上求一点,使得相应的直线斜率最小。
设过点A 的切线与半圆相切与点B,则.0<≤y k AB 可求得.3
365tan -==πAB k 所以y 的最小值为33-(此时3
π=x ). 法二:该题也可利用关系式asinx+bcosx=()φ++x b a sin 22(即引入辅助角法)和有
界性来求解。
八 判别式法
例10 求函数x
x x x y tan sec tan sec 22+-=的最值。
[分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法。
解:()()()()
ππ∈===∴=-+++-∴+++-=+-=k k x x y y x y x y x x x x x x x x y ,0tan ,101tan 1tan 11
tan tan 1tan tan tan sec tan sec 22222
1≠y 时此时一元二次方程总有实数解
5 ()()()().33
10313,01412
2≤≤∴≤--∴≥--+=∆∴y y y y y 由y=3,tanx=-1,()3,4m ax =∈+
=∴y z k k x ππ 由.3
1,4,1tan ,31m in =+=∴==
y k x x y ππ
九 分类讨论法 含参数的三角函数的值域问题,需要对参数进行讨论。
例 11 设()⎪⎭
⎫ ⎝⎛≤≤--+-=20214sin cos 2πx a x a x x f ,用a 表示f(x)的最大值M(a). 解:().2
14sin sin 2+-+-=a x a x x f 令sinx=t,则,10≤≤t ()().21442214222+-+⎪⎭
⎫ ⎝⎛--=+-+-==a a a t a at t x f t g (1) 当
12
≥a ,即()t g a ,2≥在[0,1]上递增, ()();21431-==a g a M (2) 当,120≤≤a 即20≤≤a 时,()t g 在[0,1]上先增后减,();2
14422+-=⎪⎭⎫ ⎝⎛=a a a g a M (3) 当,02≤a 即()t g a ,0≤在[0,1]上递减,()().4
210a g a M -== ()⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤-≤≤+-≥-=∴0,42120,2
1442
,21432a a a a a a a a M 以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见。
解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在。