三角函数最值问题类型归纳
- 格式:doc
- 大小:67.00 KB
- 文档页数:3
三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
三角函数的值域或最值常见的三角函数最值的基本类型有:(1)y=asinx+b (或y=acosx+b )型,利用()1cos 1sin ≤≤x x 或,即可求解,此时必须注意字母a 的符号对最值的影响。
(2)y=asinx+bcosx 型,引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
(3)y=asin 2x+bsinx+c (或y=acos 2x+bcosx+c ),型,可令t=sinx (t=cosx ),-1≤t ≤1,化归为闭区间上二次函数的最值问题。
(4)Y=d x c b x a ++sin sin (或y=dx bx a ++cos cos )型,解出sinx (或cosx ),利用()1cos 1sin ≤≤x x 或去解;或用分离常数的方法去解决。
(5)y=d x c b x a ++cos sin (y=dx c bx a ++sin cos )型,可化归为sin (x+ϕ)g (y )去处理;或用万能公式换元后用判别式去处理;当a=c 时,还可利用数形结合的方法去处理上。
(6)对于含有sinx±cosx,sinxcosx 的函数的最值问题,常用的方法是令sinx±cosx=t,2≤t ,将sinxcosx 转化为t 的函数关系式,从而化为二次函数的最值问题。
一、利用三角函数的有界性.求解这类问题,首先利用有关三角函数公式化为sin()y A x k ωϕ=++的形式.在化简过程中常常用到公式:22sin cos sin(),tan ,ba xb x x aab ϕϕϕ+=++=其中由及点(a,b)的位置确定. 例1 、(2000年高考)已知:2123sin cos 12sin y x x x x R =+⋅+∈,,求y 的最大值及此时x 的集合. 解:∵2123sin cos 12sin y x x x =+⋅+1cos 2315sin 21sin(2)44264x x x π+=++=++,∴当sin(2)16x π+=时,max 157244y=+= .此时,2262x k πππ+=+,即6x k ππ=+. 所以y 的最大值为74,此时x 的集合为{|}6x x k k Z ππ=+∈,.例2、求函数1cos 3cos xy x-=+的值域.解: 1cos 3cos x y x -=+⇒(1)cos 2y x +=-⇒2cos 1x y=-+,由|cos |1x ≤得2||11y -≤+, |1|2y +≥即,解得31y y ≤-≥或,所以函数1cos 3cos xy x-=+的值域是3][1-∞-∞ (,,+)二、利用二次函数最值性质求解这类问题,首先利用有关三角函数公式化为2sin sin y x b x c a =++的形式.例3、求函数278cos 2[,]63sin y x x x ππ=--∈-,的值域. 解:278c o s 2s i n y x x =--=278cos 2(1)cos x x ---=223,(cos 2)x --∵[,]63x ππ∈-,∴1cos [1]2x ∈,,∴3[1]2y ∈-,.例4、(90年高考)求函数sin cos sin cos y x x x x =++的最小值. 解:设sin cos x x t +=,[22]t ∈-,,则21sin cos 2x x t -=,所以()y f t ==211,2(1)t ⋅-+([2,2])t ∈-,当1[22]t =-∈-,时,y 有最小值1-.三、利用均值不等式*利用均值不等式求三角函数时,一定要注意均值不等式中的使用条件:一正、二定、三相等.例6、当0x π<<时,求sin 2cos xy x=+的最大值.解:设2223tan 0,(0),,23233x t t t x y t t π=><<=≤=⋅+则(当且仅当tan 32xt ==时取等号)。
十一种类型的三角函数最值问题1.利用三角函数的有界性求最值利用正弦函数、余弦正数的有界性:∣sinx ∣≤1,∣cosx ∣≤1,可求形如y=Asin(ωx+φ),y=Acos(Asin(ωx+φ)(A ≠0, φ≠0)的函数最值.例:已知函数y=12 cos 2x+32 sinxcosx+1,x ∈R,当函数y 取得最大值时,求自变量x 的集合.2.反函数法 例:求函数1cos 21cos 2-+=x x y 的值域[分析] 此为dx c bx a y -+=cos cos 型的三角函数求最值问题,分子、分母的三角函数同名、同角,先用反解法,再用三角函数的有界性去解。
3.配方法—---转化为二次函数求最值例:求函数y=f(x)=cos 22x-3cos2x+1的最值.4.引入辅助角法y=asinx+bcosx 型处理方法:引入辅助角ϕ ,化为y=22b a +sin (x+ϕ),利用函数()1sin ≤+ϕx 即可求解。
Y=asin 2x+bsinxcosx+mcos 2x+n 型亦可以化为此类。
例:已知函数()R x x x x y ∈+⋅+=1cos sin 23cos 212当函数y 取得最大值时,求自变量x 的集合。
[分析] 此类问题为x c x x b x a y 22cos cos sin sin +⋅+=的三角函数求最值问题,它可通过降次化简整理为x b x a y cos sin +=型求解。
5. 利用数形结合 例: 求函数y xx=+s in c o s 2的最值。
解:6、换元法例:若0<x<2π,求函数y=(1+1sinx )(1+1cosx )的最小值.7. 利用函数在区间内的单调性8. 例: 已知()π,0∈x ,求函数xx y sin 2sin +=的最小值。
[分析] 此题为xax sin sin +型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。
解题宝典三角函数最值问题的类型很多.要提高解答三角函数最值问题的效率,需要掌握不同类型三角函数最值问题的特点,对三角函数式进行合理的化简或转化,充分利用三角函数的性质与图象来解题.本文重点探讨一下几类常见三角函数最值问题的解法.一、f ()x =A sin ()ωx +φ+k 型对于形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,一般要利用三角函数y =sin x 、y =cos x 、y =tan x 的性质和图象来求其最值.例1.求函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最值.解:∵x ∈[-π4,π6],∴-π6≤2x +π3≤2π3,由正弦函数y =sin x 的图象可知-12≤sin æèöø2x +π3≤1,-14≤12sin æèöø2x +π3≤12,∴函数y =12sin æèöø2x +π3在区间[-π4,π6]上的最大值是12,最小值是-14.解答形如f ()x =A sin ()ωx +φ+k 、f ()x =A cos(ωx +φ)+k 、f ()x =A tan ()ωx +φ+k 的三角函数最值问题,要首先从y =sin x 、y =cos x 、y =tan x 的性质和图象入手,在y =sin x 、y =cos x 、y =tan x 图象的基础上作相应的变换,找出对应的最值点、与坐标轴的交点、对称轴等,从而快速确定函数在定义域内的最值.二、f ()x =λsin x +μcos x +t 型对于f ()x =λsin x +μcos x +t (λ、μ不全为0,t ∈R)型三角函数的最值问题,应先把函数式进行恒等变换,利用辅助角公式,将其转化为f ()x =λ2+μ2⋅sin(x +φ)+t (其中cos φ=λλ2+μ2,sin φ=μλ2+μ2,tan φ=μλ)的形式,或转化为f ()x =μ2+λ2cos(x +φ)+t 的形式;然后根据正弦或余弦函数的有界性来求其最值.例2.在直角坐标系中,曲线C 的参数方程是ìíîïïïïx =1-t 21+t 2,y =4t 1+t 2,(t 为参数)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是2ρcos θ+3ρsin θ+11=0,求曲线C 上的点到直线l 的最短距离.解:将参数方程设为{x =cos α,y =2sin α,(α为参数,-π<α<π)根据点到直线的距离公式,可得曲线C 上任意一点(cos α,2sin α)到直线l 的距离为d =||||||4cos æèöøα-π3+117,当α=-2π3时,||||||4cos æèöøα-π3+11取得最小值7,则曲线C 到l 的最短距离是7.目标式2cos α+23sin α+11形如f ()x =λsin x+μcos x +t ,要求三角函数的最值,需要先利用辅助角公式进行恒等变换,将目标式转化成余弦函数式4cos æèöøα-π3;然后再根据余弦函数的有界性求其最值.三、f ()x =k sin 2x +m sin x +n (k ≠0)型对于形如f ()x =k sin 2x +m sin x +n (k ≠0)、f ()x =k cos 2x +m cos x +n (k ≠0)的三角函数最值问题,一般采用换元法求解.首先令sin x =t 、cos x =k ,得到二次函数;再利用二次函数和正余弦函数的性质求最值.例3.求函数f ()x =sin æèöø2x +3π2-3cos x的最小值.解:f ()x =sin æèöø2x +3π2-3cos x=-2cos 2x -3cos x +1,令cos x =t ,t ∈[-1,1],得y =-2t 2-3t +1=-2æèöøt +342+178,当t =1时,函数最小值是-4.原函数可化成f ()x =k cos 2x +m cos x +n 的形式,于是通过换元,将三角函数式转化为关于t 的二次函数式,这样便可直接根据二次函数的性质求最值.在解题时,需重点关注二次函数的定义域,此时二次函数的定义域受三角函数cos x =t 的单调性和有界性影响.四、f ()x =λsin x +t μcos x +n 或f ()x =μcos x +nλsin x +t(λμ≠0)型对于此类三角函数最值问题,一般有两种解法.一余涛涛38解题宝典是解析法,将函数f ()x =μcos x +nλsin x +t化成f ()x =μλ.cos x +n μsin x +t λ,再用换元法,令k =cos x +n μsin x +t λ,这样就得到线性函数f ()k =μλ.k (λμ≠0),即可根据线性函数的单调性求最值;或将k 看作是单位圆上的一个动点(sin x ,cos x )与定点(-t λ,-nμ)连线的斜率的最值,通过数形结合来解题.二是利用三角函数的有界性,通过恒等变形,将函数式转化成整式,再根据辅助角公式和三角函数的有界性来求最值.例4.求函数f ()x =sin x -1cos x +1的最大值.解法一:设P ()x ,y 是圆x 2+y 2=1上的动点,点A ()-1,1,k 是P 、A 两点所在直线的斜率,则PA 的直线方程是y -1=k (x +1),整理得kx -y +k +1=0.可知当直线与圆相切时,直线PA 的斜率最大,∵圆心到PA 直线的距离d ==1,解得k =0,∴f ()x =sin x -1cos x +1的最大值是0.解法二:将y =sin x -1cos x +1(x ≠(2k +1)π)变形,可得y +1=sin x -y cos x =1+y 2sin (x +φ),即sin ()x +φ=y +11+y 2,而||||||||y +11+y2=|sin (x +φ)|≤1,得||y +1≤1,则y ≤0,即函数()x =sin x -1cos x +1的最大值是0.解法一主要是运用了解析法,将函数最值问题转化为求单位圆x 2+y 2=1上的动点P (x ,y )与定点A (-1,1)连线斜率的最值,通过数形结合求得最值.解法二主要是利用正弦函数的有界性,通过三角恒等变换,将函数式转化为sin ()x +φ,再根据正弦函数的有界性|sin (x +φ)|≤1,建立关于y 的不等式,从而求得y 的最值.五、f ()x =λsin x +nμsin x 型对于形如f ()x =λsin x +nμsin x 、f ()x =λcos x +n μcos x 、f ()x =λtan x +n μtan x(λ、μ、n 为常数)的三角函数最值问题,通常利用基本不等式来求最值.当不能使用基本不等式求解时,可设t =sin x ,将原函数变为f ()t =λt +n μt ,再利用对勾函数的单调性求最值.还可以利用导数法来求最值.例5.当π4≤x ≤π2时,求函数f ()x =cos x +1cos x 的最小值.解法一:函数可变形为f ()x =cos x +12cos x+12cos x ,由基本不等式得cos x +12cos x≥2,当且仅当cos x=12cos x (即x =π4)等号成立,∵12cos x ≥,∴f ()x.解法二:∵π4≤x ≤π2,∴0<cos x ≤,令t =cos x ,∴0<t ≤,∴f ()t =t+1t为减函数,∴当t =时,f ()t =t +1t 有最小值解法三:对函数求导数,可得f ′()x =sin 3xcos 2x,∵π4≤x ≤π2,∴f ′()x >0,由此可判断出函数f ()x =cos x +1cos x在区间[π4,π2]x =π4时,函数f ()x =cos x +1cos x 取得最小值.解法一主要运用了基本不等式a +b ≥2ab(a >0,b >0),由于cos x +12cos x为两式的和,且其积为定值,在两式相等时可取等号,这就满足了运用基本不等式的应用条件:一正、二定、三相等.解法二主要运用对勾函数f ()x =x +ax的性质.运用对勾函数的性质求最值,需熟记对勾函数的单调性和最值点.解法三主要运用到导数法来求得最值.可见,求解三角函数最值问题是有规律可循的.(1)一般是从三角函数的解析式入手,明确其结构特征,充分利用函数的性质与图象来寻找解题思路;(2)对于比较复杂的三角函数式,需要利用诱导公式、同角的三角函数关系式、两角和差公式、二倍角公式等进行恒等变换,将函数式化简或转化成单一的三角函数式来求最值;(3)在求三角函数最值时,可灵活运用换元法、基本不等式法、解析法、三角函数的有界性进行解题.掌握这些方法与规律就能有效提高求三角函数最值问题的效率.(作者单位:江苏省无锡市洛社高级中学)39。
三角函数最值问题的几种常见类型三角函数是重要的数学运算工具,三角函数最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现,这部分内容是一个难点。
三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次方程、不等式及某些几何知识的联系也很密切。
因此,三角函数的最值问题的求解,不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识。
这类问题往往概念性较强,具有一定的综合性和灵活性。
学生在解题时,常常出现解题思路不清楚,难以抓住最值问题的本质,不能给予恰如其分的分析。
因此有必要让学生对求三角函数的最值求解的方法有个总体的认识,以培养学生的数学解题能力和思维能力。
下面介绍几种典型的三角函数最值问题的类型。
?И?1 y=asin x +b(或y=a cos x+b)型的函数这种类型的函数的特点是含有正弦或者余弦函数,并且是一次式。
解这类的三角函数的最大值、最小值问解这类三角函数的最值问题时首先要让学生知道最值都是在给定的区间上取得的,因而要特别注意题设中所给出的区间或是挖掘题中的隐含条件。
例1:求y=sin6x+cos6x的最值。
解:y=(sin2x+cos2x) ( sin4x-sin2x cos2x+cos4x)=(sin2x+cos2x)2-3sin2x cos2x=1-34 sin22x=1-3 8 (1-cos4x)=58+38cos4x∴当x= Kπ2(k ∈z)时,有ymax=1当x= Kπ2+π4(k ∈z)时,有ymin= 14点评:求三角函数的最值时,常常通过恒等变换,而恒等变换,一般要综合运用同角三角函数间的关系、和角、半角、半角的三角函数及和差化积、积化和差公式。
2 y=asinx+bcosx型的函数这种类型的函数的特点是含有正余弦函数,并且是一次式。
解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。
三角函数的最值问题河南省漯河实验高中张银焕高中数学中,函数的最值是比较重要的内容之一,并且一直是各类考试的热点问题。
同样,三角函数的最大值,最小值也是非常重要的。
从近几年的高考试卷中可以看到,三角函数的最值问题是高考中一个重要内容。
在学习和教学中发现三角函数最值问题不仅仅是一个热点问题,也是一个难点问题。
一、三角函数最值问题的常见类型1.1y=acosx+bsinx 型.通常是化为y=22b a +sin(x+a),其中(tanΦ=a b ).这种类型可借助三角函数的值域来求最值.例1当-2π≤x≤2π时,函数f(x)=sinx+3cosx 的最值是什么?分析f(x)=2(12cosx)=2sin(x+3π).由-2π≤x≤2π,可得–6π≤x+3π≤56π,所以–12≤sin(x+3π)≤1.所以-1≤f(x)≤2.所以f(x)的最大值是2、最小值是-1.1.2y=sin sin c x d a x b++型.通常是先解出sinx=d by ay c −−后,再解出不等式|d by ay c−−|≤1得出y 的范围.例2求y=2sin 1sin 2x x −+的最值.分析由y=2sin 1sin 2x x −+,解得sinx=212y y −−−.再有|212y y −−−|≤1,解得-3≤y≤13.所以y 的最大值是13、最小值是-3.1.3y=cos sin c x d a x b++型.通常是将原式化为aysinx-ccosx=d-by,即22)(cay +sin(x-Φ)=d-by.得sin(x-Φ)≤|1|≤1,得出y 的范围.例3求函数y=12sin cos x x ++的最大值.分析由y=12sin cos x x ++,知y≠0.于是原式可以化为ysinx+ycosx=1-2y,即2ysin(x+4π)=1-2y.∵y≠0,∴sin(x+4π)=.解得≤y≤1+.所以y 的最大值是.1.4y=asin 2x+bsinx+c(或y=acos 2x+bcosx+c)型.通常用配方法求最值,但是应该注意条件-1≤sinx1≤以及对称轴与区间[-1,1]的位置关系.例4求函数y=cos 2x-2asinx-a.(a 为定值)的最大值M.分析y=cos 2x-2asinx-a=1-sin 2x-2asinx-a=-(sinx+a)2+a 2-a+1.(1)若a>1,则sinx=-1时,M=-(-1+a)2+a 2-a+1=a.(2)若a<-1,则sinx=1时,M=-(1+a)2+a 2-a+1=-3a.(3)若-1≤a≤1,则sinx=a 时,M=a 2-a+1.1.5y=asin 2x+bsinxcosx+ccos 2x 型.通常是运用降幂公式、倍角公式整理后化为y=acosx+bsinx 型.例5若0≤θ≤π,且f(θ)=53cos 2θ+3sin 2θ-4sinθcosθ,求f(θ)的最大值和最小值.分析利用降幂公式可得:f(θ)=−−++22cos 1322cos 135θθ)23sin(4332sin 2θπθ−+=.由0≤θ≤π,可得-53π<3π-2θ≤3π.所以-1≤sin(3π-2θ)≤1.所以f(θ)的最大值是33+4、最小值是33-4.1.6y=sinxcos 2x 型.通常是用均值不等式求解.例6已知sin 2α+sin 2β+sin 2γ=1(α、β、γ为锐角),那么cosαcosβcosγ最大值是什么?分析由sin 2α+sin 2β+sin 2γ=1,得sin 2α+sin 2β=cos 2γ.那么cos 2αcos 2βcos 2γ=cos 2αcos 2β(sin 2α+sin 2β)≤(3sin sin cos cos 2222βαβα+++)3=827.所以.1.7f(sinx±cosx、sinxcosx)型.通常是用和差换元的方法化为二次函数问题.例7求函数y=sinxcosx+sinx+cosx 的最大值.分析设sinx+cosx=t(|t|≤2),则sinxcosx=212t −.这样y=212t −+t=12(t+1)2-1(-2≤t≤2).所以t=2时y 的最大值是12(2+1)2-1=2+12.二、三角函数最值问题的常见错误.最值问题是中学数学中很常见,很重要的体型,也是高考的热点,此类问题在代数、三角、立体几何和解析几何中屡屡出现,它的解法灵活多变,在学习中发现大家在解题时常常出现错误,而且有的还相当隐蔽,现列举解三角函数最值时常见错误加以分析仅供参考。
三角函数最值问题类型归纳
三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。
其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。
题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。
掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。
1.y=asinx+bcosx型的函数
特点是含有正余弦函数,并且是一次式。
解决此类问题的指导思想是把正、余弦函数转化为
只有一种三角函数。
应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。
例1.当-≤x≤时,函数f(x)=sinx+cosx的( D )
A、最大值是1,最小值是-1
B、最大值是1,最小值是-
C、最大值是2,最小值是-2
D、最大值是2,最小值是-1
分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。
2.y=asin2x+bsinxcosx+cos2x型的函数
特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。
例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。
解:y=sin2x+2sinxcosx+3cos2x
=(sin2x+cos2x)+sin2x+2cos2x
=1+sin2x+1+cos2x
=2+sin(2x+)
当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。
3.y=asin2x+bcosx+c型的函数
特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。
例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。
解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,
令sinx=t,则y=-(t+a)2+a2+1-a, (-1≤t≤1)
(1) 若-a<-1时,即a>1时, 在t=-1时,取最大值M=a。
(2) 若-1≤-a≤1,即-1≤a≤1时,在t=-a时,取最大值M=a2+1-a。
(3) 若-a>1,即a<-1时,在t=1时,取大值M=-3a。
4.y=型的函数
特点是一个分式,分子、分母分别会有正、余弦的一次式。
几乎所有的分式型都可以通过分子,分母的化简,最后整理成这个形式,它的处理方式有多种。
例4.求函数y=的最大值和最小值。
解法1:原解析式即:sinx-ycosx=2-2y, 即sin(x+φ)=,
∵|sin(x+φ)|≤1,∴≤1,解出y的范围即可。
解法2:表示的是过点(2, 2)与点(cosx, sinx)的斜率,而点(cosx, sinx)是单位圆上的点,观察图形可以得出在直线与圆相切时取极值。
解法3:应用万能公式设t=tan(),则y=,即(2-3y)t2-2t+2-y=0,
根据Δ≥0解出y的最值即可。
5.y=sinxcos2x型的函数。
它的特点是关于sinx,cosx的三次式(cos2x是cosx的二次式)。
因为高中数学不涉及三次函数的最值问题,故几乎所有的三次式的最值问题(不只是在三角)都用均值不等式来解(没有其它的方法)。
但需要注意是否符合应用的条件(既然题目让你求,多半是符合使用条件的,但做题不能少这一步),及等号是否能取得。
例5.若x∈(0,π),求函数y=(1+cosx)·sin的最大值。
解:y=2cos2·sin>0,
y2=4cos4sin2
=2·cos 2·cos 2·2sin 2
所以0<y ≤。
注:本题的角和函数很难统一,并且还会出现次数太高的问题。
6.含有sinx 与cosx 的和与积型的函数式。
其特点是含有或经过化简整理后出现sinx+cosx 与sinxcosx 的式子,处理方式是应用 (sinx+cosx)2=1+2sinxcosx 进行转化,变成二次函数的问题。
例6.求y=2sinxcosx+sinx+cosx 的最大值。
解:令sinx+cosx=t (-≤t ≤),则1+2sinxcosx=t 2,所以2sinxcosx=t 2-1,
所以y=t 2-1+t=(t+)2-,
根据二次函数的图象,解出y 的最大值是1+。
相信通过这一归纳整理,大家对有关三角函数最值的问题就不会陌生了。
并且好多其它的求最值的问题可以通过代换转化成三角求最值的问题。
希望同学们在做有关的问题时结合上面的知识。