防雷接地测试原理方式及注意事项
- 格式:doc
- 大小:58.50 KB
- 文档页数:6
防雷接地检测规范防雷接地检测规范是指对建筑物的接地系统进行检测和评估的标准和要求。
通过检测接地系统的性能和可靠性,可以确保建筑物在雷电活动中的安全性。
下面是防雷接地检测规范的要点。
一、检测对象防雷接地检测主要针对建筑物的接地系统进行,包括建筑物的主体结构、金属导体、设备设施等所使用的接地系统。
二、检测标准防雷接地检测需按照国家相关规范和标准进行,包括《建筑物防雷设计规范》、《建筑物电气设计规范》等。
同时,还应参考国际标准和行业最佳实践。
三、检测方法防雷接地检测主要采用以下方法:1. 地陷法:通过将接地体连接到可控制电压的电源上,并测量地体与周围环境或其他接地体的电位差,来评估接地系统的性能。
2. 电测法:通过测量接地系统中电流、电阻和电位差等参数,来评估接地系统的性能。
3. 磁测法:通过测量地面磁场分布的变化,来评估接地系统的性能。
四、检测要求1. 接地系统的电阻应满足国家相关规范的要求,通常应小于10欧姆。
2. 接地系统的电位差应小于10伏,以保证人身安全和设备设施的正常运行。
3. 接地系统的导通性能应良好,应确保接地系统与地埋电缆或其他设备的连接牢固可靠。
4. 接地系统应能够有效分散雷击电流,减少对建筑物和设备设施的影响。
五、检测频率建筑物的防雷接地检测应定期进行,一般建议每年进行一次。
在雷电频发地区或特殊应用要求下,可根据实际情况增加检测频率。
六、检测记录和报告防雷接地检测过程中需详细记录检测的时间、地点、方法、仪器设备以及检测结果等信息。
并根据检测结果,提供相应的检测报告,包括接地系统的性能评估和改进建议等。
总结起来,防雷接地检测规范是确保建筑物在雷电活动中的安全性的重要措施。
通过按照国家相关规范和标准进行检测和评估,可以确保接地系统的性能和可靠性,有效分散雷击电流,减少对建筑物和设备设施的影响。
同时,定期进行检测并提供详细的检测记录和报告,可以保证接地系统的正常运行,并提出改进建议。
防雷检测方案随着现代科技的不断发展,雷电对于电子设备产生的威胁也越来越大。
因此,防雷检测方案变得尤为重要。
本文将探讨防雷检测方案的基本原理、常见技术以及实现方法。
一、基本原理防雷检测方案的基本原理是测量电气系统中的电位差。
如果电气系统中的电位差超过测量仪器的标称极限值,那么就会产生电气击穿。
为了防止电气击穿的发生,必须采取一些防护措施。
二、常见技术1. 雷击灵敏度测试雷击灵敏度测试是一种检测设备在雷击情况下的灵敏度的方法。
测试时,将设备暴露于模拟雷击环境下,通过对设备进行不同程度的雷击测试,可以评估设备的防雷性能。
这种方法能够有效地检测出设备的局部雷击敏感性。
2. 雷击波前检测技术雷击波前检测技术是一种在电气系统中检测慢速雷击波的方法。
检测时,采用高速采样技术获得电气系统中慢速雷击波的波形,并通过信号处理技术提取出波形中的特征信息。
这种方法能够有效地检测出慢速雷击波对设备的影响。
3. 雷击电压测试技术雷击电压测试技术是一种在电气系统中测量雷击电压的方法。
测试时,采用高速采样技术获取电气系统中的雷击电压波形,并通过信号处理技术对波形进行分析。
这种方法能够有效地检测出雷击电压对设备的影响。
三、实现方法1. 措施一:防雷接地防雷接地是一种有效的防雷措施。
在设计和施工电气线路时,必须要合理设置和布置接地装置。
良好的接地装置能够有效地将雷击电流引入地体,从而提高设备的防雷能力。
2. 措施二:防雷保护装置防雷保护装置是一种针对电气系统进行雷击保护的装置。
常见的防雷保护装置有避雷针、避雷带、避雷器等。
这些装置能够有效地降低雷击电压和雷击电流,从而保护设备免受雷击的影响。
3. 措施三:防雷维护防雷维护是一种定期进行的防雷检测和维护工作。
通过定期对电气系统进行检测和维护,能够及时发现设备的防雷性能是否良好,从而采取有效的防护措施。
四、总结防雷检测方案是电气系统中非常重要的一个环节。
通过采用有效的防护措施,能够防止雷击对电气设备造成损害。
防雷接地测试原理、方式及注意事项编制人:项继鹏西雅帝环境物业管理二零一六年(一)正确选择接地电阻测量方式及测量原理接地电阻测量方法通常有以下几种:两线法、三线法、四线法、单钳法和双钳法。
各有各的特点,实际测量时,尽量选择正确的方式,才能使测量结果准确无误。
1.两线法条件:必须有已知接地良好的地,如PEN等,所测量的结果是被测地和已知地的电阻和。
如果已知地远小于被测地的电阻,测量结果可以作为被测地的结果。
适用于:楼群稠密或水泥地等密封无法打地桩的地区。
接线:E+ES接到被测地,H+S接到已知地。
2.三线法条件:必须有两个接地棒:一个辅助地和一个探测电极。
各个接地电极间的距离不小于20米。
原理是在辅助地和被测地之间加上电流,测量被测地和探测电极间的电压降,测量结果包括测量电缆本身的电阻。
适用于:地基接地,建筑工地接地和防雷接地。
接线:S接探测电极,H接辅助地,E和ES连接后接被测地。
3.四线法基本上同三线法,在低接地电阻测量和消除测量电缆电阻对测量结果的影响时替代三线法,测量时E和ES必须单独直接连接到被测地。
该方法是所有接地电阻测量方法中准确度最高的。
4.单钳测量测量多点接地中的每个接地点的接地电阻,而且不能断开接地连接防止发生危险。
适用于:多点接地,不能断开连接,测量每个接地点的电阻。
接线:用电流钳监测被测接地点上的电流。
5.双钳法条件:多点接地,不打辅助地桩,测量单个接地。
接线:使用厂商指定的电流钳接到相应的插口上,将两钳卡在接地导体上,两钳间的距离要大于0.25米。
(二)接地电阻值的正确测量接地是电器安全技术中很重要的工作之一,接地装置的合适与否,接地电阻值是否合乎标准要求,直接影响到电力系统设备的正常运行,影响到建筑物的安全,还关系到人身安全。
因此,应当正确选择接地方法及测量接地电阻。
笔者现依据接地电阻的测量原理及结合实际测试,提出下述测量接地电阻的几点经验。
一、测量前的分析测量前应掌握埋地电极的分布情况(最好查阅竣工图),然后依据公式: (s为电极系统所覆盖的面积),并按图纸计算接地系统的有限半径,以确定辅助电极的远近位置和朝向。
防雷接地测试的工作原理防雷接地测试是电工工作中常用的测试手段之一,用于检测建筑物或设备的接地系统是否良好,是否能有效地将雷电击中建筑物或设备的电流引导到地下,保护人身和财产的安全。
其工作原理主要涉及以下几个方面:1. 接地电阻的测量:雷电击中建筑物或设备时,会产生一定电流,如果接地系统的接地电阻过高,则不能有效将电流引导到地下。
因此,防雷接地测试主要通过测量接地系统的接地电阻来评估接地系统的性能。
常用的测试仪器是接地电阻测试仪,测试方法一般采用四线法或三线法。
四线法测量时,测试仪同时施加电流和测量电压,通过测量电流和电压的比值计算出接地电阻值。
三线法测量时,测试仪仅测量通过地线流过的电流和电压,通过测量电流和电压的比值计算出接地电阻值。
2. 接地系统的设计和施工:接地系统的设计和施工是影响接地性能的关键因素之一。
在设计接地系统时,需要考虑接地电阻与接地电流的关系,以及接地系统与周围环境的情况,如土壤的电导率等。
在施工过程中,需要确保接地系统的接地体与地下土壤接触良好,避免接地体表面存在绝缘物质,以减小接地电阻。
另外,还需要保证接地系统与建筑物或设备其他金属结构的连接可靠,以形成有效的电路路径。
3. 测试仪器的选用和操作:进行防雷接地测试时,需要选用适用的测试仪器,并按照操作指南正确使用。
一般测试仪器具有自动测量和数据记录功能,可以简化测试过程,并提供精确的测试结果。
操作时,需要根据具体测试情况选择合适的测试方式和参数,并遵循测试仪器的操作指南进行操作。
测试仪器一般提供一个接地电极和一个测量电极,接地电极通过导线与接地系统连接,测量电极用于测量接地电阻。
4. 测试结果的评估和处理:测试完成后,需要对测试结果进行评估和处理。
一般来说,接地电阻的阈值是根据具体的应用要求或标准规定的,如不同行业或不同地区可能有不同的阈值要求。
根据测试结果和阈值要求的比较,可以判断接地系统的性能是否良好。
如果测试结果超过阈值,表明接地系统存在问题,需要采取相应的措施进行修复或改进。
防雷接地安全操作指南雷电是一种自然现象,但其带来的危害却不容小觑。
为了保障人员生命安全和设备正常运行,防雷接地工作至关重要。
本文将为您详细介绍防雷接地的安全操作指南。
一、防雷接地的基本原理防雷接地的主要目的是将雷电产生的巨大电流引入大地,从而避免对建筑物、设备和人员造成损害。
其原理是通过接地装置,将建筑物或设备与大地形成良好的导电连接,使雷电电流能够迅速流散到大地中。
二、防雷接地系统的组成一个完整的防雷接地系统通常包括接闪器、引下线和接地装置三部分。
接闪器:位于建筑物顶部或其他易受雷击的部位,用于直接接受雷电的袭击。
常见的接闪器有避雷针、避雷带和避雷网等。
引下线:连接接闪器和接地装置的导体,用于将雷电电流从接闪器传导至接地装置。
接地装置:埋入地下的金属导体或导体群,用于将雷电电流散入大地。
三、防雷接地施工前的准备工作在进行防雷接地施工前,需要做好充分的准备工作,以确保施工的顺利进行和施工质量。
1、熟悉设计图纸:施工人员应仔细阅读和理解防雷接地系统的设计图纸,明确各个部件的位置、规格和连接方式。
2、现场勘查:对施工场地进行详细的勘查,了解地质条件、地下管线分布等情况,避免施工过程中对现有设施造成损坏。
3、材料准备:根据设计要求,准备好所需的接地材料,如镀锌扁钢、镀锌圆钢、接地极等,并确保材料的质量符合标准。
4、工具准备:准备好施工所需的工具,如电焊机、切割机、扳手等,并确保工具的性能良好。
四、防雷接地的施工流程1、接地极安装(1)根据设计要求,在选定的位置打入接地极。
接地极的深度和间距应符合设计规范。
(2)接地极与土壤应紧密接触,可在接地极周围填充降阻剂,以降低接地电阻。
2、接地干线敷设(1)将接地干线沿着建筑物或设备的周边敷设,敷设时应保持平直,避免弯曲和打折。
(2)接地干线的连接应采用焊接或螺栓连接,连接处应进行防腐处理。
3、引下线安装(1)引下线应沿建筑物的外墙敷设,固定牢固。
(2)引下线的连接应采用焊接,焊接长度应符合规范要求。
防雷接地电阻实验报告1. 实验目的本次实验的目的是为了确保建筑物的防雷接地系统能够正常工作,减小雷电对建筑物及人身安全的影响。
通过测量接地电阻,评估接地系统的性能,确保其满足相关安全标准。
2. 实验原理接地电阻是衡量接地体在特定频率下对电流的阻碍程度。
防雷接地电阻测量原理通常采用四线法,通过测量装置测量接地体与大地之间的电阻值。
3. 实验设备1. 接地电阻测试仪2. 接地棒3. 测量导线4. 绝缘棒4. 实验步骤4.1 设备准备1. 确保接地电阻测试仪电源充足,仪器正常工作。
2. 将接地棒插入土壤,确保接地棒与大地良好接触。
3. 将测量导线分别连接到接地电阻测试仪和接地棒。
4.2 测量接地电阻1. 开启接地电阻测试仪,选择合适的测试频率。
2. 将绝缘棒插入土壤,确保绝缘棒与大地良好隔离。
3. 根据测试仪提示,逐步调节测试仪的测试电流。
4. 记录测试仪显示的接地电阻值。
4.3 数据记录与分析1. 记录实验日期、时间、测试人员等信息。
2. 记录接地电阻测试值,并换算为标准单位(Ω)。
3. 分析接地电阻值是否满足相关安全标准。
5. 实验结果与分析本次实验测得的接地电阻值为XXX Ω,符合相关安全标准要求(如:≤10Ω)。
说明防雷接地系统性能良好,能够有效减小雷电对建筑物及人身安全的影响。
6. 实验结论本次实验表明,建筑物防雷接地系统接地电阻值符合安全标准,接地系统能够正常工作。
建议定期进行接地电阻测量,确保接地系统始终保持良好的性能。
7. 实验注意事项1. 实验过程中应确保操作人员安全,佩戴绝缘手套、鞋等防护用品。
2. 测量仪器应定期进行校准,确保测试数据的准确性。
3. 实验环境应满足安全要求,避免在雷雨天气进行实验。
8. 实验报告编写人(实验报告编写人姓名)9. 实验报告编写日期(实验报告编写日期)。
防雷接地检查常识和要点防雷接地的测试方法1、你先找到防雷接地网的接地引线或等电位联接箱2、用接地电阻测测试仪测接地电阻(有两根测试桩0.4M的要插入泥土,一根距测试点20米,一根40米,所以测试点周围42米范围内要有泥土)3、接地电阻值越小越好,具体合格值当设计有要求时必需按设计要求规定,设计没要求时不能大于4欧。
防雷检测主要检测什么1、检测防雷装置的有效性,接闪器、引下线、接地装置等的连通性。
2、接地系统的有效接地电阻,要求≤10Ω。
3、电源防雷系统的对地绝缘阻抗是否在允许值,接地系统是否牢靠,瞬时钳压数值是否有变化等。
4、信息系统信号防雷系统,对于连接的电阻是否属于参数允许值,瞬时钳压数值是否有变化,对地绝缘电阻的正常值等。
一般的防雷检测基本是有这些方面的,还要根据属地的地方性要求,毕竟高雷暴地区的要求会高一些。
防雷装置运行中的检查、维护项目及注意事项有哪些?防雷装置在运行中,要加强巡检,及时发现异常和缺陷并进行处理,严防防雷装置形同虚设或防雷性能下降。
具体检查项目如下:(1)防雷装置引雷部分、接地引下线和接地体三者之间连接良好。
(2)运行中应定期测试接地电阻,接地电阻应符合规定要求。
(2)避雷器应定期做好预防性试验。
(3)避雷针、避雷线及其接地线应无机械损伤和锈蚀现象。
(4)避雷器绝缘套管应完整,表面应无裂纹、无严重污染和绝缘剥落等现象。
(5)定期抄录放电记录器所指示的避雷器的动作次数。
(6)接地部分接地应良好。
此外,在每年的雷雨季节来临之前,应进行一次全面的检查、维护,并进行必要的电气预防性试验。
具体的试验项目(其中有关避雷器部分是以阀型避雷器为例)如下1)测量接地部分的接地电阻。
2)避雷器标称电流下的残压试验。
3)避雷器工频放电电压试验。
4)避雷器密封试验等。
防雷元件测试仪的介绍及使用方法防雷元件测试仪是一种用来测试防雷元件(如避雷针、避雷网等)工作状态和性能的专用仪器。
它能够检测元件的放电能力、引导能力和接地能力等重要指标,确保防雷装置的有效工作。
本文将介绍防雷元件测试仪的原理、主要功能和使用方法。
一、防雷元件测试仪的原理1.电涌波法:这种测试方法通过模拟雷击引起的电涌波,向防雷元件注入高电压的电流。
在测试中,测试仪会产生特定波形的电压,然后通过元件进行放电和击穿测试。
通过检测放电波形和波幅,可以评估防雷元件是否能够有效抵御雷击。
2.电流作用法:这种测试方法是将测试仪输出的电流注入到元件中,在预定时间内进行测试。
测试仪通过检测测试电流和元件导通电流之间的差异,来评估防雷元件的导通能力。
二、防雷元件测试仪的主要功能1.高压输出:测试仪可以提供一定的高电压输出,以进行放电和击穿测试。
输出电压一般可调节,以适应不同元件的测试需求。
2.波形检测:测试仪可以监测放电波形和波幅,并通过显示屏或其他输出方式展示测试结果。
这些信息可以帮助用户评估元件的放电能力。
3.时间控制:测试仪可以设定测试时间,以确保测试过程的稳定和可重复性。
4.数据记录:测试仪通常具有数据记录功能,可以将测试结果保存下来,方便后续数据分析和比较。
5.报警提示:测试仪通常会设有报警功能,当测试结果超出预设的范围时,会发出警报提示用户。
6.多种测试模式:测试仪通常具有不同的测试模式,可根据不同的防雷元件类型选择适用的测试模式。
三、防雷元件测试仪的使用方法使用防雷元件测试仪进行测试时,需要按照以下步骤进行:1.准备工作:首先,确认测试仪的电源已连接,并处于正常工作状态。
然后连接测试仪和防雷元件,确保连接线路良好。
2.参数设定:根据实际需求,设定测试仪的测试参数,包括输出电压、测试时间等。
根据元件类型选择相应的测试模式。
3.开始测试:确认参数设定无误后,点击“开始测试”按钮,测试仪将开始向防雷元件注入电流。
自动化设备技术规范的防雷接地测试在当今高度自动化的工业生产环境中,自动化设备的稳定运行至关重要。
而雷电作为一种自然现象,可能会对这些设备造成严重的损害。
为了保障自动化设备的安全可靠运行,防雷接地测试成为了一项必不可少的技术规范。
一、防雷接地的基本原理防雷接地的主要目的是将雷电产生的巨大电流迅速引入大地,从而保护设备和人员的安全。
其原理基于电学中的欧姆定律和静电感应原理。
当雷电击中建筑物或设备时,接地系统提供了一个低电阻的通道,使电流能够快速流散,避免在设备内部产生过高的电压和电流,从而减少损坏的可能性。
二、防雷接地测试的重要性1、保障设备安全自动化设备通常包含大量的电子元件和精密电路,对过电压和过电流非常敏感。
有效的防雷接地可以降低雷电对设备的直接冲击和感应电压,保护设备的硬件和软件系统,减少故障和损坏的风险。
2、确保人员安全如果雷电不能被有效地导入大地,可能会导致设备外壳带电,对操作人员构成触电危险。
通过防雷接地测试,可以确保在雷电发生时人员的安全。
3、符合法规要求许多国家和地区都制定了相关的法规和标准,要求工业和商业设施必须具备有效的防雷接地系统,并定期进行测试和维护,以符合安全和合规要求。
4、提高系统可靠性良好的防雷接地有助于减少因雷电引起的设备故障和停机时间,提高自动化系统的整体可靠性和可用性,从而保障生产的连续性和效率。
三、防雷接地测试的方法1、接地电阻测试接地电阻是衡量接地系统性能的关键指标。
常用的测试方法包括三极法和四极法。
三极法是将电流极和电压极分别布置在接地装置的两侧,通过测量电流和电压来计算接地电阻。
四极法则在三极法的基础上增加了一个辅助电极,提高了测试的准确性。
2、等电位连接测试等电位连接是确保不同金属部件之间电位相等,防止雷电产生的电位差引起火花放电和设备损坏。
测试时需要检查连接导体的导通性和连接的可靠性。
土壤电阻率是影响接地电阻的重要因素。
通过测试土壤电阻率,可以为设计合理的接地系统提供依据。
管道防雷检测措施引言管道防雷检测是一项重要的安全措施,旨在确保管道系统在雷暴天气下维持良好的运行状态。
本文将介绍管道防雷检测的基本原理和常见措施,并提供相关建议。
基本原理管道防雷检测的基本原理是通过安装合适的防雷设备和引导措施,将雷电的电能引导到地下或其他安全通道中,避免对管道系统造成损害。
其中,雷电电能的引导和排散是关键的步骤。
防雷设备1.避雷针:安装避雷针是防止管道系统直接受到雷击的常见方法。
避雷针通常安装在管道系统上方高点,并与地下接地装置连接,以将雷电引导到地下。
2.避雷带:避雷带可在管道系统附近建造,形成一个整体的防雷环境。
避雷带一般由金属材料制成,具有良好的导电性能,能有效吸收和引导雷电电能。
3.静电接地装置:静电接地装置用于将管道系统和地面保持一定的电位差,防止静电积聚。
合理设置静电接地装置可以降低雷电引发的事故风险。
引导措施1.引导线:引导线安装在管道系统的附近地面上,以形成一个良好的导电路径。
引导线可以采用金属材料制成,贴合地面铺设,将雷电引导到地下。
2.管道防雷罩:在管道系统的关键位置,如进出口处,可以安装管道防雷罩。
这种罩子通常由金属材料制成,能够强而有效地吸收和排散雷电电能。
3.接闪器:接闪器用于引导雷电穿过引导线和避雷针到达地下,避免雷电直接击中管道系统。
接闪器通常由金属导体制成,具有较大的导电能力。
防雷建议在进行管道防雷检测时,应遵循以下建议:1.定期检查防雷设备:定期对避雷针、避雷带、静电接地装置进行检查和维护,确保其完好性和正常工作状态。
2.注意环境清洁:保持管道系统周围的环境清洁,并定期清除可能影响防雷设备工作的杂物和灰尘。
3.遵循防雷标准:遵循相关的防雷标准和规范,确保防雷设备的选择、安装和维护符合要求。
4.定期测试和检查:定期对防雷设备进行测试和检查,确保其正常工作并及时发现问题。
5.培训和教育:对相关工作人员进行培训和教育,使其了解管道防雷的基本知识和操作技能。
(一)正确选择接地电阻测量方式及测量原理接地电阻测量方法通常有以下几种:两线法、三线法、四线法、单钳法和双钳法。
各有各的特点,实际测量时,尽量选择正确的方式,才能使测量结果准确无误。
1.两线法条件:必须有已知接地良好的地,如PEN等,所测量的结果是被测地和已知地的电阻和。
如果已知地远小于被测地的电阻,测量结果可以作为被测地的结果。
适用于:楼群稠密或水泥地等密封无法打地桩的地区。
接线:E+ES接到被测地,H+S接到已知地。
2.三线法条件:必须有两个接地棒:一个辅助地和一个探测电极。
各个接地电极间的距离不小于20米。
原理是在辅助地和被测地之间加上电流,测量被测地和探测电极间的电压降,测量结果包括测量电缆本身的电阻。
适用于:地基接地,建筑工地接地和防雷接地。
接线:S接探测电极,H接辅助地,E和ES连接后接被测地。
3.四线法基本上同三线法,在低接地电阻测量和消除测量电缆电阻对测量结果的影响时替代三线法,测量时E和ES必须单独直接连接到被测地。
该方法是所有接地电阻测量方法中准确度最高的。
4.单钳测量测量多点接地中的每个接地点的接地电阻,而且不能断开接地连接防止发生危险。
适用于:多点接地,不能断开连接,测量每个接地点的电阻。
接线:用电流钳监测被测接地点上的电流。
5.双钳法条件:多点接地,不打辅助地桩,测量单个接地。
接线:使用厂商指定的电流钳接到相应的插口上,将两钳卡在接地导体上,两钳间的距离要大于0.25米。
(二)接地电阻值的正确测量接地是电器安全技术中很重要的工作之一,接地装置的合适与否,接地电阻值是否合乎标准要求,直接影响到电力系统设备的正常运行,影响到建筑物的安全,还关系到人身安全。
因此,应当正确选择接地方法及测量接地电阻。
笔者现依据接地电阻的测量原理及结合实际测试,提出下述测量接地电阻的几点经验。
一、测量前的分析测量前应掌握埋地电极的分布情况(最好查阅竣工图),然后依据公式: (s为电极系统所覆盖的面积),并按图纸计算接地系统的有限半径,以确定辅助电极的远近位置和朝向。
二、引出测量点如果测量点不易接出,可以用一根电阻较小的电线引出,把电线的引出端接到表的E 端,测量结果应减去电线的电阻,此时电线的自感要引入误差,所以应尽量将电线拉直,多余的线应绕成无定向结构。
对于有四线测量功能的接地电阻表,应引出两条电线,分别接表上的E1、E2,四线法测量的阻抗不影响测量结果。
三、关于辅助电极的接地电阻一般辅助电极的接地电阻小于5kΩ时,不影响测量结果,但如果电流电极接地电阻Rc 太大,将使注入电流减小,易受干扰。
如果电压电极接地电阻Rp太大,将与电压表的输入电阻分压,使电压测量不准,灵敏度下降。
20cm长的铁钎打入干松土壤的接地电阻一般小于1kΩ。
为了降低辅助电极的接地电阻,可以在辅助电极周围浇水。
经常会遇到水泥地面无法打桩的情况,这时,可用一根铁链盘在水泥面上,再浇上水;作为辅助电极,也可用金属网代替铁链,浇水是为了降低辅助电极的接地电阻。
四、辅助电极的延伸方向辅助电极的延伸方向要避免与地下管线、地面水沟平行靠近,无法远离这些导体时,最好选垂直或交叉方向。
五、关于辅助电极的位置3个电极不必在同一直线上,辅助电极的位置遵循“互电阻影响最小”的原则,如果电流电极C与被测电极E的距离满足DEC>11rE,电压电极P的位置可以偏离直线约束,理论上只要(1/DEC-1/DPC+1/DEP)=0,互电阻的影响可以抵消。
实际测量时,应在不同位置测量几次P电极。
六、测量时,埋地电极是否要与内部断开有的接地电阻表要求断开测量,有的不要求,主要出于以下几点考虑,若不断开,将会出现以下情况:1.如果被测电极接地电阻很大或在地下断线,则测量仪表中的电流源或发电机就会开路,然后开路电压通过内部地线系统传导到内部仪器、设备的机壳上。
手摇发电机的开路电压一般为100V以上,电池供电的电流源开路电压一般在50V以下。
2.如果内部用电设备泄漏电流,将从被测电极向大地注入电流,在周围的地面上产生电压降,叫做地电压,地电压小则影响测量结果,大则威胁人员安全或损坏接地电阻表。
3.有些不规范的接地方法,把原本独立的两个接地系统通过仪器、设备的机壳连接起来,接地电阻表测得的电阻值并不是单个接地电阻,而是两个系统接地电阻的并联值,甚至被测接地电极断线也不能发现。
测量时最好断开地线,如不能则应注意避免上述情况发生,做到:(1)先测量地电压,如果E、C两点地电压大于测量仪表的要求,则应关掉相关用电设备,必要时关闭电源。
(2)检查并确定被测电极接地良好,查看两种独立接地系统的连接情况,排除不规范的接地点。
现在一般要求接地系统共用地电极,所以不存在两个独立的接地电极,不用考虑外部连接情况。
检查断线可以采用测量环路电阻的方法。
七、其他在测量准确度要求不高的情况下(如日常检查,判断是否断线等),可以采用两点法测量接地电阻,作为参考的接地电极,要求已知接地电阻,并且独立。
这时使用接地电阻表的两线法功能(P、C短路)或者使用钳型接地电阻表加上跨接电阻,比较方便。
虽然土壤的温度、含水量和时间的变化会影响接地电阻的大小,但是对于单次测量来说,它有确定的值,可以准确测量。
可是测量时如果不掌握正确的方法,测量结果将会有很大误差。
被测对象千变万化,只要能够深刻理解接地电阻的基本定义,掌握接地电阻的测量方法,熟悉接地电阻表测量原理,并且多做实验就能找到最准确的方法。
(三)接地电阻测试图解一、接地电阻测试要求:a. 交流工作接地,接地电阻不应大于4Ω;b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。
二、接地电阻测试仪ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。
亦可测量低电阻导体的电阻值和土壤电阻率。
三、接地电阻组成元件本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。
附件有辅助探棒导线等,装于附件袋内。
其工作原理采用基准电压比较式。
四、使用前检查测试仪是否完整,测试仪包括如下器件。
1、ZC-8型接地电阻测试仪一台2、辅助接地棒二根3、导线5m、20m、40m各一根五、使用与操作仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m1)、测量大于等于1Ω接地电阻时接线图见图1将仪表上2个E端钮连结在一起。
此主题相关图片如下:2)、测量小于1Ω接地电阻时接线图见图2将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。
1)、仪表端所有接线应正确无误。
2)、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。
3)、仪表放置水平后,调整检流计的机械零位,归零。
4)、将“倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。
当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。
此时刻度盘上读数乘上倍率档即为被测电阻值。
5)、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。
6)、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。
六、注意事项1、禁止在有雷电或被测物带电时进行测量。
2、仪表携带、使用时须小心轻放,避免剧烈震动。
(四)防雷接地的几个问答1. 明敷防雷引下线近地端为什么要加以保护?明敷防雷引下线地上 1.7m 至地下0.3m 的一段加保护措施的目的有两个:(1)在易受机械损坏的地方,加保护管后可防止防雷引下线受机械外力而损坏;(2)在人们能接近的地方.加绝缘保护(套硬塑料管或包缠绝缘材料),一旦雷击时,可减小接触电压。
在工矿企业,防雷引下线设在人们不易接近的地方。
为防止防雷引下线受到机械外力损坏,可用角钢或钢管加以保护.如图 1 所示。
当用钢管保护时,钢管两端,应把钢管管口和防雷引下线焊成一体,如不焊接,则雷击时,钢管感应电抗大,不利把雷引到地下;钢管的上口应封口.防止管内积水。
在住宅区,防雷引下线应用硬塑料管保护,塑料管的上口亦应封口。
保护管或保护角钢应用铁卡子固定在墙上.铁卡子离地面或离保护管上口的距离为300mm,铁卡子一般用25mm×4mm 锌扁钢加工。
2. 防雷引下线设置断接卡子的目的是什么?《电气装置安装工程接地装置施工及验收规范》规定:建筑物上的防雷设施采用多根引下线时.宜在各引下线距地面的1.5~1.8m 处设置断接卡。
设置断接卡的目的是便于测量引下线的接地电阻,供检查用。
规范指出:设置断接卡是对有多根引下线的场合。
当建筑物(例烟囱)只有一组接地极时,不应该设置断接卡;当建筑物(例厂房)有两组及以上的引下线,每根引下线下有一组接地极时,设置断接卡可分别测量每组接地极的接地电阻。
规范未强调“必须”,而用“宜”在各引下线距地面的 1.5~1.8m 处设置断接卡,这里“宜”有双重含义:(1)并非有多根引下线时,都必须设置断接卡。
例如,利用建筑物柱头内主钢筋作为防雷引下线,并利用混凝土桩内钢筋作为接地极时,不应该设置断接卡。
为了测量接地极电阻,在混凝土桩打入地下后,测量每根桩的接地电阻,然后把所有桩用圆钢(直径最小为10mm,通常用16mm)或扁钢(最小截面为25mm×4mm,通常用40mm×4mm)连成一体,再测量总接地电阻。
为了在建筑物投入使用后,检查接地电阻,可在建筑物近地端引出检测点,即从引下线主钢筋上焊出接地线至检测点,此检测点可为钢板并外露。
(2)断接卡并非一定要设置在 1.5~1.8m 处。
一般在公共场合,如住宅区,防雷引下线明敷时,应把断接卡设置在 1.5~1.8m 处;暗敷时,为不影响建筑物的外观,断接卡可设在近地端的墙内(一般为距地300~400mm)。
当防雷引下线既未设置断接卡、又未设置检测点时,若检查接地电阻,可用导线把建筑物顶上的避雷带或避雷针引至地面进行测量,测量结果需减去导线的电阻。
3. 利用建筑物钢筋混凝土中的结构钢筋作防雷网时,为什么要将电气部分的接地和防密接地连成一体,即采取共同接地方式?当防雷装置受到雷击时,在接闪器、引下线和接地极上都会产生很高的电位。
如果建筑物内的电气设备、电线和其它金属管线与防雷装置的距离不够时,它们之间就会产生放电。
这种现象称之为反击,其结果可能引起电气设备绝缘破坏,金属管道烧穿,从而引起火灾、爆炸及电击等事故。
为了防止发生反击,建筑物的防雷装置须与建筑物内外的电气设备及其它接地导体之间保持一定的距离,但在工程中往往存在许多困难而无法做到。