不饱和烃:烯烃和炔烃
- 格式:ppt
- 大小:3.53 MB
- 文档页数:51
不饱和烃命名不饱和烃是指分子中含有C=C双键或C≡C三键的有机分子,因其分子内含有不饱和键而具有较强的化学活性,是有机化学中的重要分子类别之一。
不饱和烃包括烯烃和炔烃两大类。
烯烃是指分子中含有一个或多个C=C双键的有机分子。
烯烃按照双键数目可以分为单烯、二烯、三烯等。
对于不同种类的烯烃,其分子结构和性质也各不相同。
单烯是最简单的烯烃,最常见的单烯是乙烯(C2H4),有着较小的极性和较强的活性,因此在有机合成和化工生产中应用广泛。
二烯较少见,比较有代表性的是丁二烯(C4H6),通常用于合成丁基橡胶。
三烯非常少见,通常是一些天然化合物的组成部分。
炔烃是指分子中含有一个或多个C≡C三键的有机分子。
炔烃也有不同的种类,包括单炔、双炔、三炔等。
比较有代表性的炔烃是乙炔(C2H2),其是工业化学中非常重要的原料。
命名不饱和烃时,首先要确定分子的主链,并找出每个双键或三键的存在。
主链的选取原则是要求主链包含多数碳原子,并使取代基数目最小。
对于不饱和键,需要在主链上标记,使用体系名称,标记方法如下:对于烯烃,可以将双键所在的碳原子编号,并在前面加上ene后缀,如乙烯为ethene,但是对于分子中存在多个双键时,应使用二烯、三烯等前缀,如丁二烯为buta-1,3-diene。
对于炔烃,可以将第一个三键所在的碳原子编号,并在前面加上yne后缀,如乙炔为ethyne,但是对于分子中存在多个三键时,应使用二炔、三炔等前缀,如丙二炔为prop-1,2-diyne。
此外,对于分子中存在双键和三键的混合物,需要在前缀中同时包含ene和yne,如苯乙烯为phenylethene,但是对于存在双键和三键都有的复合烃,可以使用diene、triene、diyne、triyne等前缀表示。
总之,不饱和烃是有机化学中重要的一类分子,它分为烯烃和炔烃两大类,根据烯烃和炔烃分子中不饱和键的数目,可以分为不同种类的单烯、二烯、三烯、单炔、双炔、三炔等。
不饱和烃的概念
不饱和烃是一类具有碳—碳双键或三键的有机化合物,其化学结构中存在着不饱和键。
不饱和烃可以分为两大类:烯烃和炔烃。
烯烃是一种具有一条碳—碳双键的不饱和烃,而炔烃则具有一条碳—碳三键。
由于双键和三键的不稳定性,不饱和烃具有较强的化学活性。
它们可以通过加成反应,如氢化、卤代反应等,与其他化合物发生化学反应。
此外,不饱和烃还可以参与自由基反应,如自由基取代反应、自由基加成反应等。
不饱和烃在化学工业、生物学、医学等领域都有广泛的应用。
例如,烯烃被用作合成塑料、橡胶、溶剂等化学品的原料,而炔烃则用于生产气体焊接和切割等工业应用。
虽然不饱和烃在许多方面都有很多应用,但是它们也有一些潜在的危险。
不饱和烃在空气中可以很容易地被氧化,从而产生有毒的化合物,例如臭氧。
此外,不饱和烃也具有较强的致癌性和毒性,因此必须谨慎处理和储存。
- 1 -。
知识总结——不饱和烃知识总结,不饱和烃不饱和烃是指分子结构中含有双键或三键的碳氢化合物。
不饱和烃可以进一步分为烯烃和炔烃两大类。
烯烃是指分子中含有一个或多个碳碳双键的碳氢化合物。
烯烃的通式为CnH2n,其中n为双键的个数。
烯烃可以进一步分为直链烯烃和支链烯烃两种。
直链烯烃的双键是连接两个相邻的碳原子,而支链烯烃的双键是连接非相邻的碳原子。
常见的直链烯烃有乙烯(C2H4)和丙烯(C3H6),而异戊二烯(C5H8)是一个常见的支链烯烃。
炔烃是指分子中含有一个或多个碳碳三键的碳氢化合物。
炔烃的通式为CnH2n-2,其中n为三键的个数。
炔烃可以进一步分为直链炔烃和支链炔烃两种。
直链炔烃的三键是连接两个相邻的碳原子,而支链炔烃的三键是连接非相邻的碳原子。
乙炔(C2H2)是一个常见的直链炔烃,而苯(C6H6)是一个常见的支链炔烃。
不饱和烃具有一些特殊的化学性质和应用。
首先,不饱和烃在化学反应中比饱和烃更加活泼。
由于双键或三键的存在,不饱和烃容易发生加成反应、氧化反应、和聚合反应等。
其次,不饱和烃可以通过催化加氢反应转化为饱和烃。
这是一种重要的工业反应,用于生产石化产品和燃料,同时也可以用于制备一些特殊的化学品。
此外,不饱和烃还常被用于制备高分子材料,如聚烯烃和聚炔烃。
不饱和脂肪酸是一种重要的不饱和烃。
它是由长链脂肪酸通过去氢反应或通过叠氮盐还原反应得到的。
不饱和脂肪酸与饱和脂肪酸相比,具有更低的熔点和较强的润滑性。
它是一种重要的工业原料,广泛用于生产润滑油、油墨和塑料等。
在生活中,不饱和烃也有许多应用。
例如,乙烯被用作合成塑料的原料,丙烯被用作合成纤维的原料。
此外,不饱和脂肪酸还被广泛用于食品加工和保健品中,因其对人体有益和具有抗氧化的作用。
总结起来,不饱和烃是一类具有特殊化学性质和广泛应用的碳氢化合物。
它有烯烃和炔烃两大类,具有活泼的化学反应性,可以通过催化加氢反应转化为饱和烃,被广泛应用于石化工业、高分子材料制备和生活中。
《不饱和烃》导学案一、学习目标1、了解不饱和烃的概念,包括烯烃、炔烃和芳香烃。
2、掌握不饱和烃的结构特点,能够准确书写其结构式和结构简式。
3、理解不饱和烃的化学性质,如加成反应、氧化反应等。
4、学会鉴别不饱和烃和饱和烃的方法。
二、知识梳理(一)不饱和烃的概念不饱和烃是指分子中含有碳碳双键或碳碳三键的烃类化合物。
常见的不饱和烃有烯烃、炔烃和芳香烃。
(二)烯烃1、定义:含有碳碳双键的烃称为烯烃。
2、通式:CnH2n(n≥2)3、结构特点碳碳双键:由一个σ键和一个π键组成,π键不稳定,容易发生加成反应。
双键碳原子为sp2 杂化,平面结构。
4、物理性质常温下,C2-C4 的烯烃为气体,C5-C18 的烯烃为液体,C19 以上的烯烃为固体。
随着碳原子数的增加,烯烃的沸点和密度逐渐增大。
烯烃难溶于水,易溶于有机溶剂。
5、化学性质加成反应与氢气:CH2=CH2 +H2 → CH3CH3与卤素单质:CH2=CH2 +Br2 → CH2BrCH2Br与卤化氢:CH2=CH2 +HCl → CH3CH2Cl氧化反应燃烧:CnH2n +3n/2 O2 → nCO2 + nH2O使酸性高锰酸钾溶液褪色(三)炔烃1、定义:含有碳碳三键的烃称为炔烃。
2、通式:CnH2n-2(n≥2)3、结构特点碳碳三键:由一个σ键和两个π键组成,三键比双键更不稳定。
三键碳原子为 sp 杂化,直线结构。
4、物理性质常温下,C2-C4 的炔烃为气体,C5 以上的炔烃为液体或固体。
炔烃的沸点和密度随着碳原子数的增加而增大。
炔烃难溶于水,易溶于有机溶剂。
5、化学性质加成反应与氢气:CH≡CH +2H2 → CH3CH3与卤素单质:CH≡CH +2Br2 → CHBr2CHBr2与卤化氢:CH≡CH +HCl → CH2=CHCl氧化反应燃烧:CnH2n-2 +(3n 1)/2 O2 → nCO2 +(n 1)H2O使酸性高锰酸钾溶液褪色(四)芳香烃1、定义:含有苯环结构的烃称为芳香烃。
第三章不饱和烃:烯烃和炔烃♦烯烃/炔烃的结构、同分异构和命名;烯烃炔烃的化学性质;♦/♦烯烃亲电加成反应的历程和马氏规则;♦乙烯氢和烯丙氢的含义和反应特点;♦掌握烯烃的自由基加成反应。
♦烯烃的系统命名法;♦烯烃的亲电加成反应和马氏规则、氧化反应。
3.1 烯烃和炔烃的结构3.1.1碳碳双键的组成 3.1.1 碳碳双键的组成含有碳碳双键的不饱和烃叫做烯烃,单烯烃分子中只有一个双键;碳碳双键叫做烯键, 是烯烃的官能团。
单烯烃的通式是C n H 2n ;H H CC 最简单的烯烃是乙烯:HH C C)一) 乙烯的结构H 1170.108nm H H 0.133nm 物理方法证明: 1. 所有碳原子和氢原子共平面;键角接2. 键角接近120°;3.双键键长0.133nm 比单键键长0.154nm 短;4. 双键键能611kJ/mol 小于单键键能两倍347×2=694 kJ/mol347264kJ/l611-347 =264 kJ/mol二)碳原子的SP 2C 2p 2p激发2s 2s2p 2p sp 2杂化sp 2 C = C sp 2-sp 2 σ键2p 2p 2p-2p π键{2>C 3电负性:C sp C sp二) 双键的结构π键不同于σ键, π键具有以下特点:1.π键无轴对称, 不能自由旋转;2. π键键能比σ键能小;611-347=264kJ/mol 3. π电子云具有流动性;C=C 键能C-C 键能破坏π键的能量π电子云位于成键原子的上下两层, 原子核对π电子云的束缚能力弱, 因此, π键易被试CC 剂进攻发生反应, π键比σ键更活泼。
3.1.2 碳碳三键的组成炔烃的结构乙炔是最简单的炔烃, 为线型分子。
H C C H炔烃的官能团是碳碳三键, 碳原子是sp杂化, 两个sp轨道在同一条直线上。
碳碳三键的特点:①炔烃的亲电加成活性不如烯烃。
原因:两个碳原子之间电子云密度大;C-C 键长短, 使π键的重叠程度大;②碳碳三键上的氢炔-H 有一定的酸性。
《烯烃炔烃》炔烃的结构与性质在有机化学的世界里,烯烃和炔烃是两类非常重要的不饱和烃。
今天,咱们就专门来聊聊炔烃的结构与性质,一起揭开它神秘的面纱。
先来说说炔烃的结构。
炔烃的分子中含有碳碳三键(C≡C),这是它最显著的结构特征。
以最简单的炔烃——乙炔(C₂H₂)为例,两个碳原子之间通过一个三键相连,每个碳原子还分别与一个氢原子结合。
碳碳三键是由一个σ 键和两个π 键组成的。
这σ 键比较“坚强”,键能较大,而两个π 键则相对“脆弱”一些。
由于三键的存在,炔烃分子中的碳原子采取 sp 杂化。
这种杂化方式使得碳原子的两个 sp 杂化轨道在同一直线上,分别与氢原子或其他原子形成σ 键,而未参与杂化的两个p 轨道则相互垂直,与另一个碳原子的两个p 轨道“肩并肩”重叠,形成两个π 键。
接下来看看炔烃的物理性质。
通常情况下,随着碳原子数的增加,炔烃的沸点和熔点逐渐升高。
不过,总体来说,炔烃的沸点和熔点比相同碳原子数的烷烃和烯烃要低一些。
在常温常压下,含四个碳原子以下的炔烃大多是气态,从五个碳原子开始逐渐变为液态和固态。
再来说说炔烃的化学性质。
由于碳碳三键的存在,炔烃具有一些独特的化学反应。
首先是加成反应。
这就像是炔烃的“好客”特性,它很愿意与其他物质结合。
比如,与氢气发生加成反应,可以生成相应的烯烃或烷烃。
如果是和卤素(如氯气、溴气)加成,会分步进行,先加成一个卤素原子,形成二卤代烯烃,然后再继续加成,得到四卤代烷烃。
和卤化氢的加成也类似,遵循马氏规则。
其次是氧化反应。
炔烃在一定条件下可以被氧化,比如在高锰酸钾等强氧化剂的作用下。
不过,炔烃的氧化反应比烯烃要复杂一些,产物会因反应条件的不同而有所差异。
然后是聚合反应。
就像小伙伴们手拉手组成一个团队一样,炔烃分子也可以相互连接起来,形成高分子化合物。
比如,乙炔在特定条件下可以聚合成聚乙炔。
还有金属炔化物的生成。
这是炔烃的一个有趣的性质。
比如,乙炔与银氨溶液或亚铜氨溶液反应,可以生成白色的乙炔银沉淀或红棕色的乙炔亚铜沉淀。