2.3.2-平面与平面垂直的判定基础练习题(含答案解析)
- 格式:doc
- 大小:194.50 KB
- 文档页数:4
2.3.2 平面与平面垂直的判定基础梳理1.二面角.(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱.这两个半平面叫做二面角的面.如图,记作:二面角αlβ或PABQ或PlQ.(2)二面角的平面角.如图,二面角αlβ,若有:①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l.则∠AOB就叫做二面角αlβ的平面角.练习1:若α⊥β,a⊂α,则a⊥β,对吗?答案:错练习2:若α⊥β,a⊂α,b⊂β,a⊥b,则a⊥β,对吗?答案:错练习3:若a∥b,a⊥α,则b⊥α,对吗?答案:对2.面面垂直.(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)画法:记作:α⊥β.(3)面面垂直的判定定理.文字语言:一个平面过另一个平面的一条垂线,则这两个平面垂直. 符号表示:⎭⎪⎬⎪⎫a⊥βa ⊂α⇒α⊥β►思考应用1.二面角的平面角的大小,是否与角的顶点在棱上的位置有关?解析:如图,在二面角αl β的棱上任取点O ,以O 为垂足,在半平面α和β内分别作垂直于棱的射线OA 和OB ,则射线OA 和OB 组成∠AOB.再取棱上另一点O′,在α和β内分别作l 的垂线O ′A ′和O′B′,则它们组成∠A′O′B′.因为OA∥O′A′,OB ∥O ′B ′,所以∠AOB 与∠A′O′B′的两边分别平行且方向相同,即∠AOB=A′O′B′.上述结论说明了按照上述方法作出的角的大小,与角的顶点在棱上的位置无关. 2.应用面面垂直的判定定理的关键是什么?解析:应用此定理的关键在于,在其中一个平面内找到或作出另一个平面的垂线,即实现面面垂直向线面垂直的转化.自测自评1.经过平面α外一点和平面α内一点与平面α垂直的平面有(D )A .0个B .1个C .无数个D .1个或无数个解析:当两点连线与平面α垂直时,可作无数个垂面,否则,只有1个. 2.下列说法:①二面角的大小是用平面角来度量的;②二面角的平面角的大小是由二面角的两个面的位置唯一确定的; ③二面角的大小由其平面角的顶点在棱上的位置确定.其中正确说法的个数是(C)A.0 B.1 C.2 D.3解析:由二面角的定义可知,①②正确;③不正确.3.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则(D)A.α⊥βB.α与β相交C.α∥βD.以上都有可能4.若平面α与平面β不垂直,那么α内能与β垂直的直线(A)A.有0条B.有一条C.有2条D.有无数条5.若α∥β,a⊥α,则a与β的位置关系是垂直.题型一利用二面角解决相关问题题型二平面与平面垂直的判定及综合应用基础达标1.自二面角内任意一点分别向两个面引垂线,则两垂线所成的角与二面角的平面角的关系是(B)A.相等B.互补C.互余D.无法确定解析:如图,BD,CD为AB,AC所在平面与α,β的交线,则∠BDC为二面角αlβ的平面角.且∠ABD=∠ACD=90°,∴∠A+∠BDC=180°.2.已知直线l⊥平面α,则经过l且和α垂直的平面(C)A.有一个B.有两个C.有无数个D.不存在解析:经过l的任一平面都和α垂直.3.PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有(B)A.8对B.7对C.6对D.5对解析:如图,平面PAD,平面PBD,平面PCD都垂直于平面ABCD,平面PAD⊥平面PCD,平面PAD⊥平面PAB,平面PCD⊥平面PBC,平面PAC⊥平面PBD.4.若平面α⊥平面β,平面β⊥平面γ,则(D)A.α∥γB.α⊥γC.α与γ相交,但不垂直D.以上都有可能5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题正确的是(D) A.若m∥n,m∥α,则n∥αB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,n∥α,则m∥nD.若m⊥α,n∥α,则m⊥n6.将锐角A为60°,边长为a的菱形ABCD沿BD折成60°的二面角,则A与C之间的距离为________.解析:设折叠后点A到A1的位置,取BD的中点E,连接A1E、CE.∴BD⊥CE,BD⊥A1E.∴∠A1EC为二面角A1BDC的平面角.∴∠A1EC=60°.又A1E=CE,∴△A1EC是等边三角形.∴A1E=CE=A1C=32a.即折叠后点A到C之间的距离为32a.巩固提升7.在正方体ABCDA1B1C1D1中,截面A1BD与底面ABCD所成二面角A1BDA的正切值为(C)A.32B.22C. 2D. 3解析:如图所示连接AC交BD于点O,连接A1O,O为BD中点,∵A1D=A1B,∴在△A1BD中,A1O⊥BD.又∵在正方形ABCD中,AC⊥BD.∴∠A1OA为二面角A1BDA的平面角.设AA1=1,则AO=22.∴tan∠A1OA=122= 2.8.如图,已知正方体ABCDA1B1C1D1,过BD1的平面分别交棱AA1和CC1于E,F两点.(1)求证:A1E=CF;(2)若E,F分别是棱AA1和棱CC1的中点,求证:平面EBFD1⊥平面BB1D1.证明:(1)由题知,平面EBFD1与平面BCC1B1交于BF,与平面ADD1A1交于ED1,又平面BCC1B1∥平面ADD1A1,∴D1E∥BF,同理BE∥D1F,∴四边形EBFD1为平行四边形,∴D1E=BF,∵A1D1=CB,D1E=BF,∠D1A1E=∠BCF=90°,∴Rt△A1D1E≌Rt△CBF,∴A1E=CF.(2)∵四边形EBFD1是平行四边形.AE=A1E,FC=FC1,∴Rt△EAB≌Rt△FCB,∴BE=BF,故四边形EBFD1为菱形.连接EF,BD1,A1C1∵四边形EBFD1为菱形,∴EF⊥BD1,在正方体ABCDA1B1C1D1中,有B1D1⊥A1C1,B1D1⊥A1A,∴B1D1⊥平面A1ACC1,又EF⊂平面A1ACC1,∴EF⊥B1D1,又B1D1∩BD1=D1,∴EF⊥平面BB1D1,又EF⊂平面EBFD1,故平面EBFD1⊥平面BB1D1.9.如图甲,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图乙.(1)求二面角ABCD的正切值;(2)求证:AD⊥平面BDE.(1)解析:取AE中点O,BC中点F,连接DO,OF,DF(如图).由题知:AB=2AD,DE=EC,∴AD=DE,∴DO⊥AE,又∵平面ADE⊥平面ABCE,∴DO⊥平面ABCE,又∵AB⊥BC,OF∥AB,∴OF⊥BC,由三垂线定理得DF⊥B C,∴∠DFO为二面角ABCD的平面角.在Rt△DOF中,DO=22a,OF=a+2a2=32a,∴tan∠DFO=22a32a=23.即二面角ABCD的正切值是23.(2)证明:连接BE,则BE=a2+a2=2a,又AE=2a,AB=2a,∴AB2=AE2+EB2,∴AE⊥EB.由(1)知DO⊥平面ABCE,∴DO⊥BE,又∵DO∩AE=O,∴BE⊥平面ADE,∴BE⊥AD,又∵AD⊥DE,BE∩DE=E,∴AD⊥平面BDE.1.二面角是从一条直线出发的两个半平面组成的图形.其大小是用二面角的平面角来度量的.二面角的平面角必须具备三个条件:①角的顶点在二面角的棱上;②角的两边分别在二面角的两个半平面内;③角的两边分别与二面角的棱垂直.求二面角的平面角的难点和关键在于正确地作出二面角的平面角,其过程是“一作、二证、三计算”.2.面面垂直的判定有两个方法,其一是根据定义,其二是根据判定定理.根据定义,判定实质上转化成了求二面角的平面角;根据判定定理判定面面垂直,难点和关键是在其中一个平面内找到另一个平面的垂线.。
2.3.2 平面与平面垂直的判定基础练习题(含答案解析)1.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不能确定解析:选C.当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补.2.在四棱锥P-ABCD中,已知P A⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面P AB⊥平面P ADB.平面P AB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面P AD解析:选C.由面面垂直的判定定理知:平面P AB⊥平面P AD,平面P AB⊥平面PBC,平面PCD⊥平面P AD,A、B、D正确.3.如果直线l、m与平面α、β、γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么() A.α⊥γ且l⊥m B.α⊥γ且m∥βC.m∥β且l⊥m D.α∥β且α⊥γ解析:选A.如图,平面α为平面AD1,平面β为平面BC1,平面γ为平面AC,∵m⊂α,m⊥γ,由面面垂直的判定定理得α⊥γ,又m⊥γ,l⊂γ,由线面垂直的性质得m⊥l.4.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是()A.BC∥平面P DFB.DF⊥平面P AEC.平面PDF⊥平面ABCD.平面P AE⊥平面ABC解析:选C.可画出对应图形(图略),则BC∥DF,又DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A成立;由AE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,∴DF⊥平面P AE,故B成立;又DF⊂平面ABC,∴平面ABC⊥平面P AE,故D成立.5.(2013·德州高一检测)已知P A⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有()A.1对B.2对C.3对D.5对解析:选D.∵DA⊥AB,DA⊥P A,AB∩P A=A,∴DA⊥平面P AB,同理BC⊥平面P AB,AB⊥平面P AD,DC⊥平面P AD,∴平面AC⊥平面P AD,平面AC⊥平面P AB,平面PBC⊥平面P AB,平面PDC⊥平面P AD,平面P AB⊥平面P AD.6.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,P A =6,那么二面角P-BC-A的大小为________.解析:取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP =OA=3,P A=6,所以△POA为直角三角形,∠POA=90°.答案:90°7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)解析:连接AC,则AC⊥BD.∵P A⊥底面ABCD,BD⊂面ABCD,∴P A⊥BD.∵P A∩AC=A,∴BD⊥面P AC,∴BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.答案:DM⊥PC(或BM⊥PC等)8.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.解析:设面外的点为A,面内的点为B,过点A作面α的垂线l,若点B恰为垂足,则所有过AB的平面均与α垂直,此时有无数个平面与α垂直;若点B不是垂足,则l与点B 确定唯一平面β满足α⊥β.答案:1或无数9.点P是菱形ABCD所在平面外一点,且P A=PC,求证:平面P AC⊥平面PBD.证明:如图所示,连接AC,BD交于点O,连接PO,∵四边形ABCD是菱形,∴BD⊥AC,又∵AO=OC,P A=PC,∴PO⊥AC.∵BD∩PO=O,∴AC⊥平面PBD.又AC⊂平面P AC,∴平面P AC⊥平面PBD.10.如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EDB⊥平面ABCD.证明:连接AC,交BD于点F,连接EF,∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平面ABCD,∴EF⊥平面ABCD.∵EF⊂平面EDB,∴平面EDB⊥平面ABCD.。
2.3.2平面与平面垂直的判定一、选择题1.下列命题中:①两个相交平面组成的图形叫做二面角;②异面直线a,b别离和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点动身,别离在两个面内作射线所成的角的最小角;④二面角的大小与其平面角的极点在棱上的位置没有关系.其中正确的是( )A.①③B.②④C.③④D.①②解析:选B 由二面角的概念:从一条直线动身的两个半平面所组成的图形叫做二面角,所以①不对,实质上它共有四个二面角;由a,b别离垂直于两个面,则a,b都垂直于二面角的棱,故②正确;③中所作的射线不必然垂直于二面角的棱,故③不对;由概念知④正确.故选B.2.一个二面角的两个半平面别离垂直于另一个二面角的两个半平面,则这两个二面角( )A.相等B.互补C.不肯定D.相等或互补答案:C3.在四棱锥P—ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是( )A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PAD解析:选C 由面面垂直的判定定理知:平面PAB⊥平面PAD,平面PAB⊥平面PBC,平面PCD⊥平面PAD,A、B、D正确.4.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为( )A.90°B.60°C.45°D.30°解析:选A ∵PA⊥平面ABC,BA,CA⊂平面ABC,∴BA⊥PA,CA⊥PA,因此,∠BAC即为二面角B-PA-C的平面角.又∠BAC=90°,故选A.5.在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( )解析:选C 如右图所示,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD . 又∵在正方形ABCD 中,AC ⊥BD , ∴∠A 1OA 为二面角A 1-BD -A 的平面角. 设AA 1=1,则AO =22. ∴tan ∠A 1OA =122= 2.二、填空题6.通过平面α外一点和平面α内一点与平面α垂直的平面有________个. 解析:设面外的点为A ,面内的点为B ,过点A 作面α的垂线l ,若点B 恰为垂足,则所有过AB 的平面均与α垂直,此时有无数个平面与α垂直;若点B 不是垂足,则l 与点B 肯定唯一平面β知足α⊥β.答案:1个或无数个7.正四面体的侧面与底面所成的二面角的余弦值是________. 解析:如图所示,设正四面体ABCD 的棱长为1,极点A 在底面BCD 上的射影为O ,连接DO 并延长交BC 于点E ,连接AE ,则E 为BC 的中点,故AE ⊥BC ,DE ⊥BC ,∴∠AEO 为侧面ABC 与底面BCD 所成二面角的平面角. 在Rt △AEO 中,AE =32,EO =13ED =13·32=36, ∴cos ∠AEO =EO AE =13.答案:138.在一个倾斜角为60°的斜坡上,沿着与坡脚面的水平线成30°角的道路上坡,行走100 m ,实际升高了________ m.解析:如右图,构造二面角α-AB -β,在直道CD 上取一点E ,过点E 作EG ⊥平面β于G ,过G 作GF ⊥AB 于F ,连接EF ,则EF ⊥AB .∴∠EFG 为二面角α-AB -β的平面角, 即∠EFG =60°.∴EG =EF ·sin 60°=CE ·sin 30°·sin 60° =100×12×32=253(m).答案:25 3 三、解答题9.如图所示,四边形ABCD 是平行四边形,直线SC ⊥平面ABCD ,E 是SA 的中点,求证:平面EDB ⊥平面ABCD .证明:连接AC ,交BD 于点F ,连接EF , ∴EF 是△SAC 的中位线, ∴EF ∥SC . ∵SC ⊥平面ABCD , ∴EF ⊥平面ABCD . 又EF ⊂平面EDB . ∴平面EDB ⊥平面ABCD .10.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E . ∴A ′N ⊥BE .∵A ′C =A ′D , ∴A ′M ⊥CD .在四边形BCDE 中,CD ⊥MN , 又MN ∩A ′M =M ,∴CD ⊥平面A ′MN .∴CD ⊥A ′N .∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又A ′N ⊂平面A ′BE , ∴平面A ′BE ⊥平面BCDE .。
2.3.2平面与平面垂直的判定课时过关·能力提升一、基础巩固1.下列说法:①两个相交平面所组成的图形叫做二面角;②二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;③二面角的大小与其平面角的顶点在棱上的位置有关系.其中说法正确的个数是()A.0B.1C.2D.32.如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=60°,则二面角B-PA-C的大小等于()A.90°B.60°C.45°D.30°PA⊥平面ABC,所以PA⊥AB,PA⊥AC.所以∠BAC是二面角B-PA-C的平面角.又∠BAC=60°,则二面角B-PA-C的平面角是60°3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是 ()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥βm∥n,n⊥β,∴m⊥β.又m⊂α,∴α⊥β.4.如图,AB是圆的直径,PA⊥AC,PA⊥BC,C是圆上一点(不同于A,B),且PA=AC,则二面角P-BC-A的平面角为()A.∠PACB.∠CPAC.∠PCAD.∠CABAB为圆的直径,所以AC⊥BC.因为PA⊥BC,AC∩PA=A,所以BC⊥平面PAC.所以BC⊥PC.所以∠PCA为二面角P-BC-A的平面角.5.如图,在四棱锥S-ABCD中,底面ABCD为正方形,SA⊥平面ABCD,AC与BD相交于点O,点P是侧棱SC上一动点,则一定与平面PBD垂直的平面是()A.平面SABB.平面SACC.平面SCDD.平面ABCD在四棱锥S-ABCD中,底面ABCD为正方形,∴BD⊥AC.∵SA⊥平面ABCD,∴SA⊥BD.∵SA∩AC=A,∴BD⊥平面SAC.∵BD⊂平面PBD,∴平面PBD⊥平面SAC.故选B.6. 如图,在正方体ABCD-A1B1C1D1中,截面C1D1AB与底面ABCD所成的二面角C1-AB-C的大小为.AB⊥BC,AB⊥BC1,∴∠C1BC为二面角C1-AB-C的平面角,其大小为45°.°7.经过平面α外一点和平面α内一点与平面α垂直的平面有个.α外的一点为A,平面α内的一点为B,当直线AB垂直于平面α时,经过直线AB的任意一个平面均垂直于平面α,即此时有无数个;当直线AB与平面α相交但不垂直时,过点A作直线AC垂直于平面α,则直线AC仅有一条,由于直线AC和AB是两条相交直线,则AB和AC确定一个平面且该平面垂直于平面α,此时仅有一个与平面α垂直的平面.个或无数8.如图,在三棱锥P-ABC中,已知PA⊥PB,PB⊥PC,PC⊥PA,则在三棱锥P-ABC的四个面中,互相垂直的面有对.PA⊥PB,PA⊥PC,PB∩PC=P,所以PA⊥平面PBC.因为PA⊂平面PAB,PA⊂平面PAC,所以平面PAB⊥平面PBC,平面PAC⊥平面PBC.同理可证平面PAB⊥平面PAC.9.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,AB⊥AD,CD⊥AD.求证:平面PDC⊥平面PAD.PA⊥平面AC,CD⊂平面AC,所以PA⊥CD.因为CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.因为CD⊂平面PDC,所以平面PDC⊥平面PAD.二、能力提升1.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有()A.α⊥γ,且l⊥mB.α⊥γ,且m∥βC.m∥β,且l⊥mD.α∥β,且α⊥γm⊂α,m⊥γ,∴α⊥γ.∵l=β∩γ,∴l⊂γ,∴m⊥l.2.在四棱锥P-ABCD中,已知PA⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()A.平面PAB⊥平面PADB.平面PAB⊥平面PBCC.平面PBC⊥平面PCDD.平面PCD⊥平面PADABCD是矩形,所以AB⊥AD.因为PA⊥平面AC,AB⊂平面AC,所以AB⊥PA.而AD∩PA=A,所以AB⊥平面PAD.因为AB⊂平面PAB,所以平面PAB⊥平面PAD.同理可证,平面PAB⊥平面PBC,平面PCD⊥平面PAD.★3.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角()A.相等B.互补C.相等或互补D.大小关系无法确定,平面EFDG⊥平面ABC,当平面HDG绕DG转动时,平面HDG始终与平面BCD垂直,因为二面角H-DG-F的大小不确定,所以两个二面角的大小关系不确定.答案:D4.如图,在长方体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF ∥AB.若二面角C1-EF-C等于45°,则BF=.AB⊥平面BC1,C1F⊂平面BC1,CF⊂平面BC1,所以AB⊥C1F,AB⊥CF.又EF∥AB,所以C1F⊥EF,CF⊥EF,所以∠C1FC是二面角C1-EF-C的平面角,即∠C1FC=45°.所以△FCC1是等腰直角三角形,所以CF=CC1=AA1=1.又BC=2,所以BF=BC-CF=2-1=1.5.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜线BC上的高AD折叠,使平面ABD⊥平面ACD,则BC=.解析:因为AD⊥BC,所以AD⊥BD,AD⊥CD,所以∠BDC是二面角B-AD-C的平面角.因为平面ABD⊥平面ACD,所以∠BDC=90°.连接BC,在△BCD中,∠BDC=90°,BD=CD=√22,所以BC=√(√22)2+(√22)2=1.6.如图,已知在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点,PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.因为D,E分别为棱PC,AC的中点,所以DE∥PA.又因为PA⊄平面DEF,DE⊂平面DEF,所以直线PA∥平面DEF.(2)因为D,E,F分别为棱PC,AC,AB的中点,PA=6,BC=8,所以DE∥PA,DE=12P A=3,E P=12BC=4.又因为DF=5,故DF2=DE2+EF2,所以∠DEF=90°,即DE⊥EF.又PA⊥AC,DE∥PA,所以DE⊥AC.因为AC∩EF=E,AC⊂平面ABC,EF⊂平面ABC, 所以DE⊥平面ABC.又DE⊂平面BDE,所以平面BDE⊥平面ABC★7.如图,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底面ABCD,PA=√3.(1)求证:平面PBE⊥平面PAB;(2)求二面角A-BE-P的大小.,连接BD,由ABCD是菱形,且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为PA⊥平面ABCD,BE⊂平面ABCD,所以PA⊥BE.而PA∩AB=A,因此BE⊥平面PAB.又BE⊂平面PBE,所以平面PBE⊥平面PAB.(1)知BE⊥平面PAB,PB⊂平面PAB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A-BE-P的平面角.=√3,∠PBA=60°,在Rt△PAB中,tan∠PBA=PAAB故二面角A-BE-P的大小是60°。
课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则()A.α⊥βB.α∥βC.α与β相交D.以上都有可能2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为()A.30°B.60°C.90°D.120°3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有()A.平面ABC⊥平面ADCB.平面ABC⊥平面ADBC.平面ABC⊥平面DBCD.平面ADC⊥平面DBC4.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,则二面角B-P A-C的大小为()A.90°B.60°C.45°D.30°5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是()A.相等B.互补C.相等或互补D.不确定6.如图所示,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE,且平面ADC⊥平面BDED.平面ABC⊥平面ADC,且平面ADC⊥平面BDE7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是9.如图所示,在△ABC 中,AD ⊥BC ,△ABD 的面积是△ACD 的面积的2倍.沿AD 将△ABC 翻折,使翻折后BC ⊥平面ACD ,此时二面角B -AD -C 的大小为.10.如图,四棱锥P -ABCD 的底面是边长为a 的正方形,PB ⊥平面ABCD .(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积.11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .12.若P 是等边三角形ABC 所在平面外一点,且P A =PB =PC ,D ,E ,F 分别是AB ,BC ,CA 的中点,则下列结论中不正确的是( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面P AE ⊥平面ABCD .平面PDF ⊥平面ABC13.在二面角α-l -β中,A ∈α,AB ⊥平面β于点B ,BC ⊥平面α于点C ,若AB =6,BC=3,则二面角α-l-β的平面角的大小为()A.30°B.60°C.30°或150°D.60°或120°14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF⊥PC;(2)试问,当点E在线段AB上移动时,二面角P-EB-C的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.课时作业16 平面与平面垂直的判定1.已知a⊂α,b⊂β,c⊂β,a⊥b,a⊥c,则(D)A.α⊥βB.α∥βC.α与β相交D.以上都有可能解析:因为b⊂β,c⊂β,a⊥b,a⊥c,若b,c相交,则a⊥β,从而α⊥β.又α∥β或α与β相交时,可以存在a⊥b,a⊥c,所以选D.2.已知二面角α-l-β的大小为60°,m,n为异面直线,且m⊥α,n⊥β,则m,n所成的角为(B)A.30°B.60°C.90°D.120°解析:m,n所成的角等于二面角α-l-β的平面角.3.空间四边形ABCD中,若AD⊥BC,BD⊥AD,那么有(D)A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADB C .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC解析:⎭⎪⎬⎪⎫AD ⊥BCAD ⊥BD BC ∩BD =B ⇒⎭⎪⎬⎪⎫AD ⊥平面DBC AD ⊂平面ADC ⇒平面ADC ⊥平面DBC .4.如图所示,在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,则二面角B -P A -C 的大小为( A)A .90°B .60°C .45°D .30°解析:∵P A ⊥平面ABC ,∴P A ⊥AB ,P A ⊥AC ,∴∠BAC 即为二面角B -P A -C 的平面角.又∠BAC =90°,所以二面角B -P A -C 的平面角为90°.5.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的关系是( D )A .相等B .互补C .相等或互补D .不确定解析:举例如下:开门的过程中,门所在平面及门轴所在墙面分别垂直于地面与另一墙面,但门所在平面与门轴所在墙面所成二面角的大小不定,而另一二面角却是90°,所以这两个二面角不一定相等或互补.6.如图所示,在三棱锥D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则下列结论中正确的是( C)A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE解析:因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC .同理有DE ⊥AC ,BE ∩DE =E ,所以AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDE .故选C.7.如图,在正四面体P-ABC(棱长均相等)中,E是BC的中点.则平面P AE与平面ABC 的位置关系是垂直.解析:因为PB=PC,E是BC的中点,所以PE⊥BC,同理AE⊥BC,又AE∩PE=E,所以BC⊥平面P AE.又BC⊂平面ABC,所以平面P AE⊥平面ABC.8.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是面面垂直的判定定理.解析:如图,因为OA⊥OB,OA⊥OC,OB⊂β,OC⊂β,且OB∩OC=O,根据线面垂直的判定定理,可得OA⊥β.又OA⊂α,根据面面垂直的判定定理,可得α⊥β.9.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍.沿AD 将△ABC翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为60°.解析:由已知得,BD=2CD.翻折后,在Rt△BCD中,∠BDC=60°,而AD⊥BD,CD ⊥AD,故∠BDC是二面角B-AD-C的平面角,其大小为60°.10.如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD.(1)求证:平面P AD ⊥平面P AB ;(2)若平面PDA 与平面ABCD 成60°的二面角,求该四棱锥的体积. 解:(1)证明:∵PB ⊥平面ABCD ,AD ⊂平面ABCD ,∴PB ⊥AD . ∵AD ⊥AB ,且AB ∩PB =B ,∴AD ⊥平面P AB .又∵AD ⊂平面P AD , ∴平面P AD ⊥平面P AB .(2)由(1)的证明知,∠P AB 为平面PDA 与平面ABCD 所成的二面角的平面角,即∠P AB =60°,∴PB =3a .∴V P -ABCD =13·a 2·3a =3a 33. 11.如图所示,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起至△A ′BE 的位置,使A ′C =A ′D ,求证:平面A ′BE ⊥平面BCDE .证明:如图所示,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC .∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E .∴A ′N ⊥BE .∵A ′C =A ′D ,∴A ′M ⊥CD . 在四边形BCDE 中,CD ⊥MN ,又MN ∩A ′M =M ,∴CD ⊥平面A ′MN .∴CD ⊥A ′N . ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.又A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平面BCDE . 又A ′N ⊂平面A ′BE ,∴平面A ′BE ⊥平面BCDE .12.若P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,则下列结论中不正确的是(D)A.BC∥平面PDF B.DF⊥平面P AEC.平面P AE⊥平面ABC D.平面PDF⊥平面ABC解析:∵P是等边三角形ABC所在平面外一点,且P A=PB=PC,D,E,F分别是AB,BC,CA的中点,∴DF∥BC,又∵DF⊂平面PDF,BC⊄平面PDF,∴BC∥平面PDF,故A正确.∵P A=PB=PC,△ABC为等边三角形,E是BC中点,∴PE⊥BC,AE⊥BC.∵PE∩AE =E,∴BC⊥平面P AE.∵DF∥BC,∴DF⊥平面P AE,故B正确.∵BC⊥平面P AE,BC⊂平面ABC,∴平面P AE⊥平面ABC,故C正确.设AE∩DF=O,连接PO.∵O不是等边三角形ABC的重心,∴PO与平面ABC不垂直,∴平面PDF与平面ABC不垂直,故D错误.13.在二面角α-l-β中,A∈α,AB⊥平面β于点B,BC⊥平面α于点C,若AB=6,BC =3,则二面角α-l-β的平面角的大小为(D)A.30°B.60°C.30°或150°D.60°或120°解析:∵AB⊥β,∴AB⊥l.∵BC⊥α,∴BC⊥l,∴l⊥平面ABC,设平面ABC∩l=D,则∠ADB即为二面角α-l-β的平面角或其补角.∵AB=6,BC=3,∴∠BAC=30°,∴∠ADB =60°,∴二面角大小为60°或120°.14.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC 上一动点.当点M满足DM⊥PC(或BM⊥PC等)时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)解析:连接AC,则BD⊥AC.由P A⊥底面ABCD,可知BD⊥P A,所以BD⊥平面P AC,所以BD⊥PC,所以当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD.而PC⊂平面PCD,所以平面MBD⊥平面PCD.15.在图(1)等边三角形ABC中,AB=2,E是线段AB上的点(除点A外),过点E作EF⊥AC于点F,将△AEF沿EF折起到△PEF(点A与点P重合,如图(2)),使得∠PFC=60°.(1)求证:EF ⊥PC ;(2)试问,当点E 在线段AB 上移动时,二面角P -EB -C 的大小是否为定值?若是,求出这个二面角的平面角的正切值,若不是,请说明理由.解:(1)证明:因为EF ⊥PF ,EF ⊥FC ,又由PF ∩FC =F ,所以EF ⊥平面PFC . 又因为PC ⊂平面PFC ,所以EF ⊥PC .(2)是定值.由(1)知,EF ⊥平面PFC ,所以平面BCFE ⊥平面PFC ,如图,作PH ⊥FC ,则PH ⊥平面BCFE ,作HG ⊥BE ,连接PG ,则BE ⊥PG ,所以∠PGH 是这个二面角的平面角,设AF =x ,则0<x ≤1,因为∠PFC =60°,所以FH =x 2,PH =32x ,易求GH =334x ,所以tan ∠PGH =PH GH =23,所以二面角P -EB -C 的大小是定值.。
2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.一个或无数个D.可能不存在答案 C解析当两点连线与平面垂直时,有无数个平面与已知平面垂直,当两点连线与平面不垂直时,有且只有一个平面与已知平面垂直.2.下列命题中正确的是()A.平面α和β分别过两条互相垂直的直线,则α⊥βB.若平面α内的一条直线垂直于平面β内的两条平行直线,则α⊥βC.若平面α内的一条直线垂直于平面β内的两条相交直线,则α⊥βD.若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β答案 C解析当平面α和β分别过两条互相垂直且异面的直线时,平面α和β有可能平行,故A错;由直线与平面垂直的判定定理知,B、D错,C正确.3.设l是直线,α,β是两个不同的平面,下列结论中正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β答案 B解析利用线与面、面与面的关系定理判定,用特例法.设α∩β=a,若直线l∥a,且l⊄α,l⊄β,则l∥α,l∥β,因此α不一定平行于β,故A错误;由于l∥α,故在α内存在直线l′∥l,又因为l⊥β,所以l′⊥β,故α⊥β,所以B正确;若α⊥β,在β内作交线的垂线l,则l⊥α,此时l在平面β内,因此C错误;已知α⊥β,若α∩β=a,l∥a,且l不在平面α,β内,则l∥α且l∥β,因此D错误.4.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.答案45°解析可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.5.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC=1,将△ABC沿斜边BC上的高AD折叠,使平面ABD⊥平面ACD,则折叠后BC=________.答案 1解析因为AD⊥BC,所以AD⊥BD,AD⊥CD,所以∠BDC是二面角B-AD-C的平面角.因为平面ABD⊥平面ACD,所以∠BDC=90°.在△BCD中∠BDC=90°,BD=CD=2 2,所以BC=(22)2+(22)2=1.6.如图,平面角为锐角的二面角α—EF—β,A∈EF,AG⊂α,∠GAE=45°,若AG与β所成角为30°,求二面角α—EF—β的平面角.解作GH⊥β于H,作HB⊥EF于B,连接GB,则GB⊥EF,∠GBH是二面角的平面角.又∠GAH是AG与β所成的角,设AG=a,则GB=22a,GH=12a,sin∠GBH=GHGB=22.所以∠GBH=45°,故二面角α-EF-β的平面角为45°.7.如图,正方体ABCD-A1B1C1D1中,E是AA1的中点.求证:平面C1BD⊥平面BDE.证明 设AC ∩BD =O ,则O 为BD 的中点,连接C 1O ,EO ,C 1E .因为EB =ED ,点O 是BD 的中点,所以BD ⊥EO .因为C 1B =C 1D ,点O 是BD 的中点,所以BD ⊥C 1O ,所以∠C 1OE 即为二面角C 1-BD -E 的平面角.因为E 为AA 1中点,设正方体的棱长为a ,则C 1O =a 2+(22a )2=62a , EO = (a 2)2+(22a )2=32a , C 1E = (2a )2+(12a )2=32a , 所以C 1O 2+EO 2=C 1E 2,所以C 1O ⊥OE ,所以∠C 1OE =90°.所以平面C 1BD ⊥平面BDE .二、能力提升8.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .若α⊥β,m ⊂α,n ⊂β,则m ⊥nB .若α∥β,m ⊂α,n ⊂β,,则m ∥nC .若m ⊥n ,m ⊂α,n ⊂β,则α⊥βD .若m ⊥α,m ∥n ,n ∥β,则α⊥β答案 D解析 A 中,m 与n 可垂直、可异面、可平行;B 中m 与n 可平行、可异面、可垂直;C 中若α∥β,仍然满足m ⊥n ,m ⊂α,n ⊂β,故C 错误;D 正确.9.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A.BC∥面PDFB.DF⊥面P AEC.面PDF⊥面ABCD.面P AE⊥面ABC答案 C解析如图所示,∵BC∥DF,∴BC∥平面PDF.∴A正确.由BC⊥PE,BC⊥AE,∴BC⊥平面P AE.∴DF⊥平面P AE.∴B正确.∴平面ABC⊥平面P AE(BC⊥平面P AE).∴D正确.10.如图所示,四边形ABCD是正方形,P A⊥平面ABCD,且P A=AB.(1)求二面角A-PD-C的平面角的度数;(2)求二面角B-P A-D的平面角的度数;(3)求二面角B-P A-C的平面角的度数;(4)求二面角B-PC-D的平面角的度数.解(1)∵P A⊥平面ABCD,∴P A⊥CD,∵四边形ABCD为正方形,∴CD⊥AD,∵P A∩AD=A,∴CD⊥平面P AD,又CD⊂平面PCD,∴平面P AD⊥平面PCD.∴二面角A-PD-C的平面角的度数为90°.(2)∵P A⊥平面ABCD,∴AB⊥P A,AD⊥P A.∴∠BAD为二面角B-P A-D的平面角.由题意知∠BAD=90°,∴二面角B-P A-D的平面角的度数为90°.(3)∵P A⊥平面ABCD,∴AB⊥P A,AC⊥P A.∴∠BAC为二面角B-P A-C的平面角.∵四边形ABCD为正方形,∴∠BAC=45°.即二面角B-P A-C的平面角的度数为45°.(4)作BE⊥PC于E,连接DE,BD,且BD与AC交于点O,连接EO,如图所示,由题意知△PBC ≌△PDC ,则∠BPE =∠DPE ,从而△PBE ≌△PDE .∴∠DEP =∠BEP =90°,且BE =DE .∴∠BED 为二面角B -PC -D 的平面角.∵P A ⊥平面ABCD ,∴P A ⊥BC .又AB ⊥BC ,P A ∩AB =A ,∴BC ⊥平面P AB ,∴BC ⊥PB .设AB =a ,则BE =PB ·BC PC =63a ,BD =2a . ∴sin ∠BEO =BO BE =32.∴∠BEO =60°, ∴∠BED =120°.∴二面角B -PC -D 的平面角的度数为120°.11.如图所示,四棱锥P —ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A = 3.(1)证明:平面PBE ⊥平面P AB ;(2)求二面角A —BE —P 的大小.(1)证明 如图所示,连接BD ,由ABCD 是菱形且∠BCD =60°知,△BCD 是等边三角形. 因为E 是CD 的中点,所以BE ⊥CD .又AB ∥CD ,所以BE ⊥AB .又因为P A ⊥平面ABCD ,BE ⊂平面ABCD ,所以P A ⊥BE .而P A ∩AB =A ,因此BE ⊥平面P AB .又BE ⊂平面PBE ,所以平面PBE ⊥平面P AB .(2)解 由(1)知,BE ⊥平面P AB ,PB ⊂平面P AB ,所以PB ⊥BE .又AB ⊥BE ,所以∠PBA 是二面角A —BE —P 的平面角.在Rt △P AB 中,tan ∠PBA =P A AB=3, 则∠PBA =60°.故二面角A —BE —P 的大小是60°.12.如图,圆锥的轴截面SAB 为等腰直角三角形,Q 为底面圆周上一点.(1)若QB 的中点为C ,求证:平面SOC ⊥平面SBQ .(2)若∠AOQ =120°,QB =3,求圆锥的表面积. 解 (1)因为SQ =SB ,OQ =OB ,C 为QB 的中点, 所以QB ⊥SC ,QB ⊥OC .因为SC ∩OC =C ,所以QB ⊥平面SOC ,又因为QB ⊂平面SBQ ,所以平面SOC ⊥平面SBQ .(2)因为∠AOQ =120°,QB =3,所以∠BOQ =60°,即△OBQ 为等边三角形,所以OB =3,因为△SAB 为等腰直角三角形,所以SB =6,所以S 侧=3·6π=32π,所以S 表=S 侧+S 底=32π+3π=(3+32)π.三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ;(2)求二面角P —AB —C 的正切值.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5,∴PD ⊥AC . ∵AC =22,AB =2,BC =6,∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD . ∵PD 2=P A 2-AD 2=3,PB =5,∴PD 2+BD 2=PB 2.∴PD ⊥BD .∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE .∵PD ⊥平面ABC ,∴PD ⊥AB .又DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB .∴∠PED 是二面角P —AB —C 的平面角.在Rt △PED 中,DE =12BC =62,PD =3,∠PDE =90°, ∴tan ∠PED =PD DE= 2. ∴二面角P —AB —C 的正切值为 2.。
第二章点、直线、平面之间的位置关系2.3 直线、平面垂直的判定及其性质2.3.2 平面与平面垂直的判定A级基础巩固一、选择题1.一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角()A.相等B.互补C.不确定D.相等或互补答案:C2.对于直线m,n和平面α,β,能得出α⊥β的一个条件是() A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β解析:因为m∥n,n⊥β,所以m⊥β.又m⊂α,所以α⊥β.答案:C3.如图所示,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B-PA-C的大小为()A.90°B.60°C.45°D.30°解析:因为PA⊥平面ABC,BA⊂平面ABC,CA⊂平面ABC,所以BA⊥PA,CA⊥PA,因此,∠BAC为二面角BPAC的平面角,又∠BAC=90°.答案:A4.如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD =45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成几何体A-BCD,则在几何体A-BCD中,下列结论正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:由已知得BA⊥AD,CD⊥BD,又平面ABD⊥平面BCD,所以CD⊥平面ABD,从而CD⊥AB,故AB⊥平面ADC.又AB⊂平面ABC,所以平面ABC⊥平面ADC.答案:D5.已知m,n为不重合的直线,α,β,γ为不重合的平面,则下列命题中正确的是()A.m⊥α,n⊂β,m⊥n⇒α⊥βB.α⊥γ,β⊥γ⇒α∥βC.α∥β,m⊥α,n∥β⇒m⊥nD.α⊥β,α∩β=m,n⊥m⇒n⊥β解析:α∥β,m⊥α⇒m⊥β,n∥β⇒m⊥n.答案:C二、填空题6.如图所示,检查工作的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是________.解析:如图,因为OA⊥OB,OA⊥OC,OB⊂β,OC⊂β且OB∩OC =O,根据线面垂直的判定定理,可得OA⊥β.又OA⊂α,根据面面垂直的判定定理,可得α⊥β.答案:面面垂直的判定定理7.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP =AB,则平面ABP与平面CDP所成的二面角的度数是________.解析:可将图形补成以AB、AP为棱的正方体,不难求出二面角的大小为45°.答案:45°8.如图所示,在三棱锥S-ABC中,△SBC,△ABC都是等边三角形,且BC=1,SA=32,则二面角S-BC-A的大小为________.解析:如图所示,取BC的中点O,连接SO,AO.因为AB=AC,O是BC的中点,所以AO⊥BC,同理可证SO⊥BC,所以∠SOA是二面角S-BC-A的平面角.在△AOB中,∠AOB=90°,∠ABO=60°,AB=1,所以AO=1·sin 60°=32.同理可求SO=3 2.又SA=32,所以△SOA是等边三角形,所以∠SOA=60°,所以二面角S-BC-A的大小为60°.答案:60°三、解答题9.在正方体ABCD-A1B1C1D1中,求证:面A1CD1⊥面C1BD.证明:因为ABCD-A1B1C1D1为正方体,所以AC⊥BD,因为AA1⊥平面ABCD,所以AA1⊥BD.又因为AA1∩AC=A,所以BD⊥平面ACA1,又因为A1C⊂平面ACA1,所以BD⊥A1C,同理BC1⊥A1C,因为BD∩BC1=B,所以A1C⊥平面C1BD,因为A1C⊂平面A1CD1,所以面A1CD1⊥面C1BD.10.如图所示,在三棱锥S-ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC的中点.(1)证明SO⊥平面ABC;(2)求二面角A-SC-B的余弦值.(1)证明:如图所示,由题设AB=AC=SB=SC=SA.连接OA,△ABC为等腰直角三角形,所以OA=OB=OC=22SA,且AO⊥BC.又△SBC为等腰三角形,故SO⊥BC,且SO=22SA.从而OA 2+SO 2=SA 2,所以△SOA 为直角三边形,SO ⊥AO .又AO ∩BC =O ,所以SO ⊥平面ABC .(2)解:取SC 的中点M ,连接AM ,OM .由(1)知SO =OC ,SA =AC ,得OM ⊥SC ,AM ⊥SC .所以∠OMA 为二面角A -SC -B 的平面角.由AO ⊥BC ,AO ⊥SO ,SO ∩BC =O ,得AO ⊥平面SBC .所以AO ⊥OM .又AM =32SA ,AO =22SA ,故sin ∠AMO =AO AM =23=63.所以二面角A -SC -B 的余弦值为33.B 级 能力提升1.在空间四边形ABCD 中,若AD ⊥BC ,AD ⊥BD ,那么有()A .平面ABC ⊥平面ADCB .平面ABC ⊥平面ADBC .平面ABC ⊥平面DBCD .平面ADC ⊥平面DBC解析:因为AD ⊥BC ,AD ⊥BD ,BC ∩BD =B ,所以AD ⊥平面DBC .又因为AD ⊂平面ADC ,所以平面ADC ⊥平面DBC .答案:D2.矩形ABCD 的两边AB =3,AD =4,PA ⊥平面ABCD ,且PA =435,则二面角A -BD -P 的度数为________. 解析:过点A 作AE ⊥BD ,连接PE ,则∠AEP 为所求角.因为由AB =3,AD =4知BD =5,又AB ·AD =BD ·AE ,所以AE =125.所以tan ∠AEP =435125=33.所以∠AEP =30°. 答案:30°3.(2015·课标全国Ⅰ卷节选)如图所示,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .证明:平面AEC ⊥平面AFC .证明:连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.,可得EF 在直角梯形BDFE中,由BD=2,BE=2,DF=22=322.从而EG2+FG2=EF2,所以EG⊥FG.又AC∩FG=G,可得EG⊥平面AFC.因为EG⊂平面AEC,所以平面AEC⊥平面AFC.。
平面与平面垂直的判定一、选择题(本大题共小题,每小题分,共分).下面不能确定两个平面垂直的是( ).两个平面相交,所成二面角是直二面角.一个平面垂直于另一个平面内的一条直线.一个平面经过另一个平面的一条垂线.平面α内的直线与平面β内的直线是垂直的.已知直线,与平面α,β,给出下列三个结论:①若∥α,∥α,则∥;②若∥α,⊥α,则⊥;③若⊥α,∥β,则α⊥β.其中正确结论的个数是( ).....设,是两条不同的直线,α,β是两个不同的平面,则下列说法中正确的是( ).若∥α,⊥β,⊥,则α⊥β.若∥α,⊥β,⊥,则α∥β.若∥α,⊥β,∥,则α⊥β.若∥α,⊥β,∥,则α∥β图--.如图--所示,在立体图形-中,若=,=,是的中点,则下列结论中正确的是( ) .平面⊥平面.平面⊥平面.平面⊥平面,平面⊥平面.平面⊥平面,平面⊥平面.如图--所示,在△中,⊥,△的面积是△的面积的倍.沿将△翻折,使翻折后⊥平面,此时二面角--的大小为( )图--.°.°.°.°.若一条线段的两个端点分别在一个直二面角的两个面内(都不在棱上),则这条线段所在的直线与这两个平面所成的角的和( ).等于°.大于°.不大于°.不小于°图--.如图--所示,在三棱锥-中,⊥平面,∠=°,则图中互相垂直的平面共有( ).对.对.对.对二、填空题(本大题共小题,每小题分,共分).已知正四棱锥的体积为,底面对角线的长为,则侧面与底面所成的二面角等于..下列结论中,所有正确结论的序号是.①两个相交平面形成的图形叫作二面角;②异面直线,分别和一个二面角的两个面垂直,则,组成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成角的最小角;④二面角的大小与其平面角的顶点在棱上的位置没有关系..已知两条不同的直线,,两个不同的平面α,β,给出下列命题:①若垂直于α内的两条相交直线,则⊥α;②若∥α,则平行于α内的所有直线;③若⊂α,⊂β且α∥β,则∥;④若⊂β,⊥α,则α⊥β.其中真命题的序号是.(把你认为是真命题的序号都填上)图--.如图--,⊥⊙所在的平面,是⊙的直径,是⊙上一点,⊥于,⊥于,给出下列结论:①⊥;②⊥;③⊥;④平面⊥平面;⑤△是直角三角形.其中所有正确的命题的序号是.三、解答题(本大题共小题,共分).(分)如图--所示,在正三棱柱-中,为的中点,求证:截面⊥侧面.。
2.3.2 平面与平面垂直的判定基础练习
题(含答案解析)
1.如果一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的关系是()
A.相等B.互补
C.相等或互补D.不能确定
解析:选C.当这两个二面角的两个面均同向或均异向时,它们相等;当这两个二面角的两个面中,一组同向,另一组异向时,它们互补.
2.在四棱锥P-ABCD中,已知P A⊥底面ABCD,且底面ABCD为矩形,则下列结论中错误的是()
A.平面P AB⊥平面P AD
B.平面P AB⊥平面PBC
C.平面PBC⊥平面PCD
D.平面PCD⊥平面P AD
解析:选C.由面面垂直的判定定理知:平面P AB⊥平面P AD,平面P AB⊥平面PBC,平面PCD⊥平面P AD,A、B、D正确.
3.如果直线l、m与平面α、β、γ之间满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么() A.α⊥γ且l⊥m B.α⊥γ且m∥β
C.m∥β且l⊥m D.α∥β且α⊥γ
解析:选A.如图,平面α为平面AD1,平面β为平面BC1,平面γ为平面AC,
∵m⊂α,m⊥γ,由面面垂直的判定定理得α⊥γ,又m⊥γ,l⊂γ,由线面垂直的性质得m⊥l.
4.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,则下面四个结论中不成立的是()
A.BC∥平面P DF
B.DF⊥平面P AE
C.平面PDF⊥平面ABC
D.平面P AE⊥平面ABC
解析:选C.可画出对应图形(图略),
则BC∥DF,又DF⊂平面PDF,BC⊄平面PDF,
∴BC∥平面PDF,故A成立;
由AE⊥BC,BC∥DF,知DF⊥AE,DF⊥PE,
∴DF⊥平面P AE,故B成立;
又DF⊂平面ABC,
∴平面ABC⊥平面P AE,故D成立.
5.(2013·德州高一检测)已知P A⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有()
A.1对B.2对
C.3对D.5对
解析:选D.∵DA⊥AB,DA⊥P A,AB∩P A=A,
∴DA⊥平面P AB,同理BC⊥平面P AB,
AB⊥平面P AD,DC⊥平面P AD,
∴平面AC⊥平面P AD,平面AC⊥平面P AB,平面PBC⊥平面P AB,平面PDC⊥平面P AD,平面P AB⊥平面P AD.
6.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,P A =6,那么二面角P-BC-A的大小为________.
解析:取BC的中点O,连接OA,OP,则∠POA为二面角P-BC-A的平面角,OP =OA=3,P A=6,所以△POA为直角三角形,∠POA=90°.
答案:90°
7.
如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
解析:连接AC,则AC⊥BD.
∵P A⊥底面ABCD,
BD⊂面ABCD,∴P A⊥BD.
∵P A∩AC=A,
∴BD⊥面P AC,∴BD⊥PC.
∴当DM⊥PC(或BM⊥PC)时,
即有PC⊥平面MBD,而PC⊂平面PCD,
∴平面MBD⊥平面PCD.
答案:DM⊥PC(或BM⊥PC等)
8.经过平面α外一点和平面α内一点与平面α垂直的平面有________个.
解析:设面外的点为A,面内的点为B,过点A作面α的垂线l,若点B恰为垂足,则所有过AB的平面均与α垂直,此时有无数个平面与α垂直;若点B不是垂足,则l与点B 确定唯一平面β满足α⊥β.
答案:1或无数
9.点P是菱形ABCD所在平面外一点,且P A=PC,求证:平面P AC⊥平面PBD.
证明:如图所示,连接AC,BD交于点O,连接PO,
∵四边形ABCD是菱形,∴BD⊥AC,
又∵AO=OC,P A=PC,∴PO⊥AC.
∵BD∩PO=O,∴AC⊥平面PBD.
又AC⊂平面P AC,
∴平面P AC⊥平面PBD.
10.如图所示,四边形ABCD是平行四边形,直线SC⊥平面ABCD,E是SA的中点,求证:平面EDB⊥平面ABCD.
证明:连接AC,交BD于点F,连接EF,
∴EF是△SAC的中位线,
∴EF∥SC.
∵SC⊥平面ABCD,
∴EF⊥平面ABCD.
∵EF⊂平面EDB,
∴平面EDB⊥平面ABCD.。