农杆菌介导DR1372基因转化拟南芥的
- 格式:pdf
- 大小:1.31 MB
- 文档页数:8
拟南芥(Arabidopsisthaliana)遗传转化实验技术原理拟南芥是植物领域应用较为广泛的模式生物。
由于具有较小的基因组(135 Mbp),生命周期短,可以在多种环境下生长,一直被视为研究植物遗传学、进化、种群遗传学和植物生长发育的系统。
农杆菌介导的蘸花法是目前相对成熟、应用较为广泛的拟南芥稳定遗传转化方法。
转化步骤大致如下:拟南芥(T0代)的花序浸没在一定浓度的含有目标转化质粒的根癌土壤杆菌(Agrobacterium tumefaciens)(常用的根癌农杆菌菌株为GV3101)悬浮液中,然后放在一定条件下进行培养(图1 a-e)。
待植物成熟后收集T0代植物的种子,将这些种子放在含有特定抗生素的培养基上进行生长筛选(图1f),获得阳性植株。
与其他植物转化方法相比,蘸花法需要较少的人力和专用试剂,所需设备相对简单且转化效率较高(在优化的条件下大于1%)(1)。
图 1. 拟南芥蘸花法简要过程(2)。
拟南芥瞬时转化常用的有农杆菌介导的叶片转化、基因枪轰击和聚乙二醇(PEG)介导的原生质体转化等方法。
拟南芥的瞬时转化为研究启动子活性、蛋白的亚细胞定位和蛋白相互作用等提供了支撑。
参考文献:Ghedira R.; et al.(2013) The ef f iciency of Arabidopsis thaliana f loral dip transf ormation isdetermined not only by the Agrobacterium strain used but also by the physiology and the ecotypeof the dipped plant. Moecular Plant Microbe Interaction, 26(7), 823-832.Zhang, X.; et al.(2006). Agrobacterium-mediated transf ormation of Arabidopsis thaliana using thef loral dip method. Nature Protocols, 1(2), 641-645.。
农杆菌介导植物转化的机制及影响转化效率的因素1.农杆菌感染:农杆菌通过其特有的类纤毛附着剂蛋白(T4SS)结构与植物细胞进行初步接触和附着。
2. 感染信号传递:在与植物细胞接触后,农杆菌释放并传递一系列感染信号,包括有效异常淋巴细胞(QvrAB)的诱导、拟南芥(Ca2+)离子内涵物的释放、脑心肌炎物质(AHL)的转运和细胞壁酶的活化等。
3.感染信号诱导细胞凋亡:感染信号的诱导会引起植物细胞凋亡,从而产生切伤的部位或孔洞,在这些切伤或孔洞中形成转化DNA理论允许进入的环境。
4.DNA传递:农杆菌通过T4SS释放线性转化DNA,并借助激发剂打开DNA链,并且该辅助剂经常与T-DNA共同转移到植物细胞总群落中。
5. 植物细胞再生:经过切伤或孔洞进入植物细胞的转化DNA在细胞质中被转录,转录本通过RNA splicing进一步处理并通过核孔复合物进入细胞核。
在细胞核中,转录本通过与受体蛋白结合而在柏氏体中形成mRNA。
mRNA会进一步被转录为蛋白质,这些蛋白质会促进植物细胞再生。
1.植物物种:不同植物物种对于农杆菌的感染和转化效率具有差异。
有些植物对农杆菌的感染和转化具有天然的耐受性或敏感性。
2.植物组织类型:不同植物的不同组织对于农杆菌的感染和转化效率也有所差异。
例如,幼嫩的愈伤组织对于农杆菌的感染和转化效率通常较高。
3.农杆菌菌株:不同菌株具有不同的亲和力和感染能力。
有些农杆菌菌株能够高效地感染和转化植物细胞,而有些菌株效率较低。
4.结构改造:农杆菌通过改造表面酶结构以增加其细胞壁附着能力,从而提高农杆菌感染和转化效率。
5.切伤或孔洞大小:适当的切伤或孔洞大小能够促进农杆菌介导植物转化的效率。
切伤或孔洞过小会限制转化DNA进入细胞,而切伤或孔洞过大则会增加细菌感染的难度。
总之,农杆菌介导植物转化是一种复杂的生物学过程,其效率受到多个因素的影响。
进一步研究和优化这些因素可以提高农杆菌介导植物转化的效率,为植物遗传工程提供更多的可能性。
一种基于农杆菌介导的拟南芥瞬时转化技术优化郭勇;王玉成;王智博【摘要】利用根癌农杆菌(Agrobacterium tumefaciens)介导的拟南芥瞬时转化体系影响因素来确定最佳转化条件.以生长15日龄的拟南芥幼苗为试验材料,以转化pCAMBIA1301空载体的根癌农杆菌EHA105为目的菌株进行瞬时转化.研究了吐温20、菌液OD值、乙酰丁香酮(AS)及转化时间等对拟南芥瞬时转化效率的影响.结果表明:以体积分数为0.05%的吐温、菌液OD600值为1.0和120 μmol/L 的AS侵染拟南芥2.5 h后,再共培养72 h,能够得到高瞬时转化效果.【期刊名称】《东北林业大学学报》【年(卷),期】2016(044)006【总页数】5页(P41-44,83)【关键词】拟南芥;GUS基因;瞬时表达;实时定量;农杆菌介导转化【作者】郭勇;王玉成;王智博【作者单位】林木遗传育种国家重点实验室(东北林业大学),哈尔滨,150040;林木遗传育种国家重点实验室(东北林业大学),哈尔滨,150040;林木遗传育种国家重点实验室(东北林业大学),哈尔滨,150040【正文语种】中文【中图分类】Q786拟南芥是重要的模式植物,很多植物基因的功能都是通过基因转入拟南芥中进行研究,而转基因又分稳定表达与瞬时表达两种方式[1],稳定表达需要的培养、鉴定时间较长,而与之相比,瞬时表达具有简单、快捷、周期短、准确等优点[2],并且表达效率较稳定,转化率高。
当需要在短时间内进行基因功能的分析或者蛋白间的互作以及蛋白与基因间互作等的研究时,瞬时表达的方法可作为一种高效的手段[3]。
基于瞬时转化技术使基因在宿主体内瞬时表达,是一种快速的研究基因表达、蛋白质亚细胞定位及基因间互作的一种重要手段,与传统的转基因相比,瞬时表达不需要整合到染色体上,而且瞬时表达还不受基因的位置效应和基因沉默的影响,也不会产生可遗传的子代,生物安全性高[4]。
拟南芥的遗传工程拟南芥是一种小型的花卉植物,也是遗传学研究中最为常用的模式生物之一。
开展拟南芥的遗传工程可以为其生长方式、形态特征、反应机制等方面的研究提供有力的支持,有助于进一步深化人类对生命运作机理的认识。
拟南芥的基本遗传信息拟南芥是对称性叶状植物茎节数量达到300,花的蕾囊非常小,可在显微镜下观察。
其基因组大小约为125兆字节,核基因组具有5条染色体,端粒长度不到3kb,叶绿体长度为154kb,其每个细胞都有大约12个叶绿体。
拟南芥拥有约27,000个基因,占整个基因组大小的20%。
拟南芥的遗传转化技术目前,拟南芥的遗传转化技术主要包括农杆菌介导的遗传转化和生物素-结构的介导遗传转化。
农杆菌介导遗传转化技术是一种利用农杆菌侵染细胞后将遗传物质转移至目标生物细胞的技术。
该技术可通过简单、稳定和快速的途径将确定的DNA序列插入到植物细胞的基因组中,从而实现外来源基因的改变。
尽管农杆菌介导遗传转化技术在多数作物上都有广泛应用,但该技术在转移DNA之后,难以控制新的基因组改变和位置影响,这可能影响实验结果的可重复性。
与此不同,生物素-结构的介导遗传转化技术可在不需要遗传材料经过的过程中向植物细胞输送纯的DNA检测表头结果。
介导者生物素(med‐strombin) 在植物细胞中易与融合度高的DNA结合,制造出具有生物素的DNA结合来,从而实现把选定的DNA序列插入到目标生物细胞的有选择性的插入和表达。
拟南芥遗传转化技术的应用拟南芥可以被用来研究染色体的分离和纯化以及基因的表达、诱变和注释等方面。
这些特性被广泛应用于遗传学和分子生物学实验中,以支持人类对生命机理的认识。
例如,在研究肿瘤的起源和发展过程中,拟南芥可以被用来研究基因表达的变异以及肿瘤细胞与正常细胞之间基因表达模式的异同。
此外,拟南芥还可以被用于探究人类疾病的发病机制,帮助科学家更好地理解和治疗多种疾病。
结论拟南芥的遗传工程为遗传学和分子生物学的发展提供了强有力的支持。
摘要DREB类转录因子和RD22类蛋白在植物应答和抵抗多种非生物逆境中起重要作用。
本论文首次从强抗逆植物蒙古沙冬青中克隆到AmDREB2基因,并对该基因和实验室在前期从蒙古沙冬青克隆的另一个基因AmRD22进行了表达分析,然后将它们分别转入拟南芥,通过转基因拟南芥对其抗逆功能进行了鉴定,主要研究结果如下:(1)用PCR方法扩增到AmDREB2的编码区cDNA,推测其编码蛋白由175个氨基酸残基组成,分子量为19.96 KDa,等电点为7.26,属于DREB2型转录因子,可能为亲水性蛋白,定位在细胞核。
(2)AmDREB2的表达受高盐、干旱和低温胁迫的显著诱导,尤其在干旱和盐胁迫下其表达量持续上调。
(3)成功将AmDREB2编码区cDNA片段连接到植物表达载体pCAMBIA3301的rd29A启动子之后,通过农杆菌介导法转化拟南芥,经鉴定和繁殖获得T3代纯合株系。
(4)通过对T3代纯合株系在干旱、低温、高盐和外源ABA等处理下进行表型鉴定,证明AmDREB2在耐旱和耐盐性中起正调节作用,而对外源ABA的敏感性起负调节作用。
(5)AmRD22的表达主要受干旱和高盐胁迫的诱导,而受低温诱导的幅度较小。
(6)利用农杆菌介导法将AmRD22基因转化拟南芥,经鉴定和繁殖获得T3代纯合株系。
将其在干旱、低温、高盐和外源ABA等胁迫处理下进行表型鉴定,证明该基因主要在耐盐性中起重要作用。
关键词:沙冬青;DREB;RD22;表达分析;功能鉴定Functional analyses of AmDREB2 and AmRD22 genes fromAmmopiptanthus mongolicusAbstractDREB (Dehydration responsive element binding) transcription factors and RD22 proteins play key roles in plant response and resistance to multiple abiotic stresses. Ammopiptanthus mongolicus shows very strong resistance to cold, drought and high salinity. In this paper, a DREB2-like gene, namely AmDREB2, was cloned from A. mongolicus,and the expression patterns of both AmDREB2and AmRD22that was cloned from this plant previously were analyzed under different abiotic stresses. Moreover, the functional analyses of AmDREB2and AmRD22 were performed by their transgenic Arabidopsis. The main results are as follows:(1)The complete coding region cDNA of AmDREB2 was cloned by PCR method. Its predicted polypeptide consists of 175 amino acids and has a molecular weight of 19.96 KDa and an isoelectric point of 7.26. It belongs to the DREB2-type transcription factor and was predicted to be suloble protein with strong hydrophilicity and most probably located in cell nucleus.(2)The expression of AmDREB2 was significantly induced by high salinity,drought and low temperature, and especially continued to increase under drought and salinity stresses.(3) The cDNA fragment of AmDREB2 was successfully ligased to plant expression vector pCAMBIA3301 and was promoted by the promoter of rd29A. Then the gene fragment was introduced into Arabidopsis by Agrobacterium-mediated transformation. The transgenic plants were identified and propagated, and the homozygous lines of T3 generation were obtained.(4)Through phenotypic characterization of the T3 lines under multiple abiotic stresses like drought, low temperature, high salinity and exogenous abscisic acid (ABA), it was suggested that AmDREB2 functions as a positive regulator of drought and salt resistance and a negative regulator of exogenous ABA sensitivity.(5)The expression of AmRD22 was obviously induced by drought and high salinity but weakly induced by low temperature.(6)AmRD22 gene was introduced into Arabidopsis by Agrobacterium-mediated transformation and the transgenic plants were identified and propagated. The phenotypic characterization of homozygous lines of T3 generation were carried out under drought, low temperature, high salinity and exogenous ABA, and it wassuggested that AmRD22 mainly plays an important role in resistance to high salinity stress.Key words:Ammopiptanthus; DREB; RD22; Expression analysis; Functional characterizationDirected by: Prof. WANG MaoyanApplicant for Master degree: Wang Xuefeng (Genetics)(College of Life Science. Inner Mongolia Agricultural University. Hohhot 010018. China)目录1 引言 (1)1.1 DREBs转录因子 (1)1.1.1 DREBs的结构与基因克隆 (1)1.1.2 DREB类基因的表达与调节 (2)1.1.3 DREBs的功能及其作用机理 (3)1.2 RD22蛋白 (4)1.3 沙冬青抗逆性研究进展 (4)1.3.1 沙冬青抗冻蛋白的分离与鉴定 (5)1.3.2 沙冬青抗逆基因的分离与鉴定 (5)1.4 本研究的目的和意义 (6)2 材料与方法 (7)2.1 实验材料 (7)2.1.1 实验材料 (7)2.1.2 菌株和载体 (7)2.1.3 试剂 (7)2.1.4 缓冲液及主要试剂配制 (7)2.1.5 实验中用到的引物 (8)2.2 实验方法 (8)2.2.1 蒙古沙冬青幼苗胁迫处理 (8)2.2.2 总RNA的提取(Trizol法) (9)2.2.3 总RNA的纯化 (9)2.2.4 cDNA的合成 (10)2.2.5 基因克隆与测序 (10)2.2.6 序列分析 (12)2.2.7 半定量RT-PCR分析 (12)2.2.8 表达载体构建 (12)2.2.9 转化拟南芥 (13)2.2.10 转基因植株的筛选与分子检测 (15)2.2.11 转基因拟南芥抗逆性鉴定 (16)3 结果与分析 (17)3.1 蒙古沙冬青不同样品总RNA的提取与检测 (17)3.2 AmDREB2基因克隆与功能分析 (18)3.2.1 AmDREB2基因克隆与生物信息学分析 (18)3.2.2 AmDREB2在不同胁迫处理下的表达变化 (20)3.2.3 AmDREB2表达载体构建与转基因功能鉴定 (21)3.2.4 AmDREB2转化拟南芥及其抗逆性鉴定 (22)3.3 AmRD22的表达与功能分析 (27)3.3.1 AmRD22在不同胁迫处理下的表达变化 (27)3.3.2 AmRD22转基因拟南芥的获得与分子检测 (27)3.3.3 转基因株系的抗逆性鉴定 (29)4 讨论 (31)4.1 AmDREB2的结构特征 (31)4.2 AmDREB2参与蒙古沙冬青对非生物胁迫的应答反应 (32)4.3AmDREB2可能参与ABA依赖的信号转导途径 (32)4.4 AmRD22主要在耐盐性中起主要作用 (32)5 结论 (33)致谢 (35)参考文献 (36)作者简介 (42)插图和附表清单1. 图1 RD22类亚族蛋白氨基酸序列特点 (4)2. 图2 干旱处理样品的总RNA (17)3. 图3 AmDREB2 PCR扩增图谱 (18)4. 图4 AmDREB2转化DH5α菌落PCR图谱 (18)5. 图5 AmDREB2与已知DREB蛋白的序列比对 (19)6. 图6 AmDREB2与拟南芥等9个DREB的进化分析 (20)7. 图7 AmDREB2在低温、脱水和盐胁迫下的表达变化 (20)8. 图8 重组表达载体的菌落PCR鉴定图谱 (21)9. 图 9 重组表达载体的酶切鉴定图谱 (21)10. 图10 表达载体转化农杆菌菌落PCR鉴定图谱 (22)11. 图11 T1代PPT抗性植株的筛选 (22)12. 图12 AmDREB2转化拟南芥T1代植株 PCR鉴定 (23)13. 图13 T2代转基因株系的RT-PCR检测 (23)14. 图14 转基因拟南芥和WT在1/2 MS和1/2 MS+300 mM甘露醇培养基上的生长情况 (24)15. 图15 转基因拟南芥和WT在1/2 MS和1/2 MS+NaCl培养基上的生长情况 (25)16. 图16 转基因拟南芥和WT在1/2 MS+1.25 μM ABA培养基上的生长情况 (25)17. 图17 AmRD22在干旱、低温和盐胁迫下的表达变化 (27)18. 图18 表达载体转化GV3101菌落PCR鉴定图谱 (27)19. 图19 T1代PPT抗性植株的筛选 (28)20. 图20 部分T1代PPT抗性植株的 PCR检测 (29)21. 图21 T2代转基因株系的RT-PCR检测 (29)22. 图22 转基因拟南芥和WT在1/2 MS和1/2 MS+NaCl培养基上的生长情况 (30)23. 图23 转基因拟南芥和WT在1/2 MS和1/2 MS+甘露醇培养基上的生长情况 . 3124. 表1 不同胁迫处理样品总RNA的纯度及浓度 (17)25. 表2 转基因拟南芥和WT在各种培养基上的种子萌发率(%) (26)26. 表3 转基因拟南芥和WT在各种培养基上的根长(mm) (26)27. 表4 转基因拟南芥和WT在各种培养基上的萌发率(%) (30)28. 表5 转基因拟南芥和WT在各种培养基上的根长(mm) (30)缩略语表ABA(Abscisic acid)脱落酸Am(Ammopiptanthus mongolicus)沙冬青Amp(Ampicillin)氨苄青霉素At(Arabidopsis thaliana)拟南芥AP2(APETALA2)/EREBP(Ethylene-responsive element binding protein)乙烯应答元件结合蛋白CBF(C-repeat binding factors)冷应答元件结合蛋白cDNA(Complementary DNA)互补DNA DEPC(Diethyl-pyrocarbonate)焦炭酸二乙酯DRE(Dehydration responsive element)脱水应答元件DREB(Dehydration responsive element binding)乙烯应答元件结合蛋白EDTA(Ethylene dinitrilotetracetic acid)乙二胺四乙酸Kan(Kanamycin sulfate)硫酸卡那霉素OD(Optical density)光密度ORF(Open reading frame)开放读码框PCR(Polymerase chain reaction)聚合酶链式反应RD(Responsive to dehydration)干旱应答PPT(Phosphinothricin)草丁膦Rif(Rifampicin)利福平rpm(Rounds per minute)转/分RT-PCR(Reverse-transcription polymerase chain reaction)反转录PCR SDS(Sodium dodecyl sulfate)十二烷基磺酸钠Tris(Trihydroxymethyl minomethane)三羟甲基氨基甲烷内蒙古农业大学硕士学位论文 1 1 引言干旱、低温和盐碱是影响植物生长发育和作物生产的主要逆境因素。
农杆菌介导植物的遗传转化实验报告
本实验使用农杆菌介导植物的遗传转化技术,将外来基因导入到拟南芥植物中。
通过将拟南芥的幼苗浸泡在农杆菌中,再经过一定的培养条件,使外来基因被顺利地导入到拟南芥植物的细胞中,并观察到了转化成功的基因表达现象。
实验过程:
1. 构建外源基因载体——将目的基因把它克隆进载体中,构建出我们所需要的质粒;
2. 建立农杆菌表达载体——通过将农杆菌表达载体连接到质粒上,形成我们的转化载体;
3. 准备转化基质——通过将农杆菌营养培养在一定条件下,形成我们所需要的转化基质;
4. 转化拟南芥中——通过将拟南芥幼苗浸泡到农杆菌基质中,利用细胞壁酶和孔道蛋白结合作用,导入外源基因,最终实现基因转化;
5. 鉴定转化水平——通过将转化后的拟南芥植株置于含有抗生素的培养基中,筛选出转化成功的植株。
实验结果:
通过观察实验结果,我们发现拟南芥细胞成功地接受了外源基因,使其表达了目
的蛋白。
同时,通过筛选,我们也成功得到转化成功的植株。
结论:
农杆菌介导植物的遗传转化技术是一种有效的基因转化方法,可以将外源基因导入到植物细胞中,从而实现第二代遗传分析、基因功能研究、新品种选育等方面的应用。
一、实验目的本实验旨在通过农杆菌介导法对拟南芥(Arabidopsis thaliana)进行遗传转化,将目的基因导入拟南芥基因组中,并通过筛选和鉴定得到转基因植株。
二、实验材料1. 拟南芥(T0代)植株2. 根癌土壤杆菌(Agrobacterium tumefaciens)GV3101菌株3. 目的基因质粒(含有荧光素酶基因)4. 抗生素:卡那霉素、氯霉素5. 培养基:MS培养基、N6培养基、再生培养基6. 仪器:离心机、PCR仪、荧光显微镜等三、实验方法1. 构建重组表达载体将荧光素酶基因插入到农杆菌转化载体pCAMBIA1300中,构建重组表达载体pC1300-FRT::GUS。
2. 农杆菌转化将重组表达载体转化根癌土壤杆菌GV3101菌株,通过平板划线法筛选阳性克隆。
3. 拟南芥转化将阳性克隆的农杆菌悬浮液与拟南芥(T0代)花序进行蘸花处理,将蘸花后的拟南芥放入MS培养基中培养。
4. 筛选和鉴定在含有卡那霉素的培养基上筛选转基因植株,通过PCR检测和荧光显微镜观察GUS 基因的表达情况,鉴定转基因植株。
5. 再生和繁殖将转基因植株移栽至N6培养基中培养,待植株生长稳定后,收集种子进行繁殖。
四、实验结果1. 构建重组表达载体成功构建了含有荧光素酶基因的重组表达载体pC1300-FRT::GUS。
2. 农杆菌转化通过平板划线法筛选到阳性克隆,表明重组表达载体已成功转化根癌土壤杆菌GV3101菌株。
3. 拟南芥转化蘸花处理后,部分拟南芥植株在含有卡那霉素的培养基上生长,表明转基因植株已成功筛选。
4. 筛选和鉴定通过PCR检测和荧光显微镜观察,发现部分转基因植株GUS基因表达阳性,荧光素酶活性明显。
5. 再生和繁殖将转基因植株移栽至N6培养基中培养,植株生长良好,繁殖成功。
五、实验讨论1. 本实验通过农杆菌介导法成功将荧光素酶基因导入拟南芥基因组中,获得了转基因植株。
2. 在实验过程中,农杆菌转化和拟南芥转化效果良好,表明该实验方法适用于拟南芥遗传转化。
一、实验目的1. 掌握农杆菌介导的植物基因转化方法。
2. 学习基因转化过程中的操作技巧。
3. 研究农杆菌介导的基因转化在植物遗传育种中的应用。
二、实验原理农杆菌(Agrobacterium tumefaciens)是一种土壤细菌,它具有将T-DNA(转移DNA)片段转移到植物细胞中的能力。
在植物基因转化实验中,利用农杆菌将目的基因导入植物细胞,进而实现基因的遗传转化。
本实验采用农杆菌介导的方法,将目的基因导入拟南芥(Arabidopsis thaliana)细胞中。
三、实验材料1. 拟南芥植株2. 农杆菌菌株(E. coli DH5α和Agrobacterium tumefaciens C58)3. 载体DNA(含目的基因)4. 限制性内切酶和连接酶5. 载体质粒(含T-DNA序列)6. 抗生素(卡那霉素和壮观霉素)7. 培养基和试剂四、实验方法1. 构建重组载体:将目的基因克隆到载体质粒中,并构建重组载体。
2. 农杆菌转化:将重组载体与农杆菌共同培养,使目的基因转移到农杆菌中。
3. 农杆菌感染:将转化后的农杆菌与拟南芥植株进行共培养,使农杆菌感染拟南芥细胞。
4. 抗性筛选:将感染后的拟南芥植株在含有抗生素的培养基上培养,筛选出含有目的基因的植株。
5. 基因表达检测:通过PCR、RT-PCR等方法检测目的基因在转化植株中的表达情况。
五、实验结果与分析1. 重组载体的构建:通过PCR和测序验证,成功构建了含目的基因的重组载体。
2. 农杆菌转化:经过共培养和感染,拟南芥植株表现出明显的抗性。
3. 抗性筛选:在含有抗生素的培养基上,成功筛选出含有目的基因的植株。
4. 基因表达检测:通过PCR和RT-PCR实验,证实目的基因在转化植株中得到了表达。
六、实验结论1. 成功构建了含目的基因的重组载体。
2. 农杆菌介导的基因转化方法在拟南芥中取得了较好的效果。
3. 通过抗性筛选和基因表达检测,验证了目的基因在转化植株中的稳定遗传和表达。
0000000000农杆菌侵染拟南芥花序的转化方法00000000制备转化用的农杆菌菌液准备:1.灭菌试管 400毫升细长烧杯2瓶,离心瓶4-6个(250ml)。
2.试剂:YEP 1200ml(每瓶300ml 共4瓶)+Kan 1;1000,Rif1:500。
1/2MS+2%蔗糖(灭菌115度20分钟),Silwet在-20℃贮存。
3.步骤:共转化农杆菌:于中午12点接菌于有YEP培养液的试管中10ul:10ml接种。
28℃,3000rpm摇过夜,约30小时,次日下午6点将已摇活的菌按(1:400)及750ul菌液转至汉300毫升YEP+K50+Rif中培养28℃,300rpm约14小时,次日上午8点测OD值,用YEP+Rif作为空白对照,当菌液达到OD600为1.5~3.0之内时,可收集菌体于250ml离心瓶(灭菌),4℃,4000g 离心10min 。
用10%蔗糖(含0.02%silwet)稀释至OD600 约为0.8-- 1.0左右即,用10%蔗糖作对照。
转化时将花在溶液中浸泡50s左右,于弱光下生长。
4.浇水:转化前一天将需要做转化的野生型拟南芥苗子浇水浇透。
(注意:选取上述配好的溶液2ml,充分打碎管底部的菌体,在将混匀的菌体溶入600ml溶液中,混匀后再加入Silwet(100%)120ul终浓度为0.02%)。
2.先将浇透水用于转化的苗子的夹全部剪掉,再用宽胶带把花盆的土封好。
3.转化的准备工作:2个400细长烧杯,宽胶带,记号笔,表等。
4.转化过程略,视苗的长势弱 0.8 Pa 3`,长势好的0.8 Pa 5`。
5.标记好,将转化好的苗平放于盒子内,上盖封口膜封好,避光培养24hrs 2天后,将植株立起正常培养,浇水,3天1次。
花序浸泡(flower-dipping)法转化拟南芥(2)拟南芥种植取Columbia生态型的拟南芥种子,在EP管中用70%的酒精消毒2-3min,10%次氯酸钠消毒10min,无菌水冲洗5-6次,用0.1%的Top agar混匀,平铺在1/2 MS 培养基上,4℃保湿黑暗条件下春化3-4天,然后置于16h光照/8h黑暗光周期、2000-3000Lux、18℃、RH为70%条件下培养。
第32卷第2期2013年2月绵阳师范学院学报Journal of Mianyang Normal University Vol.32No.2Feb.,2013收稿日期:2012-12-30基金项目:转基因生物新品种培育重大专项(2009ZX08009-091B ),国家自然科学基金(30871555),教育部新世纪优秀人才支持计划(NCET -08-0940),四川省教育厅(09ZA034)、西南科技大学博士研究基金(11zx7104)和农业部公益性行业科研专项(201103007)作者简介:张思维,硕士研究生,主要从事植物遗传与抗逆研究*通讯作者:代其林,博士,副教授,研究方向为植物遗传与抗逆研究.E -mail :daiqilinmj@.sina.com农杆菌介导DR 1372基因转化拟南芥的研究张思维,周文波,张新,陈翠娜,代其林*(西南科技大学生命科学与工程学院,四川绵阳621000)摘要:耐辐射奇球菌(D.radiodurans ,DR )在极端胁迫条件下能够继续生存,其耐辐射奇球菌基因组中(DRR1)拥有一个独特的极端环境抗性基因组而被广泛研究.DR 1372基因就是在DR R1中克隆得到的一个基因,其蛋白序列存在一个Why 功能域,此功能域可能参与了植物的抗旱过程.我们利用基因工程手段首先构建了植物DR1372-GV3103表达载体,然后利用花序浸染法成功将目的基因DR 1372转入拟南芥中,最后对阳性植株进行盐胁迫,证实了DR 1372基因在拟南芥中的表达明显改善了转基因植株的耐盐性.初步建立了农杆菌介导DR 1372基因转化拟南芥体系,为后续DR 1372基因的功能研究工作提供了理论基础.关键词:DR 1372;载体构建;盐胁迫;拟南芥中图分类号:O175.12文献标识码:A 文章编号:1672-612x (2013)02-0057-080引言目前,越来越多的抗旱相关基因已经被克隆,并用来提高植物的抗旱性.按照抗旱基因的功能,可以把植物抗旱相关基因分为两大类:第一类是编码在植物抗性中直接起保护作用的蛋白质基因,属于功能基因;第二类是编码在信号传导和逆激基因表达过程中起调节作用的转录因子基因,属于调节基因[1].Pibn -Smits 等将otsA 和otsB 导入烟草,在干旱胁迫下,转基因植株中海藻糖含量比对照高,叶面积增大,光合活性提高[2].Kishor 等将从乌头叶豇豆中克隆的P5CS 基因与CaMV35S 启动子连接转入烟草中,发现转基因烟草的脯氨酸含量比对照高10-18倍;干旱胁迫下,转基因烟草落叶少而迟,根比对照长40%,生物量增加2倍[3].Capell 等发现Adc 在水稻中的超表达缓解了干旱条件下转基因水稻叶绿素的损失,并提高了水稻的抗旱性[4].由于转录因子能在转录水平上调控一系列基因的表达,所以转化调节基因能有效地提高植物的耐旱性,与抗旱相关的转录因子有DREB 、MYC /MYB 、bZIP 、WRKY 和NAC 类等,其中MYB /MYC 是植物中最大的转录因子家族.Chen 等发现了小麦中23个MYB 转录因子,其中有4个与抗旱相关[5].耐辐射奇球菌(D.radiodurans ,DR )是Anderson 等科学家在1956年从经过灭菌处理的肉类中发现的一种红色非致病性球菌,目前被认为是"世界上抗性最强的细菌",因其对电离辐射、干燥、紫外线及一些DNA 损伤试剂显示超强的抗性,一直倍受生物医学界的关注[6].White 等在1999年公布了DR R1的完全基因组序列,包括两条染色体,共携带有3195个可预测基因,并对部分基因进行了评注[7].DR R1基因组可以在一个细胞中完成DNA 修复,DNA 损伤信号输出,干旱和饥饿胁迫的应答,以及基因组的修复等功能.Battista 等推测,在耐辐射球菌R1中的抗旱性研究将用于引导较高生物体的抗旱性研究[8].DR1372基因是耐辐射奇球菌体内1号染色体上的一个基因,把这个基因转入大肠杆菌后进行培养,经初步定性分析发现,在大肠杆菌中有稳定细胞膜,调节细胞内外渗透压的作用,初步推测为与调节水分胁迫应答有关的基因.对DR1372蛋白序列进行分析发现,其内部存在一个WHy 功能域非特异性结合位点,与HIN1蛋白中的WHy 功能域结构非常相似[9].WHy 结构域存在于几大类蛋白质家族中,大约由100个氨基酸组成,这些氨基酸由亲水性和疏水性氨基酸交替排列,并且在N 末端都存在一个非蛋白氮(NPN )结构.同时,研究者还在胚胎发育晚期蛋白中也发现了WHy 功能域的存在,最终推测WHy 结构域是参与植物水分胁迫应答以及超敏应答的一类功能域[9].脱水素是一类亲水性蛋白质,其蛋白结构中也含有一个WHy 功能域,它们在胚胎发生后期阶段产生,对低温、外源ABA 、干旱、盐渍以及脱水胁迫反应迅速,进而在植株中积累[10、11].由于WHy 功能域参与了干旱胁迫应答,这些间接证据表明DR 1372基因在干旱胁迫过程中也可能参与了抗旱性相关的基因.因此,本研究利用基因工程手段构建植物DR 1372-GV3103表达载体,将DR 1372基因转入拟南芥中,得到转基因抗性拟南芥,并对转DR 1372基因拟南芥幼苗进行了盐胁迫的反应,不仅为后续的该基因研究提供了丰富的植物材料,也为DR 1372的功能研究包括WHy 功能域的功能研究奠定了基础,对植物育种工作也有一定的指导意义.1实验材料1.1植物材料拟南芥野生型col -0生态型1.2菌株DR 1372+Z3(DR 菌内与干旱相关的基因DR 1372与穿梭质粒pRADZ3连接转大肠杆菌),JM109,JM109,GV31032实验方法2.1构建DR 1372-GV3103植物表达载体2.1.1DR 1372基因的引物设计根据DR 1372基因序列,利用生物软件Primer5设计出该基因的上、下游引物(分别命名为DR 1372-F ,DR 1372-R );根据pBI121质粒图谱,分别引入XbaI ,SacI 限制性酶切位点,并设计引物如下:Sence :5'------GC TCTAGA ATGAAGAAGATGGCTTTTGCG -----3'Antisence :5'---CG AGCTC TCAAAACACCGATAAAGGCGC ----3'(加粗标记示酶切位点)2.1.2PCR 扩增目的基因DR 1372用试剂盒(TIANGEN )提取DR 1372+Z3质粒,在最优扩增体系下进行PCR 扩增.电泳验证.2.1.3质粒pBI121的提取用试剂盒(TIANGEN )提取pBI121质粒.电泳验证.2.1.4PCR 产物胶回收PCR 产物经电泳检测后,使用琼脂糖凝胶DNA 回收试剂盒(TIANGEN )回收扩增的目的片段DR1372和pBI121.电泳验证.2.1.5DR 1372基因和pBI121的酶切,连接,筛选及鉴定2.1.5.1目的片段DR 1372和pBI121质粒用XbaI ,SacI (购自Takara 公司)进行双酶切,37ħ酶切过夜,回收目的片段.2.1.5.2将回收的目的基因片段和pBI121质粒大骨架片段,16ħ连接过夜,重组质粒转化JM109感受态细胞.2.1.5.3阳性克隆检测:进行菌落PCR 初步鉴定,将PCR 检测出的阳性单克隆摇菌后送华大基因公司测序.2.1.6挑取测序成功的JM109单菌落,继代培养,保菌.将保存菌种摇菌提取质粒,得到DR 1372-GV3103植物表达载体.2.2花序浸染法转化拟南芥2.2.1培养基:MS 培养基中抗性筛选平板加入卡拉霉素(Kan ,50mg /ml )Hoagland's (霍格兰氏)液体培养基药品试剂:乙酰丁香酮(AS )Silwet -L77表面活性剂2.2.2拟南芥种子的消毒、铺板及植株培养选取150粒拟南芥种子,用75%乙醇消毒1min ,然后用无菌水洗2遍;再用2.5%NaClO 消毒5min ,用无菌水清洗5遍后,最后用加无菌水少许,放在4ħ冰箱春化2d 后进行铺板.·85·第32卷绵阳师范学院学报(自然科学版)铺板前一天按照每板大约25mL MS 配制固体平板培养基,col -0生态型拟南芥种子铺于无抗性培养基上,放入光照培养箱中(22ħ,16h /8h 光/暗培养(光强130μmol ·m -2·s -1)).培养10d 后把拟南芥幼苗移栽至培养土中(营养土/蛭石=2:1),相同温度和光照条件下继续培养,每3d 浇水一次.待拟南芥开出花序准备进行浸染.2.2.3花序浸染法浸染拟南芥:2.2.3.1DR 1372-GV3103农杆菌的培养:在200mL LB 液体培养基中加入0.2mL DR 1372-GV3103菌液,28ħ220rpm 振荡培养15h 左右,室温下4000rpm 离心20min ,弃上清,用1/2MS 液体培养基(含AS 100μmol /L ,0.05%Silwet -L77表面活性剂)悬浮菌体,稀释到原体积的10倍,在28ħ220rpm 振荡培养1h ,菌液浓度达到OD 600=0.5时待用.2.2.3.2浸染:将拟南芥未开花的花序浸入菌液中3-5s ,倒放24h ,并用薄膜覆盖避光24h ,然后21ħ光照培养.2.2.4收取拟南芥的T 1代种子:T 1代种子采收后,用含有卡那霉素的平板进行转基因阳性筛选,然后提取抗卡那霉素的拟南芥幼苗基因组进行PCR 鉴定,阳性T 1代幼苗开花结实后,收取T 2代种子,得到纯合体转基因拟南芥种子.2.3转DR1372基因拟南芥幼苗对盐胁迫的反应2.3.1拟南芥种子的消毒、铺板选取T 2转基因拟南芥种子约200粒,用75﹪乙醇消毒1min ,用无菌水洗2遍;再用2.5﹪NaClO 消毒5min ,随后用无菌水清洗5遍,再次加入无菌水放置在4ħ冰箱进行春化处理2d.然后把春化后的种子铺在25mL MS 固体培养基上,转基因和非转基因拟南芥种子均铺于无卡拉霉素的培养基上,封口放入光照培养箱中培养(22ħ,16/8h 光/暗培养(光强为130μmol ·m -2·s -1)).2.3.2对拟南芥幼苗进行NaCl 盐胁迫待拟南芥幼苗在平板上长出3片叶后,在平板中加入0、100、200、250和300mmol /L 灭菌的NaCl 溶液.然后观察拟南芥幼苗的生长状况.3结果3.1pBI121-DR 1372质粒的构建3.1.1提取含DR 1372基因质粒提取DR 1372质粒,其电泳结果如图A 所示,我们提取的目标基因条带清晰,无弥散现象,可以用于PCR 扩增.3.1.2DR 1372基因的扩增利用DR 1372-F 和DR 1372-R 引物对DR 1372基因进行PCR 扩增,其电泳结果如图B.DR 1372基因分子大小为495bp ,条带位置正确,并且为单一条带.然后对PCR 产物进行胶回收,其胶回收电泳结果如图C.3.1.3pBI121质粒的提取提取pBI121质粒后进行电泳,其电泳结果如图D 所示,所提取的目标基因条带清晰,无弥散现象,可以进行酶切.3.1.4对DR 1372胶回收产物进双酶切,酶切位点分别为XbaI ,SacI ,经电泳后(图E )再胶回收(图F ).同时对pBI121质粒进行XbaI ,SacI 双酶切,其电泳图和胶回收情况见图G 和图H.从图G 和图H 两个电泳图分析表明:经双酶切后,目的基因DR 1372和质粒pBI121都被切开,胶回收后都能够得到清晰单一的条带,该连接了DR 1372基因的质粒pBI121载体可以用于大肠杆菌和根癌农杆菌的转化.3.1.5连接目的基因的质粒转化菌种JM109把链接了目的基因的质粒转化到JM109后,经培养后挑取抗卡拉霉素菌落直接进行PCR 扩增,其扩增的部分结果如图I ,表明:有多个菌落显示为阳性,把阳性克隆送去测序,测序反馈结果经过软件分析,目的序列与DR 1372序列完全一致,说明DR 1372外源基因成功导入到了大肠杆菌中JM109.·95·张思维等:农杆菌介导DR 1372基因转化拟南芥的研究第2期图1pBI121-1372质粒的构建结果Fig.1pBI121-DR 1372clone in JM109A -I 中M 为DL2000MarkerA :DR 1372+Z3质粒电泳条带A :Agar gel electrophoresis of DR 1372B :DR 1372扩增条带B :Agar gel electrophoresis of PCR productC :DR 1372PCR 胶回收验证C :Agar gel electrophoresis of DNA extractionD :pBI121质粒提取验证D :Agar gel electrophoresis of pBI121E :DR 1372双酶切电泳图E :Agar gel electrophoresis of DR 1372digested productsF :DR 1372双酶切后胶回收电泳图F :Agar gel electrophoresis of DR 1372digested products ,extractionG :pBI121双酶切电泳图G :Agar gel electrophoresis of pBI121digested productsH :pBI121双酶切胶回收验证H :Agar gel electrophoresis of pBI121digested products ,extractionI :JM109菌落PCR 验证I :1:positive control ;2:negative control ;3-10:PCR products of JM109with pBI121-DR 1372clone3.2DR 1372-GV3103植物表达载体的构建将测序正确的JM109单菌落质粒转化GV3103感受态,得到的单菌落进行菌落PCR 验证,结果如图2.由图2可以选择1-2、4-6号保菌做浸染拟南芥用,阳性率为66.67%.图2DR1372-GV3103的菌落PCRFig.2Analysis of DR1372-GV3103M :DL2000maker ,9:阳性对照,10:阴性对照,1-8:单克隆菌落PCRM :DL2000Marker ;9:positive control ;10:negative control ;1-8:PCR products of GV3103with pBI121-DR 1372clone ·06·第32卷绵阳师范学院学报(自然科学版)3.3转DR 1372基因拟南芥体系的建立及抗性植株的获得3.3.1转DR 1372基因拟南芥体系的建立利用花序浸染法侵染拟南芥未开花的花序,待拟南芥角果成熟后收取种子(浸染到收取种子的过程如图3所示).将收取的种子用50mmol /L 卡那霉素筛选,得到30株抗卡拉霉素的幼苗,提取抗性幼苗DNA ,进行PCR 检测,然后得到10株转DR 1372基因的阳性拟南芥苗,待成熟后收种T 1代种子.对T 1代种子进行进一步筛选,得到纯合的转基因阳性植株T 2代,T 2代得到阳性苗60株,经PCR 检测后得到纯合阳性植株22株,阳性率为36.7%.3.3.2阳性植株的PCR 检测对具有卡那霉素抗性的转化植株提取DNA ,进行PCR 扩增和电泳检测,其电泳的部分结果如图4所示,共检测出12株拟南芥有清晰的495bp 大小的扩增条带,说明外源DR 1372基因成功转入到野生型拟南芥中.图3转DR1372基因拟南芥体系的建立Fig.3Regeneration of transgenic ArabidopsisA :花序浸染后拟南芥B :50MKan 筛选T 1代抗性苗C :T 1带抗性拟南芥幼苗D :T 1抗性拟南芥代成株子E :筛选T 2代抗性苗F :T 2代抗性拟南芥幼苗G :T 2代抗性拟南芥成株A :the impregnated ArabidopsisB :resistant shoots of T 1generationC :T 1generation Arabidopsis seedlingD :the mature plant of T 1generationE :resistant shoots of T 2generationF :T 2generation Arabidopsis seedlingG :the mature plant of T 2generation·16·张思维等:农杆菌介导DR 1372基因转化拟南芥的研究第2期图4转DR 1372基因拟南芥PCR 检测Fig.4PCR test of DR 1372gene in transgenic plantsM :DL2000maker ;1:阳性对照;14:阴性对照(野生型);2-13:抗性植株M :maker ;1:positive control ;14:Negative controls (WT );2-13:Transformed plants3.4转DR 1372基因拟南芥幼苗对盐胁迫的反应当转DR 1372基因拟南芥T 2代和非转基因植株种子发芽生长至第3片叶时,分别添加0、100、200、250和300mmol /L 的NaCl 溶液.NaCl 胁迫7d 后,转DR 1372基因拟南芥植株与非转基因植株的生长发育状态发生了很大的变化,并且相同浓度下转基因植株与非转基因植株的萎蔫程度也有着明显的差别(如图5).当NaCL 胁迫浓度为100mmol /L 时,非转基因植株叶片开始黄化,盐环境已经对拟南芥的生长产生抑制,而转基因植株未受影响;当NaCL 浓度达到200mmol /L 时,非转基因拟南芥的叶片和茎部黄化程度加重,植株开始萎蔫,同时转基因植株部分叶片也出现黄化;当NaCL 浓度达到250mmol /L 时,转基因拟南芥植株与非转基因植株都出现了不同程度的萎蔫死亡,但非转基因植株萎蔫程度要比转基因植株严重;当NaCL 浓度达到300mmol /L 时,非转基因拟南芥绝大部分萎蔫死亡,转基因植株虽然叶片和茎部出现萎蔫发紫,但死亡程度较小,部分植株仍能正常生长存活,说明转基因拟南芥有一定的抗盐能力,盐胁迫环境下下,DR 1372基因在一定程度上调控了植株度过盐环境.图5转DR 1372基因拟南芥幼苗对盐胁迫的反应Fig.5Growth of transgenic and wild type Arabidopsis seedlingstreated with different concentrentions of NaCL·26·第32卷绵阳师范学院学报(自然科学版)4讨论近几年许多与植物抗旱耐盐相关基因被克隆和分析,同时通过转基因技术将这些基因转入到植物中进行异源表达,能显著提高转基因植物的抗旱耐盐能力.其中转录因子通过与相关基因的特异性结合来调控其表达,进而产生相关调控蛋白等物质增强植物在逆境中的生存能力[12].DR 1372基因的蛋白中有WHy结构域,这结构域是通过对HIN1蛋白进行分析鉴定的一种独特的结构域.Francesca D 、Ciccarelli 、Peer Bork [9]等人研究表明,WHy 结构域在植物中具有抗水分胁迫和高敏反应等干燥应答功能.WHy 功能域作为一种干燥响应蛋白,在国内的研究中外鲜有报道,在植物体内的抗水分胁迫应答机制中,是WHy 功能域独自发挥了作用还是能够识别某些特定的序列而协同发挥响应,这一问题有待进一步探究.对转化了DR 1372基因的大肠杆菌进行定性分析发现,逆境下的大肠杆菌中细胞膜很稳定,其细胞膜调节细胞内外渗透压的能力很强.由此推断,将DR 1372基因通过基因工程手段转入植物中,该基因可能会提高植物抗旱性,以此为基础通过培育抗旱品种,以降低干旱对农作物产量的影响.拟南芥是转基因最好的模式植物,由于其基因高度纯合,并且自花授粉,能够快速鉴定基因的相关作用.本研究通过基因工程手段成功将外源基因DR 1372转入了拟南芥基因组中.实验中构建了DR 1372-pBI121载体,载体上带有一个GUS 基因,以及CaMV35S 强启动子和NOS 终止子,能够稳定调控DR 1372基因在植物中的表达.利用冻融法将植物表达载体DR 1372-pBI121载体导入农杆菌GV3103,最后利用根癌农杆菌介导法成功将外源基因DR 1372整合到拟南芥.对DR 1372基因拟南芥幼苗进行盐胁迫反应,发现转基因植株与非转基因植株在盐胁迫反应过程中,当NaCL 浓度较小时,虽然植株的生长都受到了抑制性影响,但转DR 1372基因拟南芥植株的抑制作用明显小于非转基因植株,当浓度达到300mmol /L 时,非转基因植株基本萎焉死亡,而部分抗性植株仍能存活生长,说明DR 1372基因在拟南芥中的表达明显改善了转基因植株的耐盐性.本实验通过基因工程手段,成功得到转DR 1372基因阳性植株,盐胁迫处理发现阳性植株比非转基因植株有更强的耐盐功能,这为后续该基因或类似功能基因的抗旱、抗盐性研究提供了丰富的植物材料和理论依据.参考文献:[1]李晓慧,董明伟,刘康.植物抗旱基因及其功能研究进展[J ].江苏农业科学,2009,5(4):73-77.[2]Pilon -Smits E A H ,Ebskamp M J M ,Paul M J ,et al.Improved performance of transgenic fructanaccumulating tobacco un-der drought stress [J ].Plant Phyiol ,1995,107:125-130.[3]Kishor P B K ,Hong Z ,M iao G ,Hu C A ,et al.Overexpression of pyrroline carboxylase synthase increase proline productionand confersosmotolerance in transgenic plants [J ].Plant Physiol ,1995,108:1367-1394.[4]Capell T ,Escobar C ,Liu H ,et al.Overexpression of the oatarg in inedecarboxylase cDNA in transgenic rice affects normaldevelopment patterns in vitro and result in putrescine accumulation in transgenic plants [J ].Theor Appl Genetics ,1998,97:246-254.[5]Chen J.and Wang Z.Y.Progress in the study of plant mybtranscription factors ,Zhiwu Shengli Yu Fenzi Shengwuxue Xuebao(Journal of Plant Physiology andMolecular Biology ),2002,28(2):81-88.[6]Anderson ,A.W ,Nordon ,H.C ,Cain ,R.F.,et al.Studies on a radio -resistant micrococ -cus.I.Isolation ,morpholo-gy ,cultural characteristics ,and resistance to gamma radiation [J ].Food Technol ,1956,10:575-578.[7]White O ,Eisen J .A ,Heidelberg J .F ,et al.Genome sequence of the radio -resistant bacterium Deinococcus radioduransR1[J ].Science ,1999,286:1571-1577.[8]Cominelli E ,Sala T ,Calvi D ,et a.l Over exp ression of the Arabidopsis AMYB 41genealters cell expans ion and leaf surfacepermeability [J ].Plant Journal ,2008,53(1):53-64.[9]Francesca D.Ciccarelli and Peer Bork .The WHy domain mediates the response to desiccation in plants and bacteria [J ].Discovery Note ,2005,8:1304-1307.[10]Ingram J ,Bartels D.The molecular basis of dehydration tolerance in plants [J ].Annu Rev Plant Physiol Plant Mol Biol ,1996,47:377-403.[11]刘广宇,魏令波,陈吉龙,等.植物脱水素研究进展[J ].生物工程进展,2001,21(2):35-38.[12]陈丽萍,何道一.植物抗旱耐盐基因的研究进展[J ].生物工程进展,2010,29(3):542-549.·36·张思维等:农杆菌介导DR 1372基因转化拟南芥的研究第2期On Agrobacterium -mediated Transformation ofDR 1372Gene into Arabidopsis thalianaZHANG Si -wei ,ZHOU Wen -bo ,ZHANG xin ,CHEN Cui -na ,DAI Qi -lin *(School of Life Science and Engineering ,Southwest University of Scienceand Technology ,Mianyang ,Sichuan 621000)Abstract :DR 1372is cloned from an extremely radiation resistant bacterium which named D.radiodurans.It contains a special domain called Why which may be involved in the mechanism of drought resistance of plants.In this study ,the plant expression vector DR 1372-GV 3103was firstly constructed and DR 1372gene was inserted into Arabidopsis successfully by using the transgenic technique.Then ,positive plants have got a salt stress and the results show that DR 1372gene improves the salt tolerance of Arabidopsis obviously.Thus ,it not only contributes good conditions to later research on DR 1372gene ,but also has great important application in plant gene engineer-ing technology.Key words :DR 1372;Construction of express vector ;Salt stress ;Arabidopsis thaliana(上接第50页)On Extractives from Natural HerbsUsed in Functional CosmeticsHU Li -chuan 1,MEI Shuang 1,YANG Tong -xiu 1,CHEN Lang 2,YU Zong -lan 2,Guo Ting -ting 2,CHEN Ying 1(1.School of Chemistry &Chemical Engineering ,2.School of Life Science and Technology ,Mianyang Normal University ,Mianyang ,Sichuan 621000)Abstract :This paper is to introduce a new paste functional cosmetic and a percutaneous absorption acne patch with competence of essential oil from wormwood and artemisia apiacea ,their physicochemical index ,antimi-crobial effect ,pox -eliminating effect have been tested ,and the results are as follow ,these two have good stabili-ty ,compatibility ,anti -bacterial activity ,and certain pox -eliminating effect.Key words :Wormwood ;artemisia apiacea ;essential oil ;cosmetic ;anti -bacterial activity ·46·第32卷绵阳师范学院学报(自然科学版)。