西安交通大学计算方法B大作业资料
- 格式:doc
- 大小:246.00 KB
- 文档页数:27
课程设计课程名称:数值计算B设计题目:数值计算B大作业学号:姓名:完成时间:题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton)逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10).二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα (1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n)确定. 根据均差的定义,把x 看成[a ,b ]上的一点,可得f(x)= f (0x )+f[10x x ,](0x -x )f[x, 0x ]= f[10x x ,]+f [x ,10x x ,] (1x -x )……f [x, 0x ,…x 1-n ]= f[x , 0x ,…x n ]+ f [x, 0x ,…x n ](x —x n )综合以上式子,把后一式代入前一式,可得到:f(x )= f [0x ]+f[10x x ,](0x -x )+ f [210x x x ,,](0x -x )(1x -x )+…+ f [x, 0x ,…x n ](0x -x )…(x —x 1-n )+ f [x, 0x ,…x n ,x ])(x 1n +ω= N n (x )+)(x n R 其中N n (x )= f[0x ]+f[10x x ,](0x -x )+ f[210x x x ,,](0x -x )(1x -x )+…+ f[x , 0x ,…x n ](0x -x )…(x —x 1-n ) (2))(x n R = f(x )— N n (x )= f [x , 0x ,…x n ,x ])(x 1n +ω (3) )(x 1n +ω=(0x -x )…(x —x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。
大学计算机根底习题答案〔西安交大〕大学计算机根底第1章引论习题参考答案习题一1.第一代计算机的主要部件是由〔电子管和继电器〕构成的。
2.未来全新的计算机技术主要指〔光子计算机〕,〔生物计算机〕和〔量子计算机〕。
3.按照Flynn分类法,计算机可以分为〔单指令流单数据流〕,〔单指令流多数据〕,〔多指令流单数据流〕和〔多指令流多数据流〕4种类型。
4.计算机系统主要由〔硬件系统〕和〔软件系统〕组成。
5.说明以下计算机中的部件是属于主机系统、软件系统、还是属于外部设备。
〔1〕CPU 〔主机系统〕〔2〕内存条〔主机系统〕〔3〕网卡〔主机系统〕〔4〕键盘和鼠标〔外设〕〔5〕显示器〔外设〕〔6〕Windows 操作系统〔软件系统〕6.控制芯片组是主板的的核心部件,它由〔北桥芯片〕局部和〔南桥芯片〕局部组成。
7.在计算机系统中设计Cache的主要目的是〔提高存去速度〕。
8.计算机各部件传输信息的公共通路称为总线,一次传输信息的位数称为总线的〔宽度〕。
9.PCIE属于〔系统〕总线标准,而SATA那么属于〔硬盘接口或外设〕标准。
10.在微机输入输出控制系统中,假设控制的外部设备是发光二极管,最好选用的输入输出方法是〔程序控制〕方式;假设控制的对象是高速设备,那么应选那么〔 DMA 〕控制方式。
11.操作系统的根本功能包括〔处理器管理或进程管理〕、〔文件管理〕、〔存储器管理〕、〔设备管理〕和用户接口。
12.虚拟存储器由〔主内存〕和〔磁盘〕构成,由操作系统进行管理。
13.CPU 从外部设备输入数据需要通过〔输入接口〕,向外设输出数据那么需要通过〔输出接口〕。
14.简述CPU从外部设备输入数据和向外设输出数据的过程。
请参见教材第18页关于输入输出过程的描述。
15.普适计算的主要特点是〔是一种无处不在的计算模式〕。
1大学计算机根底第1章引论习题二1.在计算机内,一切信息的存取、传输和处理都是以〔二进制码〕形式进行的。
计算方法(B )上机作业一、三次样条拟合某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图; 解:1、算法实现的思想及依据题目(1)为曲线拟合问题多项式插值、分段插值和最小二乘法。
多项式插值,随着插值数据点的数目增多,误差也会随之增大,因此不选用。
最小二乘法适于数据点较多的场合,在此也不适用。
故选用分段插值。
分段插值又分为分段线性插值、分段二次插值、三次样条插值及更高阶的多项式插值。
由本题的物理背景知,光缆正常工作时各点应该是平滑过渡,因此至少选用三次样条插值法。
对于更高阶的多项式插值,由于“龙格现象”而不选用。
题目(2)求光缆长度,即求拟合曲线在0到20的长度,对弧长进行积分即可。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
2、算法实现的结构参考教材给出的SPLINEM 算法和TTS 算法,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出来并赋值给右端向量d ,再根据TSS 解法求解M 。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
3、程序运行结果及分析图1.1三种边界条件下三次样条插值图1.2光缆长度4、MATLAB代码:1)自己编程实现代码clear;clc;I=input('你想使用第几种边界条件?请输入1、2、3之一: ');x=0:20;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.8 10.93];plot(x,-y,'k.','markersize',15)%y为深度,取负号hold on%% 计算一阶差商y1=ones(1,21);for i=2:1:21y1(i)=(y(i)-y(i-1))/(x(i)-x(i-1));end%% 计算二阶差商y2=ones(1,21);for i=3:1:21y2(i)=(y1(i)-y1(i-1))/(x(i)-x(i-2));end%% 计算三阶差商y3=ones(1,21);for i=4:1:21y3(i)=(y2(i)-y2(i-1))/(x(i)-x(i-3));end%% 选择边界条件(I)if I==1d(1)=0;d(21)=0;a(21)=0;c(1)=0;% 第一个点和最后一个点的二阶差商为0 endif I==2d(1)=6*y1(1);d(21)=-6*y1(21);a(1)=1;c(1)=1;endif I==3d(1)=-12*y3(1);d(21)=-12*y3(21);a(21)=-2;c(1)=-2;%endfor i=2:20d(i)=6*y2(i+1);end%% 构造带状矩阵求解(追赶法)b=2*ones(1,21);a=0.5*ones(1,21);%a(21)=-2;c=0.5*ones(1,21);%c(1)=-2;u(1)=b(1);r(1)=c(1);%% 追yz(1)=d(1);for i=2:21l(i)=a(i)/u(i-1);u(i)=b(i)-l(i)*r(i-1);r(i)=c(i);yz(i)=d(i)-l(i)*yz(i-1);end%% 赶xg(21)=yz(21)/u(21);for i=20:-1:1xg(i)=(yz(i)-r(i)*xg(i+1))/u(i);endM=xg;%%所有点的二阶导数值%% 求函数表达式并积分t=1;h=1;N=1000x1=0:20/(N-1):20;length=0;for i=1:Nfor j=2:20if x1(i)<=x(j)t=j;break;elset=j+1;endendf1=x(t)-x1(i);f2=x1(i)-x(t-1);S(i)=(M(t-1)*f1^3/6/h+M(t)*f2^3/6/h+(y(t-1)-M(t-1)*h^2/6)*f1+(y(t)-M(t)*h^2/6)* f2)/h;Sp(i)=-M(t-1)*f1^2/2/h+M(t)*f2^2/2/h+(y(t)-y(t-1))/h-(M(t)-M(t-1))*h/6;length(i+1)=sqrt(1+Sp(i)^2)*(20/(N-1))+length(i);%第一类线积分endfigure(1);plot(x1,-S,'r-')%深度曲线griddisp(['第',num2str(I),'种边界条件下长度',num2str(length(N+1)),'米'])axis fill;xlabel('测点/米');ylabel('深度/米');title('三次样条曲线拟合');legend('数据点','拟合曲线',3);二、最小二乘近似假定某天的气温变化记录如下表所示,试用数据拟合的方法找出这一天的气温变化的规律;试计算这一天的平均气温,并试估计误差。
计算方法(A)大作业姓名:班级:专业:学号:共轭梯度法一、算法原理共轭梯度法是把求解线性方程组的问题转化为求解一个与之等价的二次函数极小化的问题,因此从任意给定的初始点出发,沿一组关于矩阵A的共轭方向进行线性搜索,在无舍入无差的假定下,最多迭代n(其中n为矩阵A的阶数)次就可求得二次函数的极小点,也就求得了线性方程组Ax=B的解。
下述定理给出了求系数矩阵A是对称正定矩阵的线性方程组Ax=b的解与求二次函数f(x)=12x T Ax−b T x极小点的等价性。
定理3.4.1设A是n阶对称正定矩阵,则x∗是方程组Ax=b的解的充分必要条件是x∗是二次函数f(x)=12x T Ax−b T x的极小点,即Ax∗=b⟺f(x∗)=minx∈R nf(x)证明:充分性.设x∗是f(x)的极小点,则由无约束最优化问题最优解的必要条件知∇f(x∗)=Ax∗−b即x∗是方程组Ax=b的解。
必要性. 若x∗是方程组Ax=b的解,即A x∗=b,注意到A是对称正定矩阵,故∀x∈R n有f(x)−f(x∗)=12x T Ax−b T x−12x T Ax∗+b T x∗=12(x T Ax−2b T x+x∗T Ax∗)−x∗T Ax∗+b T x∗=12(x T Ax−2(Ax∗)T x+x∗T Ax∗)−(Ax∗−b)T x∗=12(x−x∗)T A(x−x∗)≥0即x∗是f(x)的极小点,进而由A是正定矩阵知,x∗是f(x)的最小点。
证毕。
共轭梯度法在形式上具有迭代法的特征,在给定初始值情况下,根据迭代公式:x(k+1)=x(k)+αk d(k)产生的迭代序列x(1),x(2),x(3)…在无舍入误差假定下,最多经过n次迭代,就可求得f(x) 的最小值,也就是方程Ax=b的解。
共轭梯度法中关键的两点是,确定迭代格式中的搜索向量d(k)和最佳步长αk (αk≥0)。
实际上,搜索方向d(k)是关于矩阵A的共轭向量,在迭代中逐步构造之。
计算方法B上机报告姓名:学号:班级:学院:任课教师:2017年12月29日题目一:1.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;1.2 实现题目的思想及算法依据首先在题目(1)中要实现的是数据的拟合,显然用到的是我们在第三章中数据近似的知识内容。
多项式插值时,这里有21个数据点,则是一个20次的多项式,但是多项式插值随着数据点的增多,会导致误差也会随之增大,插值结果会出现龙格现象,所以不适用于该题目中点数较多的情况。
为了避免结果出现大的误差,同时又希望尽可能多地使用所提供的数据点,提高数据点的有效使用率,这里选择分段插值方法进行数据拟合。
分段插值又可分为分段线性插值、分段二次插值和三次样条插值。
由于题目中所求光缆的现实意义,而前两者在节点处的光滑性较差,因此在这里选择使用三次样条插值。
根据课本SPLINEM 算法和TSS 算法,采用第三种真正的自然边界条件,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出并赋值给右端向量d ,再根据TSS 解法求解三对角线线性方程组从而解得M 值。
求出M 后,对区间进行加密,计算200个点以便于绘图以及光缆长度计算。
对于问题(2),使用以下的公式:20=()L f x ds ⎰20(f x =⎰191(k kk f x +==∑⎰1.3 算法结构1. For n i ,,2,1,0⋅⋅⋅=1.1 i i M y ⇒2. For 2,1=k2.1 For k n n i ,,1, -=2.1.1 i k i i i i M x x M M ⇒----)/()(13. 101h x x ⇒-4. For 1-,,2,1n i =4.1 11++⇒-i i i h x x4.2 b a c c h h h i i i i i i ⇒⇒-⇒+++2;1;)/(11 4.3 i i d M ⇒+165. 0000;;c M d M d n n ⇒⇒⇒λn n n b a b ⇒⇒⇒2;;20μ6. 1111,γμ⇒⇒d b7. For m k ,,3,2 = ! 获取M 的矩阵元素个数,存入m7.1 k k k l a ⇒-1/μ 7.2 k k k k c l b μ⇒⋅-1- 7.3 k k k k l d γγ⇒⋅-1- 8. m m m M ⇒μγ/9. For 1,,2,1 --=m m k9.1 k k k k k M M c ⇒⋅-+μγ/)(110. k ⇒1 ! 获取x 的元素个数存入s 11. For 1,,2,1-=s i11.1 if i x x ≤~then k i ⇒;break else k i ⇒+112. xx x x x x h x x k k k k ˆ~;~;11⇒-⇒-⇒--- y h x h M y x h M y x M x M k k k k k k ~/]ˆ)6()6(6ˆ6[2211331⇒-+-++---1.4 matlab 源程序n=20; x=0:n;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.80 10.93];M=y; %用于存放差商,此时为零阶差商 h=zeros(1,n+1); c=zeros(1,n+1); d=zeros(1,n+1); a=zeros(1,n+1); b=2*ones(1,n+1); h(2)=x(2)-x(1);for i=2:n %书本110页算法SPLINEM h(i+1)=x(i+1)-x(i);c(i)=h(i+1)/(h(i)+h(i+1)); a(i)=1-c(i); enda(n+1)=-2; %计算边界条件c(0),a(n+1),采用的是第三类边界条件 c(1)=-2;for k=1:3 %计算k 阶差商 for i=n+1:-1:k+1M(i)=(M(i)-M(i-1))/(x(i)-x(i-k)); endif(k==2) %计算2阶差商 d(2:n)=6*M(3:n+1); %给d 赋值 endif(k==3)d(1)=(-12)*h(2)*M(4); %计算边界条件d(0),d(n),采用的是第三类边界条件 d(n+1)=12*h(n+1)*M(n+1); end endl=zeros(1,n+1); r=zeros(1,n+1); u=zeros(1,n+1); q=zeros(1,n+1); u(1)=b(1); r(1)=c(1); q(1)=d(1);for k=2:n+1 %利用书本49页算法TSS求解三对角线性方程组r(k)=c(k);l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);q(k)=d(k)-l(k)*q(k-1);endp(n+1)=q(n+1)/u(n+1);for k=n:-1:1p(k)=(q(k)-r(k)*p(k+1))/u(k);endfprintf('三对角线性方程组的解为:');disp(p);%求拟合曲线x1=0:0.1:20; %首先对区间进行加密,增加插值点n1=10*n;x2=zeros(1,n1+1);x3=zeros(1,n1+1);s=zeros(1,n1+1);for i=1:n1+1for j=1:nif x1(i)>=x(j)&&x1(i)<=x(j+1) %利用书本111页算法EVASPLINE求解拟合曲线s(x)h(j+1)=x(j+1)-x(j);x2(i)=x(j+1)-x1(i);x3(i)=x1(i)-x(j);s(i)=(p(j).*(x2(i)).^3/6+p(j+1).*(x3(i)).^3/6+(y(j)-p(j).*((h(j+1)).^2/6)).*x2( i)+...(y(j+1)-p(j+1).*(h(j+1)).^2/6).*x3(i))/h(j+1);endendendplot(x,-y,'x') %画出插值点hold onplot(x1,-s) %画出三次样条插值拟合曲线hold ontitle('三次样条插值法拟合电缆曲线');xlabel('河流宽度/m');ylabel('河流深度/m');Length=0;for i=1:n1L=sqrt((x1(i+1)-x1(i))^2+(s(i+1)-s(i))^2); %计算电缆长度Length=Length+L;endfprintf('电缆长度(m)=');disp(Length);1.5 结果与说明铺设海底光缆的曲线如图1.1所示图1. 1三次样条插值法拟合海底光缆曲线由上图可以看出,所得到的曲线光滑,能够较好得反映实际的河沟底部地势形貌。
第一章绪论1.1数值计算现代科学的发展,已导致科学与技术的研究从定性前进到定量,尤其是现代数字计算机的出现及迅速发展,为复杂数学问题的定量研究与解决,提供了强有力的基础。
通常我们面对的理论与技术问题,绝大多数都可以从其物理模型中抽象出数学模型,因此,求解这些数学模型已成为我们面临的重要任务。
一、本课程的任务:寻求解决各种数学问题的数值方法——如何将高等数学的问题回归到初等数学(算术)的方法求解——了解计算的基础方法,基本结构(否则只须知道数值软件)——并研究其性质。
立足点:面向数学——解决数学问题面向计算机——利用计算机作为工具充分发挥计算机的功能,设计算法,解决数学问题例如:迭代法、并行算法二、问题的类型1、离散问题:例如,求解线性方程组bAx=——从离散数据:矩阵A和向量b,求解离散数据x;2、连续问题的离散化处理:例如,数值积分、数值微分、微分方程数值解;3、离散问题的连续化处理:例如,数据近似,统计分析计算;1.2数值方法的分析在本章中我们不具体讨论算法,首先讨论算法分析的基础——误差。
一般来讲,误差主要有两类、三种(对科学计算):1)公式误差——“截断误差”,数学↔计算,算法形成——主观(人为):数学问题-数值方法的转换,用离散公式近似连续的数学函数进行计算时,一般都会发生误差,通常称之为“截断误差”;——以后讨论2)舍入误差及输出入误差——计算机,算法执行——客观(机器):由于计算机的存储器、运算器的字长有限,在运算和存储中必然会发生最末若干位数字的舍入,形成舍入误差;在人机数据交换过程中,十进制数和二进制数的转换也会导致误差发生,这就是输入误差。
这两种误差主要是由于计算机的字长有限,采用浮点数系所致。
首先介绍浮点数系一、计算机上的运算——浮点运算面向计算机设计的算法,则先要讨论在计算机上数的表示。
科学记数法——浮点数:约定尾数中小数点之前的数全为零,小数点后第一个数不能为零。
目前,一般计算机都采用浮点数系,一个存储单元分成首数和尾数:首数l 尾数(位)其中首数存放数的指数(或“阶”)部分,尾数存放有效数字。
计算方法A 上机大作业1. 共轭梯度法求解线性方程组算法原理:由定理3.4.1可知系数矩阵A 是对称正定矩阵的线性方程组Ax=b 的解与求解二次函数1()2TT f x x Ax b x =- 极小点具有等价性,所以可以利用共轭梯度法求解1()2TT f x x Ax b x =-的极小点来达到求解Ax=b 的目的。
共轭梯度法在形式上具有迭代法的特征,在给定初始值情况下,根据迭代公式:(1)()()k k k k x x d α+=+产生的迭代序列(1)(2)(3)x x x ,,,... 在无舍入误差假定下,最多经过n 次迭代,就可求得()f x 的最小值,也就是方程Ax=b 的解。
首先导出最佳步长k α的计算式。
假设迭代点()k x 和搜索方向()k d 已经给定,便可以通过()()()()k k f x d φαα=+的极小化()()min ()()k k f x d φαα=+来求得,根据多元复合函数的求导法则得:()()()'()()k k T k f x d d φαα=∇+令'()0φα=,得到:()()()()k T k k k T k r d d Adα= ,其中()()k k r b Ax =-然后确定搜索方向()k d 。
给定初始向量(0)x 后,由于负梯度方向是函数下降最快的方向,故第一次迭代取搜索方向(0)(0)(0)(0)()dr f x b Ax ==-∇=- 。
令(1)(0)00x x d α=+其中(0)(0)0(0)(0)T T r d d Adα=。
第二次迭代时,从(1)x 出发的搜索方向不再取(1)r ,而是选取(1)(1)(0)0dr d β=+,使得(1)d 与(0)d 是关于矩阵A 的共轭向量,由此可求得参数0β:(1)(0)0(0)(0)T T r Ad d Adβ=-然后从(1)x 出发,沿(1)d 进行搜索得到(2)(1)(1)1x x d α=+设已经求出(1)()()k k k k x x d α+=+,计算(1)(1)k k r b Ax ++=-。
计算方法上机报告姓名:学号:班级:目录题目一------------------------------------------------------------------------------------------ - 4 -1.1题目内容 ---------------------------------------------------------------------------- - 4 -1.2算法思想 ---------------------------------------------------------------------------- - 4 -1.3Matlab源程序----------------------------------------------------------------------- - 5 -1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 -2.1题目内容 ---------------------------------------------------------------------------- - 7 -2.2算法思想 ---------------------------------------------------------------------------- - 7 -2.3 Matlab源程序---------------------------------------------------------------------- - 8 -2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 -3.1题目内容 --------------------------------------------------------------------------- - 11 -3.2算法思想 --------------------------------------------------------------------------- - 11 -3.3Matlab源程序---------------------------------------------------------------------- - 13 -3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 -4.1题目内容 --------------------------------------------------------------------------- - 15 -4.2算法思想 --------------------------------------------------------------------------- - 15 -4.3Matlab源程序---------------------------------------------------------------------- - 15 -4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -5.1题目内容 --------------------------------------------------------------------------- - 18 -5.2算法思想 --------------------------------------------------------------------------- - 18 -5.3 Matlab源程序--------------------------------------------------------------------- - 18 -5.3.1非压缩带状对角方程组------------------------------------------------- - 18 -5.3.2压缩带状对角方程组---------------------------------------------------- - 20 -5.4实验结果及分析 ------------------------------------------------------------------ - 22 -5.4.1Matlab运行结果 ---------------------------------------------------------- - 22 -5.4.2总结分析------------------------------------------------------------------- - 24 -5.5本专业算例 ------------------------------------------------------------------------ - 24 - 学习感悟-------------------------------------------------------------------------------------- - 27 -题目一1.1题目内容计算以下和式:0142111681848586n n S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法; (2)若要保留30个有效数字,则又将如何进行计算。
吉林大学网络教育学院2019-2020学年第一学期期末考试《计算方法》大作业答案学生姓名专业层次年级学号学习中心成绩年月日作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word文档格式),如有雷同、抄袭成绩按不及格处理。
一、解线性方程(每小题8分,共80分)1、用矩阵的LU分解算法求解线性方程组X1+2X2+3X3= 02X1+2X2+8X3= -4-3X1-10X2-2X3= -11答:2、用矩阵的Doolittle分解算法求解线性方程组X1+2X2+3X3= 12X1– X2+9X3= 0-3X1+ 4X2+9X3= 1答:3、用矩阵的Doolittle分解算法求解线性方程组2X1+X2+X3= 46X1+4X2+5X3=154X1+3X2+6X3= 13答:4、用高斯消去法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:5、用无回代过程消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:6、用主元素消元法求解线性方程组2X1- X2+3X3= 24X1+2X2+5X3= 4-3X1+4X2-3X3= -3答:7、用高斯消去法求解线性方程组1231231232344272266x x x x x x x x x -+=++=-++=答:8、利用Doolittle 分解法解方程组Ax=b ,即解方程组12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 答:9、利用Doolittle 分解法解方程组Ax=b ,即解方程组123421111443306776081011112x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 答:10、用高斯消元法解方程组1237811351341231x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦答案:二、计算(每小题10分,共20分)1、已知节点x1,x2及节点处函数值f(x1),f(x2),构造线性插值多项式p1(x). 答:2、设f(xi)=i(i=0,1,2),构造二次式p2(x),使满足: p2(xi)=f(xi)(i=0,1,2)答:。
习题答案——证明题 第2章 线性方程组求解p. 79——第14题证明:a. 由于 是范数,它必满足范数的三条件;由于Mx x =M,所以⑴ 非负性:,0≥=Mx xM且 0==Mx xM当且仅当 0Mx =,又由M 的非奇性,当且仅当0x =时才有0Mx =,因此:0=Mx 当且仅当0x =;⑵ 正齐性:MMx Mx Mx x M xααααα====)()(⑶ 三角不等式:MMMyxMy Mx My Mx y x M yx +=+≤+=+=+)(因此,按此定义的范数Mx 是范数;b. 仿前,容易证明1-=MAM A M 定义了一种矩阵范数。
关于相容性: MM MxA Mx MAM Mx MAM MAx Ax 11=≤==--第3章 数据近似p.129——第6题:a. 取,1)(=x f 则对插值节点n i x i ,,2,1,0)1,( =,其Lagrange 插值多项式为∑==ni i x l x L 0)()(,又由函数、插值多项式与余项的关系,及余项公式,有1)(0)()!1()()(1)()(0)1(0≡⇒≡+=-=-∑∑=+=ni i n ni i x l x n f x l x L x f ωξ此处,用到:0)(,1)()1(≡∴=+x f x f nb. 证明同上,只是将k x x f =)(,由于n k ≤,所以仍有0)()1(≡+x f n ;c. 由二项式定理:()0)1()()1()()1()()(000000=-=-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-∑∑∑∑∑∑=-==-==-=kkj j k j j k j k j n i i jk i j j k j ni ik j j k i j j k j ni i ki x x x x C x l x x C x l x x C x l x x此处,用到了b.已证明的结论:k j x x l x j k ni i j k i ,,1,0,)(0==-=-∑;d. 只需注意到由于)(x y 是m 次多项式,又n m ≤,因此0)()1(≡+x y n ;因此,由余项公式:()0)()!1(1)()()1(=+=-+x y n x P x y n ωξ,此即所要的证明。
数值计算第一次大作业实验目的 以Hilbert 矩阵为例,研究处理病态问题可能遇到的困难。
内容 Hilbert 矩阵的定义是,()11/21/31/1/21/31/41/(1)1/31/41/51/(2)1/1/(1)1/(2)1/(21)n i j H h nn n n n n n =⎡⎤⎢⎥+⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥++-⎣⎦它是一个对称正定矩阵,而且()n cond H 随着n 的增加迅速增加,其逆矩阵1,()n i j H α-=,这里,2(1)(1)!(1)!(1)[(1)!(1)!]()!()!i j i jn i n j i j i j n i n j α+-+-+-=+----- 1) 画出ln(())~n cond H n 之间的曲线(可以用任何的一种范数)。
你能猜出ln(())~n cond H n 之间有何种关系吗?提出你的猜想并想法验证。
用行范数for n=1:50 for i=1:n for j=1:nA(i,j)=1/(i+j-1);B(i,j)=factorial(n+i-1)*factorial(n+j-1)/((i+j-1)*(factorial(i-1)*factorial(j-1))^2*factorial(n-i )*factorial(n-j));end endresult1=0; for j=1:nresult1=result1+A(1,j); endresult1=log(result1); result2=0; for i=1:n for j=1:nresult2=B(i,j)+result2; endresult(i)=log(result2); endm=max(result);x(n)=result1+m; end plot([1:50],x)对于更大的n 值,由于Hilbert 逆矩阵中的元素过大,溢出,故在此取50以内的n 。
图1 ln(())~n cond H n 关系曲线图猜想ln(())~n cond H n 之间存在线性关系 验证:设ln(()n cond H an b ∞=+ 在以上程序基础上,再添加>>;>> y=x'; >> l=1:40; >> k=l';>> p=polyfit(k,y,1) %一次多项式拟合 p =3.5446 -3.0931% P=polyfit(k,y,2) %二次多项式拟合 p =-0.0008 3.5778 -3.3253 % P=polyfit(k,y,3) %三次多项式拟合0.0000 -0.0033 3.6198 -3.4777% P=polyfit(k,y,4) %四次多项式拟合-0.0000 0.0002 -0.0082 3.6654 -3.5815 % P=polyfit(k,y,5) %五次多项式拟合 p =0.0000 -0.0000 0.0007 -0.0156 3.7107 -3.6542 从上式可以看出,高次项系数相对于一次项和常数项系数要小很多, 所以取ln(() 3.5446 3.0931n cond H n ∞=-2)设D 是n H 的对角线元素开方构成的矩阵。
吉林大学网络教育学院2018-2019学年第二学期期末考试《计算方法》大作业学生姓名专业层次年级学号学习中心成绩年月日一、构造次数不超过三次的多项式P3(X),使满足:(10分)P3(0)= 1;P3(1)=0;P3′(0)=P3′(1)=0。
二、设f(x i)=i(i=0,1,2),构造二次式p2(x),使满足:(10分) p2(x i)=f(x i)(i=0,1,2)三、设节点x i=i(i=0,1,2,3),f(0)=1,f(1)=0,f(2)=-7,f(3)=26,构造次数不超过3次的多项式p3(x),满足p3(x i)=f(x i),i=0,1,2,3 (10分)四、对于上题的问题,构造Newton插值多项式。
(10分)五、构造三次多项式P 3(X )满足:P 3(0)= P 3(1)=0,P 3′(0)=P 3′(1)=1。
(10分)六、利用Doolittle 分解法解方程组Ax=b 即解方程组 (15分) 12341231521917334319174262113x x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解:用公式七、基于迭代原理证明(10分)+++=22 (22)八、构造二次多项式2()x p 满足: (10分)'010222()1;()0;()1p p p x x x ===九、构造一个收敛的迭代法求解方程3210x x --=在[1.3,1.6]内的实根。
合理选择一个初值,迭代一步,求出1x 。
(15分)作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终word文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。
课程设计课程名称:设计题目:学号:姓名:数值计算 B数值计算 B 大作业达成时间:,.目一:多式插某气象站在8: 00 ( AM )开始每隔 10 分天气作以下,用三次多式插函数( Newton )迫近以下曲,插点数据如上表,并求出 9 点 30分地域的温度(x=10 )。
x12345678y二、数学原理假有 n+1个不同的点及函数在点上的(x 0,y 0),⋯⋯(x n,y n),插多式有以下形式:P( x)n0( x - x )10( x - x )(x 2x )1( x - x )( x nx )1( x x )n(1 )此中系数(i=0,1,2i⋯⋯n )特定系数,可由插条P( x )n iy (i=0,1,2i⋯⋯n )确立。
依据均差的定,把x 当作 [a,b] 上的一点 ,可得f(x)= f (x0)+f[ x0,x1 ](x - x0)f[x,x 0]= f[ x 0, x1]+f[x, x 0, x1]( x - x 1)⋯⋯f[x,x 0,⋯x n -1]= f[x,x 0,⋯x n]+ f[x,x 0,⋯x n](x-x n)合以上式子,把后一式代入前一式,可获得:f(x)= f[ x0 ]+f[x 0, x1]( x - x 0)+ f[ x 0, x 1, x 2]( x - x 0)( x - x 1)+⋯x,⋯xn ]( x - x)⋯(x-xn -1 )+ f[x,x,⋯xn , x ]()= Nn()+R()+ f[x,00n 1 x x n x此中N n(x)= f[ x0 ]+f[ x0,x1 ] (x - x0) + f[ x0,x1,x2 ] (x - x0)(x - x1) +⋯+ f[x,x 0,⋯x n]( x - x 0)⋯(x-x n -1)(2 )( x)n (x)= f[x, x0,⋯x n , x ]n(1 x)(3 )R n= f(x)- N( x)( x - x 0)⋯(x-x n )n 1=Newton插的系数i( i=0,1,2 ⋯⋯n )能够用差商表示。
计算方法上机报告姓名:学号:班级:目录题目一------------------------------------------------------------------------------------------ - 4 -1.1题目内容 ---------------------------------------------------------------------------- - 4 -1.2算法思想 ---------------------------------------------------------------------------- - 4 -1.3Matlab源程序----------------------------------------------------------------------- - 5 -1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 -2.1题目内容 ---------------------------------------------------------------------------- - 7 -2.2算法思想 ---------------------------------------------------------------------------- - 7 -2.3 Matlab源程序---------------------------------------------------------------------- - 8 -2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 -3.1题目内容 --------------------------------------------------------------------------- - 11 -3.2算法思想 --------------------------------------------------------------------------- - 11 -3.3Matlab源程序---------------------------------------------------------------------- - 13 -3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 -4.1题目内容 --------------------------------------------------------------------------- - 15 -4.2算法思想 --------------------------------------------------------------------------- - 15 -4.3Matlab源程序---------------------------------------------------------------------- - 15 -4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -5.1题目内容 --------------------------------------------------------------------------- - 18 -5.2算法思想 --------------------------------------------------------------------------- - 18 -5.3 Matlab源程序--------------------------------------------------------------------- - 18 -5.3.1非压缩带状对角方程组------------------------------------------------- - 18 -5.3.2压缩带状对角方程组---------------------------------------------------- - 20 -5.4实验结果及分析 ------------------------------------------------------------------ - 22 -5.4.1Matlab运行结果 ---------------------------------------------------------- - 22 -5.4.2总结分析------------------------------------------------------------------- - 24 -5.5本专业算例 ------------------------------------------------------------------------ - 24 - 学习感悟-------------------------------------------------------------------------------------- - 27 -题目一1.1题目内容计算以下和式:0142111681848586n n S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法; (2)若要保留30个有效数字,则又将如何进行计算。
1.2算法思想在程序编写中需要把握以下几点:①随着n 值的增加,和式的项递减速度很快,因此我们可以认为,在确定为某一精度的前提下,n 达到一定的值,加下一项将不会对最终的加和产生影响,首先我们应找到n 值。
②根据精度要求估计所加的项数,可以使用后验误差估计,通项为:142111416818485861681n n na n n n n n ε⎛⎫=---<< ⎪+++++⎝⎭ ③为减小舍入误差,在计算s 时所采用的方法是逆序相加,其依据是:两个数量级相差较大的数字相加减时,较小数的有效数字会被丧失,从而导致最后的运算结果失真。
为避免“大数吃小数”现象的发生,采用逆序相加。
④对于实现30位有效数字,则调用从工具箱中 digits(位数)或vpa (变量,精度位数)即可实现。
1.3Matlab源程序>>clear;>>clc;>> m=input('输入需要求的有效数字位数m=');s=0for n=0:200 %寻找满足条件的最小ns=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6));if s<=10^(-m) %当项小于10^-m时,停止循环breakendend;fprintf('n值加至n%d\n',n-1); %需要将n值加到的数值for i=n-1:-1:0 %逐项逆序相加求和s=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6));t=t+s;ends=vpa(t,m)1.4计算结果及总结①输入需要求的有效数字位数m=11t = 0n值加至n7s =3.1415926536②t =0n值加至n22s =3.14159265358979311599796346854从上述的算法思想中可以看出,运算中不仅要满足误差要求,还要尽可能地减少计算量,此外还要考虑舍入误差的影响,这时就要对所运算数据的性质进行分析,设置合适的算法,从而提高运算的精度。
而逆序算法能够很好的满足上述要求。
题目二2.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)请用合适的曲线拟合所测数据点;(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;2.2算法思想利用曲线拟合数据点,即利用数据点拟合差值多项式,我们可以利用Newton 法进行拟合,也可以用复化Simpson求积公式、三次样条插值来拟合,但三次样条插值使用方程组计算增大了计算量,同时还要附加边界条件,分段三次样条插值对图形的控制能力还不够灵活。
因此这里用Newton形式的差值多项式进行拟合。
首先计算出各差商,然后计算出Newton差值多项式的每一项,最后将所有项相加,即可计算出Newton差值多项式,然后利用所得的差值多项式一次算出多个点的函数值。
MATLAB的plot函数进行绘图。
计算长度近似值,只需将每隔两点之间的距离算出,然后一次相加,所得的折线长度,即为长度的近似值。
2.3 Matlab源程序Untitled2clearclcx=0:1:20;y=[-9.01 -8.96 -7.96 -7.97 -8.02 -9.05 -10.13 -11.18 -12.26 -13.28 -13.32 -12.61 -11.29 -10.22 -9.15 -7.90 -7.95 -8.86 -9.81 -10.80 -10.93];%输入给定的数据点xi=0:20;[Nx,Ni]=Newton(x,y,xi); %调用函数,建立Newton差值多项式plot(xi,Ni); %绘制拟合的曲线图long=0; %为长度赋初值for i=1:20 %将每一段折线相加算出长度的近似值long=long+sqrt(1+((y(i)-y(i+1))^2));enddisp ('需要的光缆长度为') %显示需要的光缆长度disp(long)Newton插值法function [Nx,N0]=Newton(X,Y,x0)n=size(X); %插值点个数y=Y;Nx=Y(1);N=1;for i=1:n-1 %计算Newton插值多项式for j=i+1:nyi(j)=(y(j)-y(i))/(X(j)-X(i));endm(i)=yi(i+1);N=N*(x-X(i));Nx=Nx+N*m(i);y=yi;endN0=subs(Nx,'x',x0);2.4计算结果及总结针对上述Matlab程序,铺设海底光缆的曲线图如下图所示:结果如下:Nl=26.4844,即为所求近似计算光缆长度。