西安交通大学《计算方法》课程课件-第五章
- 格式:pdf
- 大小:581.54 KB
- 文档页数:44
计算方法(C)目录第1章绪论1.1 数值计算1.2 数值方法的分析1.2.1计算机上数的运算1.2.2算法分析第2章线性代数方程组2.1 Gauss消去法2.1.1消去法2.1.2主元消去法2.2 矩阵分解2.2.1Gauss消去法的矩阵意义2.2.2矩阵的LU分解及其应用2.2.3其他类型矩阵的分解2.2.4解三对角矩阵的追赶法2.3线性方程组解的可靠性2.3.1向量和矩阵范数2.3.2残向量与误差的代数表征2.4解线性方程组解的迭代法2.4.1基本迭代法2.4.2迭代法的矩阵表示2.4.3收敛性第3章数据近似3.1 多项式插值3.1.1插值多项式3.1.2Lagrange插值多项式3.1.3Newton插值多项式3.1.4带导数条件的插值多项式3.1.5插值公式的余项3. 2 最小二乘近似3.2.1 最小二乘问题的法方程3.2.2 正交化算法第4章数值微积分4.1 内插求积,Newton-Cotes公式4.1.1Newton-Cotes公式4.1.2复化求积公式4.1.3步长的选取4.1.4Romberg方法4.1.5待定系数法4.2数值微分4.2.1插值公式方法4.2.2Taylor公式方法(待定系数法)4.2.3外推法第5章非线性方程求解5.1 解一元方程的迭代法5.1.1简单迭代法5.1.2Newton法5.1.3割线法5.1.4区间方法5.2 收敛性问题5.2.1简单迭代——不动点5.2.2收敛性的改善5.2.3Newton法的收敛性5.2.4收敛速度第1章绪论1.1数值计算现代科学的发展,已导致科学与技术的研究从定性前进到定量,尤其是现代数字计算机的出现及迅速发展,为复杂数学问题的定量研究与解决,提供了强有力的基础。
通常我们面对的理论与技术问题,绝大多数都可以从其物理模型中抽象出数学模型,因此,求解这些数学模型已成为我们面临的重要任务。
一、本课程的任务:寻求解决各种数学问题的数值方法——如何将高等数学的问题回归到初等数学(算术)的方法求解——了解计算的基础方法,基本结构(否则只须知道数值软件)——并研究其性质。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载西安交通大学计算方法(C)讲义地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容计算方法(C)目录第1章绪论1.1 数值计算1.2 数值方法的分析计算机上数的运算算法分析第2章线性代数方程组2.1 Gauss消去法消去法主元消去法2.2 矩阵分解Gauss消去法的矩阵意义矩阵的LU分解及其应用其他类型矩阵的分解解三对角矩阵的追赶法线性方程组解的可靠性向量和矩阵范数残向量与误差的代数表征解线性方程组解的迭代法基本迭代法迭代法的矩阵表示收敛性第3章数据近似3.1 多项式插值插值多项式Lagrange插值多项式Newton插值多项式带导数条件的插值多项式插值公式的余项3. 2 最小二乘近似3.2.1 最小二乘问题的法方程3.2.2 正交化算法第4章数值微积分4.1 内插求积,Newton-Cotes公式Newton-Cotes公式复化求积公式步长的选取Romberg方法待定系数法数值微分插值公式方法Taylor公式方法 (待定系数法)外推法第5章非线性方程求解5.1 解一元方程的迭代法简单迭代法Newton法割线法区间方法5.2 收敛性问题简单迭代——不动点收敛性的改善Newton法的收敛性收敛速度第1章绪论1.1数值计算现代科学的发展,已导致科学与技术的研究从定性前进到定量,尤其是现代数字计算机的出现及迅速发展,为复杂数学问题的定量研究与解决,提供了强有力的基础。
通常我们面对的理论与技术问题,绝大多数都可以从其物理模型中抽象出数学模型,因此,求解这些数学模型已成为我们面临的重要任务。
本课程的任务:寻求解决各种数学问题的数值方法——如何将高等数学的问题回归到初等数学(算术)的方法求解——了解计算的基础方法,基本结构(否则只须知道数值软件)——并研究其性质。
西安交通大学计算方法上机实验班级:(xxx)姓名:(xxx)学号:21116010041.按两种顺序计算y,哪个接近真值?Y = 1000 + + + … +用java 语言编写:public class Add {public static void main(String[] args){double s=0,y=1000;for(double a=1001.0;a<=2000.0;a++){y+=1.0/a;}for(double a=2000.0;a>=1001.0;a--){s+=1.0/a;}s=s+1000;System.out.println("正序和"+s);System.out.println("逆序和"+y);}}运行结果:结论:显然假设是double类型的数据时,先算大数的过程吃掉了末尾的小数被进位所埋没,导致了大数吃小数的误差,按从小到大(从右向左)的计算顺序所得的结果与真值相近,而按从大到小(从左到右)的计算顺序所得的结果与真值的误差较大。
1-18.设(x) = 1 + x + + + … + , 计算(-5)和1/(5),哪个接近?解法一:用JAVA 语言编写:public class second{ public static void main(String[] args){double s1=1 ,s2=1;double e=1,sum=1; //e的初值为1,sum用来存放n!int a=1;while(sum<Math.pow(10, 1000000)){sum=a*sum;e=1.0/sum+e;a++;}double b=1.0/(e*e*e*e*e);System.out.println("较为精确的值1/e^5="+b);for(int i=1;i<=24;i++){s1+=cimi1(i);s2+=cimi2(i);}s1=1.0/s1;System.out.println("1/S24(5)="+s1);System.out.println("S24(-5)="+s2);}public static double cimi1(int ai){double xi=1;for(int i=ai;i>=1;i--){xi=xi*(5.0/i);}return xi;}public static double cimi2(int ai){double xi=1;for(int i=ai;i>=1;i--){xi=xi*(-5.0/i);}return xi;}}运行结果:解法二:用matlab编程并运行,如下:(1)计算(-5)运行结果如下:(2)计算1/(5)运行结果如下:而的真是结果为0.006737946比较得1/(5)的计算结果与真实值更接近解法三:也可以用C++编写:#include "stdafx.h"#include"stdio.h"#include "iostream"using namespace std;int main(int argc, char* argv[]){ int func1(int );double func2(int);double y=0;int i;for(i=1;i<25;i++){ int z=func1(i);double e=func2(i);y+=z/e;}cout<<"----------------------------------------"<<endl;cout<<"1/S(5)的运算结果是:"<<" "<<1.0/(y+1)<<endl;cout<<"----------------------------------------"<<endl;return 0;}int func1(int x){int y=1;int k;for (k=0;k<x;k++)y*=5;return y;}double func2(int n){double y=1;int j;for (j=1;j<=n;j++)y*=j;return y;}运行结果如下图:结论:通过比较上述的几种编程结果,可以看出1/S(5),更接近真实值,而且用matlab更为简便,可以直接利用函数库,并可以轻松的嵌入秦九韶算法,大大减少运算量和时间。