2010西安交通大学计算方法考题B(附答案)
- 格式:doc
- 大小:140.50 KB
- 文档页数:7
」、判断题:(共12分,每小题2分,正确的打(话,否则打(X ))1. 向量 X (X I ,X 2,X 3)T,则I Xi | I 2x 2 I 3x^1 是向量范数。
()2. 若A 是n n阶非奇异阵,则必存在单位下三角阵L 和上三角阵,使唯一成立。
( )b3.形如 af(x)dxi nA i f (X i )的高斯(Gauss )型求积公式具有最高代数精确度1的次数为2n 1。
( )1 24.已知矩阵A1 3 ,则在范数意义下条件数Co nd (A ) 4。
—( )35.已知 f(x) Xx ,差商 f[0,m, n] 3.5 ( , , m,n 为实数),则f [m, n, 2] 1.5。
( )6.采用牛顿迭代求解方程x 26 0来计算 6的近似值,若以X 。
4作为初值,则该迭代序列{X k }收敛到 6。
( )、填空题:(共28分,每小题4 分)1 0则|AX 42 1(A)1.向量X (1,-2)T,矩阵A2.设A 0.8°,则lim A k。
4 0.9 k3.为使函数f(x) JT万J X (x 1)的计算结果较精确,可将其形式改为4.设f(X) x2 2yx2 2x y ,则f (x)5.用等距节点的二次插值法求f(x) 的极小点的近似值为 _______________ ;x3 3x在[0,4]中的极小点,则第一次求出第一步删去部分区间后保留的搜索区间为:6.已知如下分段函数为三次样条,试求系数A,B,C :A 1 x2 x 1S(x) 2 2x 3 2 x2Bx3 1 x 02 2x Cx23 x 0 x 1则A= ,B= ,C=7.若用复化梯形公式计算1 1 dx,要求误差不超过10 4,则步长01 x三、(10分)线性方程组:2x x2X3 4x1 2x2X33X x22X3 5考察用Jacobi迭代和Gauss-Seidel 迭代解此方程组的收敛性;四、(10分)已知函数y f(x)的函数值、导数值如下:求满足条件的最低插值多项式及截断误差表示式。
第二章 数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造一多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到二次多项式2()p x 的值:表中2()p x 的某一个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数xe 时,使用多少个节点能够保证误差不超过61102-⨯. 答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔米特插值多项式,步长b ah n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章 函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平方逼近多项式,并给出平方误差.答案:()sin f x x =的二次最佳平方逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-⨯+-,二次最佳平方逼近的平方误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=⨯⎰.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-⎰取最小值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式()p x .答案:()f x 的最佳一致逼近多项式为323()74p x x x =++. 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平方逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章 数值积分与数值微分4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =⎰,并与精确值比较.答案:计算结果如下表所示4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++⎰ (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-⎰答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++⎰中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分30()hI f x dx =⎰的数值积分公式h I ,并用台劳展开法证明:453(0)()8h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+⎰.4.5 给定积分10sin xI dx x =⎰(1)运用复化梯形公式计算上述积分值,使其截断误差不超过31102-⨯. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=⨯ (3)取7个节点处的函数值.4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分10sin xI dx x =⎰.要求用事后误差估计法时,截断误不超过31102-⨯和61102-⨯. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,40.946 083I s ≈=满足精度要求.4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+⎰,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈. (2)利用上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--⎰,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,而 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 用龙贝格方法计算椭圆2214x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.4.9确定高斯型求积公式0011()()()x dx A f x A f x ≈+⎰的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证高斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰的系数及节点分别为0001 2 2A A x x ===-=+第五章 解线性方程组的直接法5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中111210110A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 答案: 1110331203321133A -⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-- ⎪⎝⎭5.2 用矩阵的直接三角分解法解方程组1234102050101312431701037x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案: 42x =,32x =,21x =,11x =.5.3 用平方根法(Cholesky 分解法)求解方程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭答案: 12x =,21x =,31x =-.5.4 用追赶法求解三对角方程组123421113121112210x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案:42x =,31x =-,21x =,10x =.第六章 解线性代数方程组的迭代法6.1 对方程1212123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩作简单调整,使得用高斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,用该方法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤. 答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩ 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<⨯. 答案:方程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3 给定线性方程组Ax b =,其中111221112211122A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.6.4 设有方程组112233302021212x b x b x b -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论用雅可比方法和高斯-赛得尔方法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.6.6 设()ij n nA a ⨯=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a = .求证:高斯-赛得尔方法求解方程组1122D AD x b --=时对任意初始向量都收敛.第七章 非线性方程求根例7.4 对方程230xx e -=确定迭代函数()x ϕ及区间[,]a b ,使对0[,]x a b ∀∈,迭代过程1(), 0,1,2,k x x k ϕ+== 均收敛,并求解.要求51||10k k x x -+-<. 答案:若取2()x x ϕ=,则在[1,0]-中满足收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟一解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ϕ=,在[0,1上满足收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原方程改写为23xe x =,取对数得2ln(3)()x x x ϕ==.满足收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟一解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6 对于迭代函数2()(3)x x c x ϕ=+-,试讨论:(1)当c 为何值时,1()k k x x ϕ+=产生的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ϕ51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示表7.7例7.13 设不动点迭代1()k x x ϕ+=的迭代函数()x ϕ具有二阶连续导数,*x 是()x ϕ的不动点,且*()1x ϕ'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y xϕϕ+==⎧⎪=-⎨=-⎪-+⎩二阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ϕ=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ϕ为迭代函数的迭代法至少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第八章 矩阵特征值8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知5500 5.51031A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 用反幂法求矩阵110242012A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最小的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥> ,为求1λ而作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的最小特征值,使它至少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 用平面旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平行的向量.答案:203/2/00001010/0T ⎛⎫⎪- ⎪=⎪--⎝0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --⎛⎫⎪--⎪= ⎪ ⎪⎪--⎝⎭8.6 若532644445A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.第九章 微分方程初值问题的数值解法9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤⎧⎨=⎩,要求取步长0.1h =,每步迭代误差不超过510-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 用二阶中点格式和二阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ⎧=+≤⎪⎨⎪=⎩的数值解(取步长0.2h =,运算过程中保留五位小数).答案:用二阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈用二阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 用如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-⎧⎨=⎩为实常数绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2h λ≤.9.5 用如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++⎧=+⎪⎪=++⎨⎪⎪==⎩,求解初值问题sin(), 01(0)1x y e xy x y '⎧=<≤⎨=⎩时,如何选择步长h ,使上述格式关于k 的迭代收敛. 答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.答案:系数为142,,33a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx⎧=-⎪⎪≤⎨⎪=+=⎪⎩,取步长0.1h =,小数点后至少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =⎧⎨=⎩ , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=⎧⎨≈=⎩ 220.604 820z 2.090 992y =⎧⎨=⎩ , 22(0.2)0.604 659(0.2) 2.088 216y y z z ≈=⎧⎨≈=⎩。
大学计算机根底习题答案〔西安交大〕大学计算机根底第1章引论习题参考答案习题一1.第一代计算机的主要部件是由〔电子管和继电器〕构成的。
2.未来全新的计算机技术主要指〔光子计算机〕,〔生物计算机〕和〔量子计算机〕。
3.按照Flynn分类法,计算机可以分为〔单指令流单数据流〕,〔单指令流多数据〕,〔多指令流单数据流〕和〔多指令流多数据流〕4种类型。
4.计算机系统主要由〔硬件系统〕和〔软件系统〕组成。
5.说明以下计算机中的部件是属于主机系统、软件系统、还是属于外部设备。
〔1〕CPU 〔主机系统〕〔2〕内存条〔主机系统〕〔3〕网卡〔主机系统〕〔4〕键盘和鼠标〔外设〕〔5〕显示器〔外设〕〔6〕Windows 操作系统〔软件系统〕6.控制芯片组是主板的的核心部件,它由〔北桥芯片〕局部和〔南桥芯片〕局部组成。
7.在计算机系统中设计Cache的主要目的是〔提高存去速度〕。
8.计算机各部件传输信息的公共通路称为总线,一次传输信息的位数称为总线的〔宽度〕。
9.PCIE属于〔系统〕总线标准,而SATA那么属于〔硬盘接口或外设〕标准。
10.在微机输入输出控制系统中,假设控制的外部设备是发光二极管,最好选用的输入输出方法是〔程序控制〕方式;假设控制的对象是高速设备,那么应选那么〔 DMA 〕控制方式。
11.操作系统的根本功能包括〔处理器管理或进程管理〕、〔文件管理〕、〔存储器管理〕、〔设备管理〕和用户接口。
12.虚拟存储器由〔主内存〕和〔磁盘〕构成,由操作系统进行管理。
13.CPU 从外部设备输入数据需要通过〔输入接口〕,向外设输出数据那么需要通过〔输出接口〕。
14.简述CPU从外部设备输入数据和向外设输出数据的过程。
请参见教材第18页关于输入输出过程的描述。
15.普适计算的主要特点是〔是一种无处不在的计算模式〕。
1大学计算机根底第1章引论习题二1.在计算机内,一切信息的存取、传输和处理都是以〔二进制码〕形式进行的。
1.计算以下和式:0142118184858616nn S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法;(2)若要保留30个有效数字,则又将如何进行计算。
(1)题目分析该题是对无穷级数求和,因此在使用matlab 进行累加时需要一个累加的终止条件。
这里令⎪⎭⎫ ⎝⎛+-+-+-+=681581482184161n n n n a nn ,则()()1.01616855844864816114851384128698161 681581482184161148113811282984161111<<⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+=+++n n n n n n n n n n n n n n n n a a n n n n n n 故近似取其误差为1+≈k a ε,并且有m-1m -11102121⨯=⨯=≈+βεk a ,(2)算法依据使用matlab 编程时用digits 函数和vpa 函数来控制位数。
(3)Matlab 运行程序%%保留11位有效数字 k1=11;s1=0;%用于存储这一步计算值 for n=0:50a=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); n1=n-1;if a<=0.5*10^(1-k1) break end end;for i=0:1:n1t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s1=s1+t; ends11=vpa(s1,k1);disp('保留11位有效数字的结果为:');disp(s11); disp('此时n 值为:');disp(n1);%%保留30位有效数字 clear all; k2=30;digits(k2+2);s2=vpa(0);%用于存储这一步计算值for n=0:50a=vpa((1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)));n2=n-1;if a<=0.5*10^(1-k2)breakendend;for i=0:1:n2t=vpa((1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)));s2=vpa(s2+t);ends30=vpa(s2,k2);disp('保留30位有效数字的结果为:');disp(s30);disp('此时n值为:');disp(n2);2.某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
西安交大期末考试试题及答案西安交通大学期末考试试题一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
其数学表达式为:A. F = maB. F = m/aC. a = F/mD. a = F * m2. 在化学中,原子的相对原子质量是指:A. 原子核的质量B. 质子数C. 中子数D. 质子数和中子数之和3. 以下哪个选项不是计算机网络的拓扑结构?A. 星型拓扑B. 环形拓扑C. 总线拓扑D. 树形拓扑4. 经济学中,边际效用递减规律表明:A. 随着消费量的增加,消费者对商品的边际效用逐渐增加B. 随着消费量的增加,消费者对商品的边际效用逐渐减少C. 随着消费量的增加,消费者对商品的边际效用保持不变D. 消费者对商品的边际效用与消费量无关5. 以下哪个不是生物多样性的组成部分?A. 物种多样性B. 基因多样性C. 生态系统多样性D. 个体多样性6. 根据热力学第二定律,在一个孤立系统中,熵总是:A. 增加B. 减少C. 保持不变D. 先增加后减少7. 以下哪个是线性代数中矩阵的特征值?A. 矩阵的元素B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆8. 计算机编程中,递归算法的基本思想是:A. 将问题分解为更小的问题B. 将问题转化为更复杂的问题C. 将问题重复执行多次D. 将问题推迟解决9. 根据量子力学的不确定性原理,一个粒子的位置和动量不能同时被精确测量,因为:A. 测量设备不够精确B. 粒子太小,难以测量C. 这是量子力学的基本特性D. 粒子在测量时会移动10. 在心理学中,认知失调是指:A. 个体在面对矛盾信息时产生的不适感B. 个体在面对困难任务时产生的挫败感C. 个体在面对新信息时产生的好奇心D. 个体在面对压力时产生的焦虑感二、简答题(每题10分,共30分)1. 请简述牛顿三大定律的内容。
2. 描述化学键的形成原理及其在分子结构中的作用。
1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=402062225A ,求2A = , )(A ρ= 。
2. 计算⎰badx x f )(的辛普森公式为 。
3. 设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.421231111,=LDL T,其中L 为单位下三角矩阵,D 为 对角矩阵,则L = ,D= 。
4. 线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------11851011151112321x x x ,试写出Jacobi 迭代法的迭代格式 。
5. 已知下列数据:x -3 -2 -1 2 4 y14.38.34.78.322.7用最小二乘法求形如2bx a y +=的经验公式的法方程为 。
6.用牛顿迭代法计算0233=--x x 的根的迭代格式为 , 取初始值=0x 1.5, 迭代一步得=1x 。
1.求积公式)]2(5)5.0(16)0(3[91)(2f f f dx x f ++-≈⎰具有的几阶代数精度。
( ) A. 1 B. 2 C. 3 D. 42.线性方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛=122111221-A ,则下面结论正确的是 ( ) A.Jacobi 迭代法不收敛,Gauss-Seidel 迭代法收敛 B. Jacobi 迭代法收敛,Gauss-Seidel 迭代法不收敛 C. Jacobi 迭代法不收敛,Gauss-Seidel 迭代法不收敛 D. Jacobi 迭代法收敛,Gauss-Seidel 迭代法收敛 3.设6)12(-=f ,取4142.12=,利用下列等式计算,计算结果最好是( )A .6)12(1+=f ; B .3)223(-=f ; C .3)223(1+=f ; D . 27099-=f .4.设,.....)2,1,0(,527)(2==++=j j x x x x f j ,则=],,[210x x x f ( ) A. 7 B. 2 C. 5 D. 01. 若经四舍五入得到近似数0123400.0=x ,则它的绝对误差限为71021-⨯,有效数字为4 位。
西华大学研究生课程考试试题课程名称: 计算方法 考试类型(考试或考查): 考试 年 级: 2010 学时: 60 考试时间: 120 专 业: 学生姓名: 学号:一、设下列各近似值均有4位有效数字,*0.001428x =,*13.521y =,*2.300z =,试指出它们的绝对误差限和相对误差限. 解: 1) 由*24611||101022x x ----≤⨯=⨯,得*x 的绝对误差限为61102-⨯,相对误关节限为 6410 3.51020.001428--≈⨯⨯;2) 由*24211||101022y y ---≤⨯=⨯,得得*y 的绝对误差限为21102-⨯,相对误关节限为2410 3.710213.521--≈⨯⨯;3) 由*14311||101022z z ---≤⨯=⨯,得得*y 的绝对误差限为31102-⨯,相对误关节限为3410 2.2102 2.3--≈⨯⨯.二、对于给定值0a >,应用Newton. 解: 令21()f x a x =-,()0f x =的根, 的迭代公式为1()()n n n n f x x x f x +=-',化简得:210.5(3)n n n x x ax +=-.三、设方程组b AX =:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111163852741321x x x 1.求出三角分解式LU A =2.利用上述分解求出b AX =的解解: 1. 100230362L ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 147012001U ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, A LU =; 2. 先解方程123100123013621y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得1231130y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦;再解方程1231147101230010x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得原方程的解为113x =-,213x =,30x =.四、设0.60.50.10.3A ⎡⎤=⎢⎥⎣⎦计算1||||A ,2||||A ,||||A ∞以及()A ρ。
计算方法(B )上机作业一、三次样条拟合某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图; 解:1、算法实现的思想及依据题目(1)为曲线拟合问题多项式插值、分段插值和最小二乘法。
多项式插值,随着插值数据点的数目增多,误差也会随之增大,因此不选用。
最小二乘法适于数据点较多的场合,在此也不适用。
故选用分段插值。
分段插值又分为分段线性插值、分段二次插值、三次样条插值及更高阶的多项式插值。
由本题的物理背景知,光缆正常工作时各点应该是平滑过渡,因此至少选用三次样条插值法。
对于更高阶的多项式插值,由于“龙格现象”而不选用。
题目(2)求光缆长度,即求拟合曲线在0到20的长度,对弧长进行积分即可。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
2、算法实现的结构参考教材给出的SPLINEM 算法和TTS 算法,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出来并赋值给右端向量d ,再根据TSS 解法求解M 。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
3、程序运行结果及分析图1.1三种边界条件下三次样条插值图1.2光缆长度4、MATLAB代码:1)自己编程实现代码clear;clc;I=input('你想使用第几种边界条件?请输入1、2、3之一: ');x=0:20;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.8 10.93];plot(x,-y,'k.','markersize',15)%y为深度,取负号hold on%% 计算一阶差商y1=ones(1,21);for i=2:1:21y1(i)=(y(i)-y(i-1))/(x(i)-x(i-1));end%% 计算二阶差商y2=ones(1,21);for i=3:1:21y2(i)=(y1(i)-y1(i-1))/(x(i)-x(i-2));end%% 计算三阶差商y3=ones(1,21);for i=4:1:21y3(i)=(y2(i)-y2(i-1))/(x(i)-x(i-3));end%% 选择边界条件(I)if I==1d(1)=0;d(21)=0;a(21)=0;c(1)=0;% 第一个点和最后一个点的二阶差商为0 endif I==2d(1)=6*y1(1);d(21)=-6*y1(21);a(1)=1;c(1)=1;endif I==3d(1)=-12*y3(1);d(21)=-12*y3(21);a(21)=-2;c(1)=-2;%endfor i=2:20d(i)=6*y2(i+1);end%% 构造带状矩阵求解(追赶法)b=2*ones(1,21);a=0.5*ones(1,21);%a(21)=-2;c=0.5*ones(1,21);%c(1)=-2;u(1)=b(1);r(1)=c(1);%% 追yz(1)=d(1);for i=2:21l(i)=a(i)/u(i-1);u(i)=b(i)-l(i)*r(i-1);r(i)=c(i);yz(i)=d(i)-l(i)*yz(i-1);end%% 赶xg(21)=yz(21)/u(21);for i=20:-1:1xg(i)=(yz(i)-r(i)*xg(i+1))/u(i);endM=xg;%%所有点的二阶导数值%% 求函数表达式并积分t=1;h=1;N=1000x1=0:20/(N-1):20;length=0;for i=1:Nfor j=2:20if x1(i)<=x(j)t=j;break;elset=j+1;endendf1=x(t)-x1(i);f2=x1(i)-x(t-1);S(i)=(M(t-1)*f1^3/6/h+M(t)*f2^3/6/h+(y(t-1)-M(t-1)*h^2/6)*f1+(y(t)-M(t)*h^2/6)* f2)/h;Sp(i)=-M(t-1)*f1^2/2/h+M(t)*f2^2/2/h+(y(t)-y(t-1))/h-(M(t)-M(t-1))*h/6;length(i+1)=sqrt(1+Sp(i)^2)*(20/(N-1))+length(i);%第一类线积分endfigure(1);plot(x1,-S,'r-')%深度曲线griddisp(['第',num2str(I),'种边界条件下长度',num2str(length(N+1)),'米'])axis fill;xlabel('测点/米');ylabel('深度/米');title('三次样条曲线拟合');legend('数据点','拟合曲线',3);二、最小二乘近似假定某天的气温变化记录如下表所示,试用数据拟合的方法找出这一天的气温变化的规律;试计算这一天的平均气温,并试估计误差。
西安交通大学2010年攻读硕士学位研究生入学考试试题 科目代码:802 科目名称:机械设计基础考试时间:2010年1月 日(注:所有答案必须写在专用答题纸上,写在本试题纸或草稿纸上一律无效)A一、是非题(每小题1分,共20分。
请在答题纸上写出小题编号,并在其后用“√”标出你认为对、用“×”标出你认为错的每小题的答案。
)1.**a c h m 、、、α都是标准值的齿轮就是标准齿轮。
2.一对渐开线直齿圆柱齿轮啮合传动时,在啮合点上两齿轮的压力角都相等。
3.一对渐开线齿轮啮合传动时,齿轮的分度圆半径和节圆半径并不一定相等。
4.渐开线斜齿圆柱齿轮啮合时,其齿面上的接触线与齿轮轴线平行。
5.渐开线斜齿圆柱齿轮的正确啮合条件是:21n n m m =;21n n αα=。
6.为便于确定机构尺寸和减少测量误差,规定锥齿轮的大端参数为标准值。
7.不计摩擦,平底从动件盘形凸轮机构的压力角始终为0。
8.滚子从动件盘形凸轮机构的基圆半径就是其凸轮轮廓线的最小向径。
9.曲柄滑块机构,曲柄主动时,最小传动角一定发生在曲柄与导路方向线垂直的位置。
10.非周期性速度波动可以用飞轮来调节。
11.在机器动力学研究中,只能选用主动件为等效构件。
12.在机器动力学分析中,等效质量不是机构的总质量。
13.普通平键用于静连接,导向平键用于动连接。
14.行星轮系和差动轮系都属周转轮系。
15.梯形螺纹由于不易自锁、传动效率高,所以广泛应用于螺旋传动。
16.由于打滑,所以,带传动不能保证精确的传动比。
17.滚动轴承在正常使用时,主要失效形式为内、外圈或滚动体疲劳点蚀。
18.通常,滚动轴承内圈与轴采用基孔制配合,外圈与轴承座采用基轴制配合。
19.非液体摩擦滑动轴承的主要失效形式是磨损和胶合。
20.联轴器和离合器的使用场合不同。
二、单项选择题(每空1分,共23分)1.机构处于死点位置时,压力角α和传动角γ分别为( )。
A .α=0º,γ=90ºB .α=0º,γ=0ºC .α=90º,γ=90ºD .α=90º,γ=0º2.机构要具有急回特性,应使行程速比系数( )。
计算方法B上机报告姓名:学号:班级:学院:任课教师:2017年12月29日题目一:1.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)请用合适的曲线拟合所测数据点;(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;1.2实现题目的思想及算法依据首先在题目(1)中要实现的是数据的拟合,显然用到的是我们在第三章中数据近似的知识内容。
多项式插值时,这里有21个数据点,则是一个20次的多项式,但是多项式插值随着数据点的增多,会导致误差也会随之增大,插值结果会出现龙格现象,所以不适用于该题目中点数较多的情况。
为了避免结果出现大的误差,同时又希望尽可能多地使用所提供的数据点,提高数据点的有效使用率,这里选择分段插值方法进行数据拟合。
分段插值又可分为分段线性插值、分段二次插值和三次样条插值。
由于题目中所求光缆的现实意义,而前两者在节点处的光滑性较差,因此在这里选择使用三次样条插值。
根据课本SPLINEM算法和TSS算法,采用第三种真正的自然边界条件,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出并赋值给右端向量d,再根据TSS解法求解三对角线线性方程组从而解得M值。
求出M后,对区间进行加密,计算200个点以便于绘图以及光缆长度计算。
对于问题(2),使用以下的公式20f (x)2dxf'(x)2dx(x )ds1.3算法结构1. For i 0,1,2, , n12. x kelse i 1 kxx k1〜一〜h; x< x x; x x<13 x xh2h" 〜[M k 1 _ M k (y k 1 M k 1 )x (y k M k —)xVh y6 6 6 61.4 matlab 源程序n=20;x=O:n;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.229.15 7.90 7.95 8.86 9.81 10.80 10.93];M=y; %用于存放差商,此时为零阶差商h=zeros(1, n+1);c=zeros(1, n+1);d=zeros(1, n+1);a=zeros(1, n+1);b=2*o nes(1, n+1);h(2)=x(2)-x(1);for i=2:n %书本110 页算法SPLINEMh(i+1)=x(i+1)-x(i);c(i)=h(i+1)/(h(i)+h(i+1));a(i)=1-c(i);enda(n +1)=-2; %计算边界条件c(0),a(n+1),采用的是第三类边界条件c(1)=-2;for k=1:3 %计算k阶差商for i=n+1:-1:k+1M(i)=(M(i)-M(i-1))/(x(i)-x(i-k));endif(k==2) %计算2阶差商d(2:n)=6*M(3:n+1); %给 d 赋值endif(k==3)d(1)=(-12)*h(2)*M(4); %计算边界条件d(0),d(n),采用的是第三类边界条件d( n+1)=12*h( n+1)*M( n+1);endendl=zeros(1, n+1);r=zeros(1, n+1);u=zeros(1, n+1);q=zeros(1, n+1);u(1)=b(1);r(1)=c(1);q(1)=d(1);for k=2:n+1 %利用书本49页算法TSS求解三对角线性方程组r(k)=c(k);l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);q(k)=d(k)-l(k)*q(k-1);endp( n+1)=q( n+1)/u( n+1);for k=n :-1:1p(k)=(q(k)-r(k)*p(k+1))/u(k);endfprintf('三对角线性方程组的解为:');disp(p);%求拟合曲线x1=0:0.1:20; %首先对区间进行加密,增加插值点n1=10* n;x2=zeros(1, n1+1);x3=zeros(1, n1+1);s=zeros(1, n1+1);for i=1: n1+1for j=1: nif x1(i)>=x(j)&&x1(i)<=x(j+1) %利用书本111 页算法EVASPLINE 求解拟合曲线s(x)h(j+1)=x(j+1)-x(j);x2(i)=x(j+1)-x1(i);x3(i)=x1(i)-x(j);s(i)=(p(j).*(x2(i))A3/6+p( j+1).*(x3(i))A3/6+(y(j)-p(j).*((h(j+1))A2/6)).*x2(i)+…(y(j+1)-p(j+1).*(h(j+1))A2/6).*x3(i))/h(j+1);endendendplot(x,-y,'x') %画出插值点hold onplot(x1,-s) %画出三次样条插值拟合曲线hold ontitle('三次样条插值法拟合电缆曲线');xlabel('河流宽度/m');ylabel('河流深度/m');Len gth=0;for i=1: n1L=sqrt((x1(i+1)-x1(i))A2+(s(i+1)-s(i))A2); % 计算电缆长度Len gth=Le ngth+L;endfprintf('电缆长度(m)=');disp(Le ngth);图1. 1三次样条插值法拟合海底光缆曲线山舅 10 -0.70091,922& 0.8703 -山 24斫 0.3520 -0.9224 -1,8224电缆长 l(n)= 26.6656图1.2海底光缆长度结果铺设海底光缆的曲线如图1.1所示由上图可以看出,所得到的曲线光滑,能够较好得反映实际的河沟底部地势 形貌。
计算方法B上机报告姓名:学号:班级:学院:任课教师:2017年12月29日题目一:1.1题目内容某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图;1.2 实现题目的思想及算法依据首先在题目(1)中要实现的是数据的拟合,显然用到的是我们在第三章中数据近似的知识内容。
多项式插值时,这里有21个数据点,则是一个20次的多项式,但是多项式插值随着数据点的增多,会导致误差也会随之增大,插值结果会出现龙格现象,所以不适用于该题目中点数较多的情况。
为了避免结果出现大的误差,同时又希望尽可能多地使用所提供的数据点,提高数据点的有效使用率,这里选择分段插值方法进行数据拟合。
分段插值又可分为分段线性插值、分段二次插值和三次样条插值。
由于题目中所求光缆的现实意义,而前两者在节点处的光滑性较差,因此在这里选择使用三次样条插值。
根据课本SPLINEM 算法和TSS 算法,采用第三种真正的自然边界条件,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出并赋值给右端向量d ,再根据TSS 解法求解三对角线线性方程组从而解得M 值。
求出M 后,对区间进行加密,计算200个点以便于绘图以及光缆长度计算。
对于问题(2),使用以下的公式:20=()L f x ds ⎰20(f x =⎰191(k kk f x +==∑⎰1.3 算法结构1. For n i ,,2,1,0⋅⋅⋅=1.1 i i M y ⇒2. For 2,1=k2.1 For k n n i ,,1, -=2.1.1 i k i i i i M x x M M ⇒----)/()(13. 101h x x ⇒-4. For 1-,,2,1n i =4.1 11++⇒-i i i h x x4.2 b a c c h h h i i i i i i ⇒⇒-⇒+++2;1;)/(11 4.3 i i d M ⇒+165. 0000;;c M d M d n n ⇒⇒⇒λn n n b a b ⇒⇒⇒2;;20μ6. 1111,γμ⇒⇒d b7. For m k ,,3,2 = ! 获取M 的矩阵元素个数,存入m7.1 k k k l a ⇒-1/μ 7.2 k k k k c l b μ⇒⋅-1- 7.3 k k k k l d γγ⇒⋅-1- 8. m m m M ⇒μγ/9. For 1,,2,1 --=m m k9.1 k k k k k M M c ⇒⋅-+μγ/)(110. k ⇒1 ! 获取x 的元素个数存入s 11. For 1,,2,1-=s i11.1 if i x x ≤~then k i ⇒;break else k i ⇒+112. xx x x x x h x x k k k k ˆ~;~;11⇒-⇒-⇒--- y h x h M y x h M y x M x M k k k k k k ~/]ˆ)6()6(6ˆ6[2211331⇒-+-++---1.4 matlab 源程序n=20; x=0:n;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.80 10.93];M=y; %用于存放差商,此时为零阶差商 h=zeros(1,n+1); c=zeros(1,n+1); d=zeros(1,n+1); a=zeros(1,n+1); b=2*ones(1,n+1); h(2)=x(2)-x(1);for i=2:n %书本110页算法SPLINEM h(i+1)=x(i+1)-x(i);c(i)=h(i+1)/(h(i)+h(i+1)); a(i)=1-c(i); enda(n+1)=-2; %计算边界条件c(0),a(n+1),采用的是第三类边界条件 c(1)=-2;for k=1:3 %计算k 阶差商 for i=n+1:-1:k+1M(i)=(M(i)-M(i-1))/(x(i)-x(i-k)); endif(k==2) %计算2阶差商 d(2:n)=6*M(3:n+1); %给d 赋值 endif(k==3)d(1)=(-12)*h(2)*M(4); %计算边界条件d(0),d(n),采用的是第三类边界条件 d(n+1)=12*h(n+1)*M(n+1); end endl=zeros(1,n+1); r=zeros(1,n+1); u=zeros(1,n+1); q=zeros(1,n+1); u(1)=b(1); r(1)=c(1); q(1)=d(1);for k=2:n+1 %利用书本49页算法TSS求解三对角线性方程组r(k)=c(k);l(k)=a(k)/u(k-1);u(k)=b(k)-l(k)*r(k-1);q(k)=d(k)-l(k)*q(k-1);endp(n+1)=q(n+1)/u(n+1);for k=n:-1:1p(k)=(q(k)-r(k)*p(k+1))/u(k);endfprintf('三对角线性方程组的解为:');disp(p);%求拟合曲线x1=0:0.1:20; %首先对区间进行加密,增加插值点n1=10*n;x2=zeros(1,n1+1);x3=zeros(1,n1+1);s=zeros(1,n1+1);for i=1:n1+1for j=1:nif x1(i)>=x(j)&&x1(i)<=x(j+1) %利用书本111页算法EVASPLINE求解拟合曲线s(x)h(j+1)=x(j+1)-x(j);x2(i)=x(j+1)-x1(i);x3(i)=x1(i)-x(j);s(i)=(p(j).*(x2(i)).^3/6+p(j+1).*(x3(i)).^3/6+(y(j)-p(j).*((h(j+1)).^2/6)).*x2( i)+...(y(j+1)-p(j+1).*(h(j+1)).^2/6).*x3(i))/h(j+1);endendendplot(x,-y,'x') %画出插值点hold onplot(x1,-s) %画出三次样条插值拟合曲线hold ontitle('三次样条插值法拟合电缆曲线');xlabel('河流宽度/m');ylabel('河流深度/m');Length=0;for i=1:n1L=sqrt((x1(i+1)-x1(i))^2+(s(i+1)-s(i))^2); %计算电缆长度Length=Length+L;endfprintf('电缆长度(m)=');disp(Length);1.5 结果与说明铺设海底光缆的曲线如图1.1所示图1. 1三次样条插值法拟合海底光缆曲线由上图可以看出,所得到的曲线光滑,能够较好得反映实际的河沟底部地势形貌。
第一章绪论1.1数值计算现代科学的发展,已导致科学与技术的研究从定性前进到定量,尤其是现代数字计算机的出现及迅速发展,为复杂数学问题的定量研究与解决,提供了强有力的基础。
通常我们面对的理论与技术问题,绝大多数都可以从其物理模型中抽象出数学模型,因此,求解这些数学模型已成为我们面临的重要任务。
一、本课程的任务:寻求解决各种数学问题的数值方法——如何将高等数学的问题回归到初等数学(算术)的方法求解——了解计算的基础方法,基本结构(否则只须知道数值软件)——并研究其性质。
立足点:面向数学——解决数学问题面向计算机——利用计算机作为工具充分发挥计算机的功能,设计算法,解决数学问题例如:迭代法、并行算法二、问题的类型1、离散问题:例如,求解线性方程组bAx=——从离散数据:矩阵A和向量b,求解离散数据x;2、连续问题的离散化处理:例如,数值积分、数值微分、微分方程数值解;3、离散问题的连续化处理:例如,数据近似,统计分析计算;1.2数值方法的分析在本章中我们不具体讨论算法,首先讨论算法分析的基础——误差。
一般来讲,误差主要有两类、三种(对科学计算):1)公式误差——“截断误差”,数学↔计算,算法形成——主观(人为):数学问题-数值方法的转换,用离散公式近似连续的数学函数进行计算时,一般都会发生误差,通常称之为“截断误差”;——以后讨论2)舍入误差及输出入误差——计算机,算法执行——客观(机器):由于计算机的存储器、运算器的字长有限,在运算和存储中必然会发生最末若干位数字的舍入,形成舍入误差;在人机数据交换过程中,十进制数和二进制数的转换也会导致误差发生,这就是输入误差。
这两种误差主要是由于计算机的字长有限,采用浮点数系所致。
首先介绍浮点数系一、计算机上的运算——浮点运算面向计算机设计的算法,则先要讨论在计算机上数的表示。
科学记数法——浮点数:约定尾数中小数点之前的数全为零,小数点后第一个数不能为零。
目前,一般计算机都采用浮点数系,一个存储单元分成首数和尾数:首数l 尾数(位)其中首数存放数的指数(或“阶”)部分,尾数存放有效数字。
其他系统西安交通大学--数据结构所有答案3,栈和队列都是顺序存取的的线性表,但它们对存取位置的限制不同。
,A 正确 B错误,答案是:A3,在使用后缀表表示实现计算器时用到一个栈的实例,其作用是暂存运算对象。
,A正确 B错误,答案是:A3,具有n个结点的完全二叉树的高度为┖log2n┘1。
,A正确 B错误,答案是:B3,为度量一个搜索算法的性能,需要在时间和空间方面进行权衡。
,A正确 B错误,答案是:A3,闭散列法通常比开散列法时间效率更高。
,A正确 B错误,答案是:B3,一棵m阶B树中每个结点最多有m个关键码,最少有2个关键码。
,A 正确 B错误,答案是:B3,有向图的邻接表和逆邻接表中表结点的个数不一定相等。
,A正确 B错误,答案是:B3,对链表进行插入和删除操作时不必移动链表中结点。
,A正确 B错误,答案是:A3,希尔排序算法的时间复杂度为On2。
,A正确 B错误,答案是:B3,用邻接矩阵作为图的存储结构时,则其所占用的存储空间与图中顶点数无关而与图中边数有关。
,A正确 B错误,答案是:B3,通常使用两个类来协同表示单链表,即链表的结点类和链表类。
,A正答案是:A3,顺序表用一维数组作为存储结构,因此顺序表是一维数组。
,A正确 B 错误,答案是:B3,二维数组是数组元素为一维数组的线性表,因此它是线性结构。
,A正确 B错误,答案是:B3,算法的运行时间涉及加、减、乘、除、转移、存、取、等基本运算。
要想准确地计算总运算时间是不可行的。
,A正确 B错误,答案是:A3,堆是完全二叉树,完全二叉树不一定是堆。
(),A正确 B错误,答案是:A3,顺序表查找指的是在顺序存储结构上进行查找。
(),A正确 B错误,答案是:B3,入栈操作和入队列操作在链式存储结构上实现时不需要考虑栈溢出的情况。
,A正确 B错误,答案是:A3,中序遍历一棵二叉排序树可以得到一个有序的序列。
,A正确 B错误,答案是:A3,用邻接矩阵作为图的存储结构时,则其所占用的存储空间与图中顶点数无关而与图中边数有关。
(3).已知是四元方程组AX b =的三个解,其中且123,,ηηη()3r A =,则方程组AX b =的通解为1223(1,2,3,4),(4,4,4,4)T T ηηηη+=+=三、(12分) 证明两直线,异面;求两直线间的距1:4l x y z ==-2:l x y z -==离;并求与都垂直且相交的直线方程。
12,l l 四、(12分)线性方程组123113112112x x x λλλλ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦讨论取何值时,该方程组有唯一解、无解、有无穷多解?并在有无穷多解时,λ求出该方程组的结构式通解.五、(12分). 已知二次曲面方程可经过正交2222224x ay z bxy xz yz +++++=变换化为柱面方程,求的值及正交矩阵P.'''x x y P y z z ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦22'4'4y z +=,a b 六、(12分) 设,矩阵满足,其中为三阶单位矩101020101A ⎛⎫⎪= ⎪ ⎪⎝⎭X 2AX I A X +=+I 阵,求矩阵X .七、(12分) (注意:学习过第8章“线性变换”者做第(2)题,其余同学做第(1)题)(1)矩阵,线性空间1123130101111432A -⎡⎤⎢⎥⎢⎥=⎢⎥--⎢⎥---⎣⎦求的基与维数.{}4|V b b F Ax =∈,方程组=b 有解V (2) 设,在的基下的矩()3T L R ∈T 3R 123(1,1,1),(1,0,1),(0,1,1)T T T ααα=-=-=阵为 ,求在基下的101110121A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭T 123(1,0,0),(0,1,0),(0,0,1)T T T βββ===矩阵.八、(10分)设是维列向量组,矩阵12,,,n ααα n 111212122212T T T n T T T n T T Tn n n n A αααααααααααααααααα⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦试证明线性无关的充要条件是对任意维列向量,方程组12,,,n ααα n b 均有解。
习题答案——证明题 第2章 线性方程组求解p. 79——第14题证明:a. 由于 是范数,它必满足范数的三条件;由于Mx x =M,所以⑴ 非负性:,0≥=Mx xM且 0==Mx xM当且仅当 0Mx =,又由M 的非奇性,当且仅当0x =时才有0Mx =,因此:0=Mx 当且仅当0x =;⑵ 正齐性:MMx Mx Mx x M xααααα====)()(⑶ 三角不等式:MMMyxMy Mx My Mx y x M yx +=+≤+=+=+)(因此,按此定义的范数Mx 是范数;b. 仿前,容易证明1-=MAM A M 定义了一种矩阵范数。
关于相容性: MM MxA Mx MAM Mx MAM MAx Ax 11=≤==--第3章 数据近似p.129——第6题:a. 取,1)(=x f 则对插值节点n i x i ,,2,1,0)1,( =,其Lagrange 插值多项式为∑==ni i x l x L 0)()(,又由函数、插值多项式与余项的关系,及余项公式,有1)(0)()!1()()(1)()(0)1(0≡⇒≡+=-=-∑∑=+=ni i n ni i x l x n f x l x L x f ωξ此处,用到:0)(,1)()1(≡∴=+x f x f nb. 证明同上,只是将k x x f =)(,由于n k ≤,所以仍有0)()1(≡+x f n ;c. 由二项式定理:()0)1()()1()()1()()(000000=-=-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=-∑∑∑∑∑∑=-==-==-=kkj j k j j k j k j n i i jk i j j k j ni ik j j k i j j k j ni i ki x x x x C x l x x C x l x x C x l x x此处,用到了b.已证明的结论:k j x x l x j k ni i j k i ,,1,0,)(0==-=-∑;d. 只需注意到由于)(x y 是m 次多项式,又n m ≤,因此0)()1(≡+x y n ;因此,由余项公式:()0)()!1(1)()()1(=+=-+x y n x P x y n ωξ,此即所要的证明。