2010西安交通大学计算方法考题B(附答案)
- 格式:doc
- 大小:140.50 KB
- 文档页数:7
」、判断题:(共12分,每小题2分,正确的打(话,否则打(X ))1. 向量 X (X I ,X 2,X 3)T,则I Xi | I 2x 2 I 3x^1 是向量范数。
()2. 若A 是n n阶非奇异阵,则必存在单位下三角阵L 和上三角阵,使唯一成立。
( )b3.形如 af(x)dxi nA i f (X i )的高斯(Gauss )型求积公式具有最高代数精确度1的次数为2n 1。
( )1 24.已知矩阵A1 3 ,则在范数意义下条件数Co nd (A ) 4。
—( )35.已知 f(x) Xx ,差商 f[0,m, n] 3.5 ( , , m,n 为实数),则f [m, n, 2] 1.5。
( )6.采用牛顿迭代求解方程x 26 0来计算 6的近似值,若以X 。
4作为初值,则该迭代序列{X k }收敛到 6。
( )、填空题:(共28分,每小题4 分)1 0则|AX 42 1(A)1.向量X (1,-2)T,矩阵A2.设A 0.8°,则lim A k。
4 0.9 k3.为使函数f(x) JT万J X (x 1)的计算结果较精确,可将其形式改为4.设f(X) x2 2yx2 2x y ,则f (x)5.用等距节点的二次插值法求f(x) 的极小点的近似值为 _______________ ;x3 3x在[0,4]中的极小点,则第一次求出第一步删去部分区间后保留的搜索区间为:6.已知如下分段函数为三次样条,试求系数A,B,C :A 1 x2 x 1S(x) 2 2x 3 2 x2Bx3 1 x 02 2x Cx23 x 0 x 1则A= ,B= ,C=7.若用复化梯形公式计算1 1 dx,要求误差不超过10 4,则步长01 x三、(10分)线性方程组:2x x2X3 4x1 2x2X33X x22X3 5考察用Jacobi迭代和Gauss-Seidel 迭代解此方程组的收敛性;四、(10分)已知函数y f(x)的函数值、导数值如下:求满足条件的最低插值多项式及截断误差表示式。
第二章 数值分析2.1 已知多项式432()1p x x x x x =-+-+通过下列点:试构造一多项式()q x 通过下列点:答案:54313()()()3122q x p x r x x x x x =-=-++-+. 2.2 观测得到二次多项式2()p x 的值:表中2()p x 的某一个函数值有错误,试找出并校正它.答案:函数值表中2(1)p -错误,应有2(1)0p -=.2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++ .2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数xe 时,使用多少个节点能够保证误差不超过61102-⨯. 答案:需要143个插值节点.2.5 设被插值函数4()[,]f x C a b ∈,()3()h H x 是()f x 关于等距节点01n a x x x b =<<<= 的分段三次艾尔米特插值多项式,步长b ah n-=.试估计()3||()()||h f x H x ∞-.答案:()443||()()||384h M f x H x h ∞-≤.第三章 函数逼近3.1 求()sin ,[0,0.1]f x x x =∈在空间2{1,,}span x x Φ=上最佳平方逼近多项式,并给出平方误差.答案:()sin f x x =的二次最佳平方逼近多项式为-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-⨯+-,二次最佳平方逼近的平方误差为0.122-1220(sin )())0.989 310 710x p x dx δ=-=⨯⎰.3.2 确定参数,a b c 和,使得积分2121(,,)[I a b c ax bx c -=++-⎰取最小值.答案:810, 0, 33a b c ππ=-== 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式()p x .答案:()f x 的最佳一致逼近多项式为323()74p x x x =++. 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-.答案:236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤3.5 求() (11)xf x e x =-≤≤上的关于权函数()x ρ=的三次最佳平方逼近多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-.答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++,32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤.第四章 数值积分与数值微分4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1(1,2,3,4)n x dx n =⎰,并与精确值比较.答案:计算结果如下表所示4.2 确定下列求积公式中的待定参数,使得求积公式的代数精度尽量高,并指明所确定的求积公式具有的代数精度. (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰(2)11211()[(1)2()3()]3f x dx f f x f x -≈-++⎰ (3)20()[(0)()][(0)()]2h h f x dx f f h h f f h α''≈++-⎰答案:(1)具有三次代数精确度(2)具有二次代数精确度(3)具有三次代数精确度.4.3 设10h x x =-,确定求积公式12300101()()[()()][()()][]x x x x f x dx h Af x Bf x h Cf x Df x R f ''-=++++⎰中的待定参数,,,A B C D ,使得该求积公式的代数精确度尽量高,并给出余项表达式.答案:3711,,,20203020A B C D ====-,(4)6()[]1440f R f h η=,其中01(,)x x η∈.4.4 设2()P x 是以0,,2h h 为插值点的()f x 的二次插值多项式,用2()P x 导出计算积分30()hI f x dx =⎰的数值积分公式h I ,并用台劳展开法证明:453(0)()8h I I h f O h '''-=+. 答案:3203()[(0)3(2)]4h h I p x dx h f f h ==+⎰.4.5 给定积分10sin xI dx x =⎰(1)运用复化梯形公式计算上述积分值,使其截断误差不超过31102-⨯. (2)取同样的求积节点,改用复化辛浦生公式计算时,截断误差是多少?(3)要求的截断误差不超过610-,若用复化辛浦生公式,应取多少个节点处的函数值? 答案:(1)只需7.5n ≥,取9个节点,0.946I ≈(2)4(4)46111|[]||()|()0.271102880288045n b a R f h f η--=-≤=⨯ (3)取7个节点处的函数值.4.6 用变步长的复化梯形公式和变步长的复化辛浦生公式计算积分10sin xI dx x =⎰.要求用事后误差估计法时,截断误不超过31102-⨯和61102-⨯. 答案:使用复化梯形公式时,80.946I T ≈=满足精度要求;使用复化辛浦生公式时,40.946 083I s ≈=满足精度要求.4.7(1)利用埃尔米特插值公式推导带有导数值的求积公式2()()[()()][()()][]212ba b a b a f x dx f a f b f b f a R f --''=+--+⎰,其中余项为 5(4)()[](), (,)4!30b a R f f a b ηη-=∈. (2)利用上述公式推导带修正项的复化梯形求积公式020()[()()]12Nx N N x h f x dx T f x f x ''≈--⎰,其中 0121[()2()2()2()()]2N N N hT f x f x f x f x f x -=+++++ ,而 00, (0,1,2,,), i N x x ih i N Nh x x =+==- .4.8 用龙贝格方法计算椭圆2214x y +=的周长,使结果具有五位有效数字. 答案:49.6884l I =≈.4.9确定高斯型求积公式0011()()()x dx A f x A f x ≈+⎰的节点0x ,1x 及系数0A ,1A .答案:00.289 949x =,10.821 162x =,00.277 556A =,10.389 111A =.4.10 验证高斯型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰的系数及节点分别为0001 2 2A A x x ===-=+第五章 解线性方程组的直接法5.1 用按列选主元的高斯-若当消去法求矩阵A 的逆矩阵,其中111210110A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 答案: 1110331203321133A -⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪-- ⎪⎝⎭5.2 用矩阵的直接三角分解法解方程组1234102050101312431701037x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案: 42x =,32x =,21x =,11x =.5.3 用平方根法(Cholesky 分解法)求解方程组12341161 4.25 2.750.51 2.75 3.5 1.25x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭答案: 12x =,21x =,31x =-.5.4 用追赶法求解三对角方程组123421113121112210x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 答案:42x =,31x =-,21x =,10x =.第六章 解线性代数方程组的迭代法6.1 对方程1212123879897x x x x x x x -+=⎧⎪-+=⎨⎪--=⎩作简单调整,使得用高斯-赛得尔迭代法求解时对任意初始向量都收敛,并取初始向量(0)[0 0 0]T x =,用该方法求近似解(1)k x+,使(1)()3||||10k k x x +-∞-≤. 答案:近似解为(4)[1.0000 1.0000 1.0000]Tx =.6.2 讨论松弛因子 1.25ω=时,用SOR 方法求解方程组121232343163420412x x x x x x x +=⎧⎪+-=⎨⎪-+=-⎩ 的收敛性.若收敛,则取(0)[0 0 0]T x=迭代求解,使(1)()41||||102k k x x +-∞-<⨯. 答案:方程组的近似解为*1 1.50001x =,*2 3.33333x =,*3 2.16667x =-.6.3 给定线性方程组Ax b =,其中111221112211122A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,证明用雅可比迭代法解此方程组发散,而高斯-赛得尔迭代法收敛.6.4 设有方程组112233302021212x b x b x b -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,讨论用雅可比方法和高斯-赛得尔方法解此方程组的收敛性.如果收敛,比较哪种方法收敛较快.答案:雅可比方法收敛,高斯-赛得尔方法收敛,且较快.6.5 设矩阵A 非奇异.求证:方程组Ax b =的解总能通过高斯-赛得尔方法得到.6.6 设()ij n nA a ⨯=为对称正定矩阵,对角阵1122(,,,)nn D diag a a a = .求证:高斯-赛得尔方法求解方程组1122D AD x b --=时对任意初始向量都收敛.第七章 非线性方程求根例7.4 对方程230xx e -=确定迭代函数()x ϕ及区间[,]a b ,使对0[,]x a b ∀∈,迭代过程1(), 0,1,2,k x x k ϕ+== 均收敛,并求解.要求51||10k k x x -+-<. 答案:若取2()x x ϕ=,则在[1,0]-中满足收敛性条件,因此迭代法121, 0,1,2,k x k x k +== 在(1,0)-中有惟一解.取00.5x =-,*70.458960903x x ≈=-.取2()x x ϕ=,在[0,1上满足收敛性条件,迭代序列121, 0,1,2,k x k x k +== 在[0,1]中有惟一解.取00.5x =,*140.910001967x x ≈=- 在[3,4]上,将原方程改写为23xe x =,取对数得2ln(3)()x x x ϕ==.满足收敛性条件,则迭代序列21ln(3), 0,1,2,k k x x k +== 在[3,4]中有惟一解.取0 3.5x =, *16 3.733067511x x ≈=.例7.6 对于迭代函数2()(3)x x c x ϕ=+-,试讨论:(1)当c 为何值时,1()k k x x ϕ+=产生的序列{}k x(2)c 取何值时收敛最快?(3)取1,2c =-()x ϕ51||10k k x x -+-<.答案:(1)(c ∈时迭代收敛.(2)c =时收敛最快.(3)分别取1, 2c =--,并取0 1.5x =,计算结果如下表7.7所示表7.7例7.13 设不动点迭代1()k x x ϕ+=的迭代函数()x ϕ具有二阶连续导数,*x 是()x ϕ的不动点,且*()1x ϕ'≠,证明Steffensen 迭代式21(), (), 0,1,2,()2k k k k k k k k k k k y x z x k y x x x z y xϕϕ+==⎧⎪=-⎨=-⎪-+⎩二阶收敛于*x .例7.15 设2()()()()()x x p x f x q x f x ϕ=--,试确定函数()p x 和()q x ,使求解()0f x =且以()x ϕ为迭代函数的迭代法至少三阶收敛.答案:1()()p x f x =',31()()2[()]f x q x f x ''=' 例7.19 设()f x 在[,]a b 上有高阶导数,*(,)x a b ∈是()0f x =的(2)m m ≥重根,且牛顿法收敛,证明牛顿迭代序列{}k x 有下列极限关系:111lim2k kk k k k x x m x x x -→∞-+-=-+.第八章 矩阵特征值8.1 用乘幂法求矩阵A 的按模最大的特征值与对应的特征向量,已知5500 5.51031A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,要求(1)()611||10k k λλ+--<,这里()1k λ表示1λ的第k 次近似值.答案:15λ≈,对应的特征向量为[5,0,0]T-;25λ≈-,对应的特征向量为[5,10,5]T --. 8.2 用反幂法求矩阵110242012A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭的按模最小的特征值.知A 的按模较大的特征值的近似值为15λ=,用5p =的原点平移法计算1λ及其对应的特征向量.答案:(1) A 的按模最小的特征值为30.2384428λ≈(2) 1 5.1248854λ≈,对应的特征向量为(8)[0.242 4310, 1 ,0.320 011 7]T U =--.8.3 设方阵A 的特征值都是实数,且满足121, ||||n n λλλλλ>≥≥> ,为求1λ而作原点平移,试证:当平移量21()2n p λλ=+时,幂法收敛最快. 8.4 用二分法求三对角对称方阵1221221221A ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭的最小特征值,使它至少具有2位有效数字.答案:取5 2.234375λ≈-即有2位有效数字.8.5 用平面旋转变换和反射变换将向量[2 3 0 5]T x =变为与1[1 0 0 0]Te =平行的向量.答案:203/2/00001010/0T ⎛⎫⎪- ⎪=⎪--⎝0.324 442 8400.486 664 26200.811 107 1040.486 664 2620.812 176 04800.298 039 92200100.811 107 1040.298 039 92200.530 266 798H --⎛⎫⎪--⎪= ⎪ ⎪⎪--⎝⎭8.6 若532644445A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,试把A 化为相似的上Hessenberg 阵,然后用QR 方法求A 的全部特征值.第九章 微分方程初值问题的数值解法9.1 用反复迭代(反复校正)的欧拉预估-校正法求解初值问题0, 0<0.2(0)1y y x y '+=≤⎧⎨=⎩,要求取步长0.1h =,每步迭代误差不超过510-. 答案: [4]11(0.1)0.904 762y y y ≈==,[4]22(0.2)0.818 594y y y ≈==9.2 用二阶中点格式和二阶休恩格式求初值问题2, 0<0.4(0)1dy x y x dx y ⎧=+≤⎪⎨⎪=⎩的数值解(取步长0.2h =,运算过程中保留五位小数).答案:用二阶中点格式,取初值01y =计算得0n =时,1211.000 00, 1.200 00, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.298 72, (0.4)=1.699 74K K y y ==≈用二阶休恩格式,取初值01y =计算得0n =时,1211.000 00, 1.266 67, (0.2)=1.240 00K K y y ==≈ 1n =时,1221.737 60, 2.499 18, (0.4)=1.701 76K K y y ==≈9.3 用如下四步四阶阿达姆斯显格式1123(5559379)/24n n n n n n y y h f f f f +---=+-+-求初值问题, (0)1y x y y '=+=在[0,0.5]上的数值解.取步长0.1h =,小数点后保留8位.答案:4(0.4)0.583 640 216y y ≈=,5(0.5) 1.797 421 984y y ≈=. 9.4 为使二阶中点公式1(,(,))22n n n n n n h hy y hf x y f x y +=+++,求解初值问题 , (0)y y y aλλ'=-⎧⎨=⎩为实常数绝对稳定,试求步长h 的大小应受到的限制条件. 答案:2h λ≤.9.5 用如下反复迭代的欧拉预估-校正格式(0)1(1)()111(,)[(,)(,)]2 0,1,2,; 0,1,2,nn n n k k n n n n n n y y hf x y h y y f x y f x y k n +++++⎧=+⎪⎪=++⎨⎪⎪==⎩,求解初值问题sin(), 01(0)1x y e xy x y '⎧=<≤⎨=⎩时,如何选择步长h ,使上述格式关于k 的迭代收敛. 答案:2h e<时上述格式关于k 的迭代是收敛的.9.6 求系数,,,a b c d ,使求解初值问题0(,), ()y f x y y x a '==的如下隐式二步法221()n n n n n y ay h bf cf df +++=+++的误差阶尽可能高,并指出其阶数.答案:系数为142,,33a b d c ====,此时方法的局部截断误差阶最高,为五阶5()O h .9.7 试用欧拉预估-校正法求解初值问题, (0)=1, 0<0.2()/, (0)2dyxy z y dxx dz x y z z dx⎧=-⎪⎪≤⎨⎪=+=⎪⎩,取步长0.1h =,小数点后至少保留六位.答案:由初值00(0)1, (0)2y y z z ====可计算得110.800 000z 2.050 000y =⎧⎨=⎩ , 11(0.1)0.801 500(0.1) 2.046 951y y z z ≈=⎧⎨≈=⎩ 220.604 820z 2.090 992y =⎧⎨=⎩ , 22(0.2)0.604 659(0.2) 2.088 216y y z z ≈=⎧⎨≈=⎩。
大学计算机根底习题答案〔西安交大〕大学计算机根底第1章引论习题参考答案习题一1.第一代计算机的主要部件是由〔电子管和继电器〕构成的。
2.未来全新的计算机技术主要指〔光子计算机〕,〔生物计算机〕和〔量子计算机〕。
3.按照Flynn分类法,计算机可以分为〔单指令流单数据流〕,〔单指令流多数据〕,〔多指令流单数据流〕和〔多指令流多数据流〕4种类型。
4.计算机系统主要由〔硬件系统〕和〔软件系统〕组成。
5.说明以下计算机中的部件是属于主机系统、软件系统、还是属于外部设备。
〔1〕CPU 〔主机系统〕〔2〕内存条〔主机系统〕〔3〕网卡〔主机系统〕〔4〕键盘和鼠标〔外设〕〔5〕显示器〔外设〕〔6〕Windows 操作系统〔软件系统〕6.控制芯片组是主板的的核心部件,它由〔北桥芯片〕局部和〔南桥芯片〕局部组成。
7.在计算机系统中设计Cache的主要目的是〔提高存去速度〕。
8.计算机各部件传输信息的公共通路称为总线,一次传输信息的位数称为总线的〔宽度〕。
9.PCIE属于〔系统〕总线标准,而SATA那么属于〔硬盘接口或外设〕标准。
10.在微机输入输出控制系统中,假设控制的外部设备是发光二极管,最好选用的输入输出方法是〔程序控制〕方式;假设控制的对象是高速设备,那么应选那么〔 DMA 〕控制方式。
11.操作系统的根本功能包括〔处理器管理或进程管理〕、〔文件管理〕、〔存储器管理〕、〔设备管理〕和用户接口。
12.虚拟存储器由〔主内存〕和〔磁盘〕构成,由操作系统进行管理。
13.CPU 从外部设备输入数据需要通过〔输入接口〕,向外设输出数据那么需要通过〔输出接口〕。
14.简述CPU从外部设备输入数据和向外设输出数据的过程。
请参见教材第18页关于输入输出过程的描述。
15.普适计算的主要特点是〔是一种无处不在的计算模式〕。
1大学计算机根底第1章引论习题二1.在计算机内,一切信息的存取、传输和处理都是以〔二进制码〕形式进行的。
1.计算以下和式:0142118184858616nn S n n n n ∞=⎛⎫=--- ⎪++++⎝⎭∑,要求: (1)若保留11个有效数字,给出计算结果,并评价计算的算法;(2)若要保留30个有效数字,则又将如何进行计算。
(1)题目分析该题是对无穷级数求和,因此在使用matlab 进行累加时需要一个累加的终止条件。
这里令⎪⎭⎫ ⎝⎛+-+-+-+=681581482184161n n n n a nn ,则()()1.01616855844864816114851384128698161 681581482184161148113811282984161111<<⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++++++=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-+-+-+=+++n n n n n n n n n n n n n n n n a a n n n n n n 故近似取其误差为1+≈k a ε,并且有m-1m -11102121⨯=⨯=≈+βεk a ,(2)算法依据使用matlab 编程时用digits 函数和vpa 函数来控制位数。
(3)Matlab 运行程序%%保留11位有效数字 k1=11;s1=0;%用于存储这一步计算值 for n=0:50a=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); n1=n-1;if a<=0.5*10^(1-k1) break end end;for i=0:1:n1t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s1=s1+t; ends11=vpa(s1,k1);disp('保留11位有效数字的结果为:');disp(s11); disp('此时n 值为:');disp(n1);%%保留30位有效数字 clear all; k2=30;digits(k2+2);s2=vpa(0);%用于存储这一步计算值for n=0:50a=vpa((1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)));n2=n-1;if a<=0.5*10^(1-k2)breakendend;for i=0:1:n2t=vpa((1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)));s2=vpa(s2+t);ends30=vpa(s2,k2);disp('保留30位有效数字的结果为:');disp(s30);disp('此时n值为:');disp(n2);2.某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
西安交大期末考试试题及答案西安交通大学期末考试试题一、选择题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
其数学表达式为:A. F = maB. F = m/aC. a = F/mD. a = F * m2. 在化学中,原子的相对原子质量是指:A. 原子核的质量B. 质子数C. 中子数D. 质子数和中子数之和3. 以下哪个选项不是计算机网络的拓扑结构?A. 星型拓扑B. 环形拓扑C. 总线拓扑D. 树形拓扑4. 经济学中,边际效用递减规律表明:A. 随着消费量的增加,消费者对商品的边际效用逐渐增加B. 随着消费量的增加,消费者对商品的边际效用逐渐减少C. 随着消费量的增加,消费者对商品的边际效用保持不变D. 消费者对商品的边际效用与消费量无关5. 以下哪个不是生物多样性的组成部分?A. 物种多样性B. 基因多样性C. 生态系统多样性D. 个体多样性6. 根据热力学第二定律,在一个孤立系统中,熵总是:A. 增加B. 减少C. 保持不变D. 先增加后减少7. 以下哪个是线性代数中矩阵的特征值?A. 矩阵的元素B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆8. 计算机编程中,递归算法的基本思想是:A. 将问题分解为更小的问题B. 将问题转化为更复杂的问题C. 将问题重复执行多次D. 将问题推迟解决9. 根据量子力学的不确定性原理,一个粒子的位置和动量不能同时被精确测量,因为:A. 测量设备不够精确B. 粒子太小,难以测量C. 这是量子力学的基本特性D. 粒子在测量时会移动10. 在心理学中,认知失调是指:A. 个体在面对矛盾信息时产生的不适感B. 个体在面对困难任务时产生的挫败感C. 个体在面对新信息时产生的好奇心D. 个体在面对压力时产生的焦虑感二、简答题(每题10分,共30分)1. 请简述牛顿三大定律的内容。
2. 描述化学键的形成原理及其在分子结构中的作用。
1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=402062225A ,求2A = , )(A ρ= 。
2. 计算⎰badx x f )(的辛普森公式为 。
3. 设矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----5.421231111,=LDL T,其中L 为单位下三角矩阵,D 为 对角矩阵,则L = ,D= 。
4. 线性方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------11851011151112321x x x ,试写出Jacobi 迭代法的迭代格式 。
5. 已知下列数据:x -3 -2 -1 2 4 y14.38.34.78.322.7用最小二乘法求形如2bx a y +=的经验公式的法方程为 。
6.用牛顿迭代法计算0233=--x x 的根的迭代格式为 , 取初始值=0x 1.5, 迭代一步得=1x 。
1.求积公式)]2(5)5.0(16)0(3[91)(2f f f dx x f ++-≈⎰具有的几阶代数精度。
( ) A. 1 B. 2 C. 3 D. 42.线性方程组的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛=122111221-A ,则下面结论正确的是 ( ) A.Jacobi 迭代法不收敛,Gauss-Seidel 迭代法收敛 B. Jacobi 迭代法收敛,Gauss-Seidel 迭代法不收敛 C. Jacobi 迭代法不收敛,Gauss-Seidel 迭代法不收敛 D. Jacobi 迭代法收敛,Gauss-Seidel 迭代法收敛 3.设6)12(-=f ,取4142.12=,利用下列等式计算,计算结果最好是( )A .6)12(1+=f ; B .3)223(-=f ; C .3)223(1+=f ; D . 27099-=f .4.设,.....)2,1,0(,527)(2==++=j j x x x x f j ,则=],,[210x x x f ( ) A. 7 B. 2 C. 5 D. 01. 若经四舍五入得到近似数0123400.0=x ,则它的绝对误差限为71021-⨯,有效数字为4 位。
西华大学研究生课程考试试题课程名称: 计算方法 考试类型(考试或考查): 考试 年 级: 2010 学时: 60 考试时间: 120 专 业: 学生姓名: 学号:一、设下列各近似值均有4位有效数字,*0.001428x =,*13.521y =,*2.300z =,试指出它们的绝对误差限和相对误差限. 解: 1) 由*24611||101022x x ----≤⨯=⨯,得*x 的绝对误差限为61102-⨯,相对误关节限为 6410 3.51020.001428--≈⨯⨯;2) 由*24211||101022y y ---≤⨯=⨯,得得*y 的绝对误差限为21102-⨯,相对误关节限为2410 3.710213.521--≈⨯⨯;3) 由*14311||101022z z ---≤⨯=⨯,得得*y 的绝对误差限为31102-⨯,相对误关节限为3410 2.2102 2.3--≈⨯⨯.二、对于给定值0a >,应用Newton. 解: 令21()f x a x =-,()0f x =的根, 的迭代公式为1()()n n n n f x x x f x +=-',化简得:210.5(3)n n n x x ax +=-.三、设方程组b AX =:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111163852741321x x x 1.求出三角分解式LU A =2.利用上述分解求出b AX =的解解: 1. 100230362L ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 147012001U ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, A LU =; 2. 先解方程123100123013621y y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得1231130y y y ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦;再解方程1231147101230010x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得原方程的解为113x =-,213x =,30x =.四、设0.60.50.10.3A ⎡⎤=⎢⎥⎣⎦计算1||||A ,2||||A ,||||A ∞以及()A ρ。
计算方法(B )上机作业一、三次样条拟合某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。
在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。
已探测到一组等分点位置的深度数据(单位:米)如下表所示:(1)(2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图; 解:1、算法实现的思想及依据题目(1)为曲线拟合问题多项式插值、分段插值和最小二乘法。
多项式插值,随着插值数据点的数目增多,误差也会随之增大,因此不选用。
最小二乘法适于数据点较多的场合,在此也不适用。
故选用分段插值。
分段插值又分为分段线性插值、分段二次插值、三次样条插值及更高阶的多项式插值。
由本题的物理背景知,光缆正常工作时各点应该是平滑过渡,因此至少选用三次样条插值法。
对于更高阶的多项式插值,由于“龙格现象”而不选用。
题目(2)求光缆长度,即求拟合曲线在0到20的长度,对弧长进行积分即可。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
2、算法实现的结构参考教材给出的SPLINEM 算法和TTS 算法,在选定边界条件和选定插值点等距分布后,可以先将数据点的二阶差商求出来并赋值给右端向量d ,再根据TSS 解法求解M 。
光缆长度的第一型线积分表达式为190k kk l +==∑⎰。
3、程序运行结果及分析图1.1三种边界条件下三次样条插值图1.2光缆长度4、MATLAB代码:1)自己编程实现代码clear;clc;I=input('你想使用第几种边界条件?请输入1、2、3之一: ');x=0:20;y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.8 10.93];plot(x,-y,'k.','markersize',15)%y为深度,取负号hold on%% 计算一阶差商y1=ones(1,21);for i=2:1:21y1(i)=(y(i)-y(i-1))/(x(i)-x(i-1));end%% 计算二阶差商y2=ones(1,21);for i=3:1:21y2(i)=(y1(i)-y1(i-1))/(x(i)-x(i-2));end%% 计算三阶差商y3=ones(1,21);for i=4:1:21y3(i)=(y2(i)-y2(i-1))/(x(i)-x(i-3));end%% 选择边界条件(I)if I==1d(1)=0;d(21)=0;a(21)=0;c(1)=0;% 第一个点和最后一个点的二阶差商为0 endif I==2d(1)=6*y1(1);d(21)=-6*y1(21);a(1)=1;c(1)=1;endif I==3d(1)=-12*y3(1);d(21)=-12*y3(21);a(21)=-2;c(1)=-2;%endfor i=2:20d(i)=6*y2(i+1);end%% 构造带状矩阵求解(追赶法)b=2*ones(1,21);a=0.5*ones(1,21);%a(21)=-2;c=0.5*ones(1,21);%c(1)=-2;u(1)=b(1);r(1)=c(1);%% 追yz(1)=d(1);for i=2:21l(i)=a(i)/u(i-1);u(i)=b(i)-l(i)*r(i-1);r(i)=c(i);yz(i)=d(i)-l(i)*yz(i-1);end%% 赶xg(21)=yz(21)/u(21);for i=20:-1:1xg(i)=(yz(i)-r(i)*xg(i+1))/u(i);endM=xg;%%所有点的二阶导数值%% 求函数表达式并积分t=1;h=1;N=1000x1=0:20/(N-1):20;length=0;for i=1:Nfor j=2:20if x1(i)<=x(j)t=j;break;elset=j+1;endendf1=x(t)-x1(i);f2=x1(i)-x(t-1);S(i)=(M(t-1)*f1^3/6/h+M(t)*f2^3/6/h+(y(t-1)-M(t-1)*h^2/6)*f1+(y(t)-M(t)*h^2/6)* f2)/h;Sp(i)=-M(t-1)*f1^2/2/h+M(t)*f2^2/2/h+(y(t)-y(t-1))/h-(M(t)-M(t-1))*h/6;length(i+1)=sqrt(1+Sp(i)^2)*(20/(N-1))+length(i);%第一类线积分endfigure(1);plot(x1,-S,'r-')%深度曲线griddisp(['第',num2str(I),'种边界条件下长度',num2str(length(N+1)),'米'])axis fill;xlabel('测点/米');ylabel('深度/米');title('三次样条曲线拟合');legend('数据点','拟合曲线',3);二、最小二乘近似假定某天的气温变化记录如下表所示,试用数据拟合的方法找出这一天的气温变化的规律;试计算这一天的平均气温,并试估计误差。